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1 Introduction

In 1959, Muller and Bartky published “A Theory of Asynchronous Circuits” in which they used
lattice theory to study the behaviour of clock-free digital circuits, [9]. This paper is remarkable
not only for its analysis of a difficult real-world problem but also for the introduction of concepts
and methods which were far in advance of their time. In particular, the lattices used by Muller
and Bartky are closely related to the domains of configurations of event structures, although,
of course, they were not recognized as such at the time.

In this paper we define and study an analogous construction to Muller’s but in a context
which is more familiar to concurrency theory: 1-safe Petri nets. The intuition behind Muller’s
lattice construction is that the elements of the lattice not only represent states of the corre-
sponding circuit but also count the number of times a given wire in the circuit has experienced
a change of voltage level (from 0 to 1 or vice versa). This idea is quite natural from the
perspective of an electronic engineer. An oscilloscope probe placed in a circuit will faithfully
record the rises and falls in the voltage level on a single wire and it is straightforward for an
electronic observer to count these. Qur construction for nets, builds a poset, which no longer
has to be a lattice, whose elements count the number of times each transition in the net fires.
We refer to this poset as the Muller unfolding of the net.

Similar constructions have recently appeared in the literature on asynchronous circuit de-
sign, [16]. We hope that the treatment we present here will clarify some of the difficulties with
these constructions, which we discuss further in §2.

The idea of counting firings of transitions appears to be new to concurrency theory. For
example, Nielsen, Plotkin and Winskel, [10], also construct an unfolding of a safe net and
we observe in §2 that this does not coincide with the Muller construction. Indeed, we shall
point out in §2 that not even a General Event Structure, of the type considered by Winskel
in [14], is capable of generating the Muller poset. This leads us to ask whether there is some
generalized event structure which is able to capture it. That is the problem which we address
in this paper. In earlier work, [4, 5], we developed a logical approach to causality which allows
us to interpret Winskel’s General Event Structures as arising from a specific logic of causality,
[4, Theorem 4.1]. By choosing a different logic, we can build a class of generalized event
structures. In this paper we suggest an appropriate logic, £3, which we show to be sufficient
to build a generalized event structure—a so-called L£3-automaton—which captures the Muller
poset. This is our main result.

We believe this paper has two main contributions. Firstly, it introduces to concurrency the-
ory some ideas arising from practical problems in circuit design which have not been discussed
and studied before in an abstract setting. Secondly, we have argued elsewhere, [4, 3], that
causality still presents some difficult unresovled questions and that we are far from a definitive
understanding of it. The Muller unfolding presents us with a family of awkward examples
which force us towards a deeper understanding of causality. We believe this interplay between
engineering practice and mathematical theory is important for the health of both subjects.

In the next section we consider Muller’s construction in the context of a simple electrical
circuit and use this to motivate our construction for Petri nets. In §3 we give a background
sketch of the logical approach to causality developed in [4, 5] in sufficient detail to motivate
our candidate logic of causality, £3. Finally, in §4, we explain how to build an £3-automaton
from a safe net and give a sketch of the proof of the main result. Full details can be found in
[6].

This paper arose out of questions posed by Vadim Kotov and Lucy Cherkasova during a
visit by the author to the Institute of Informatics Systems in Novosibirsk in 1991. The author



gratefully acknowledges many discussions, then and subsequently, which laid the foundations
of the present paper. Thanks are due to Alex Yakovlev for introducing the author to asyn-
chronous circuits and for stimulating a detailed study of Muller’s ideas. Mogens Nielsen has
helped to develop the subject of Muller unfoldings and the author is grateful to him for many
insightful discussions on that subject. Finally, thanks are due to four anonymous referees
whose comments led to improvements in the presentation of this work. The work described
here was undertaken as part of project STETSON, a joint project between Hewlett-Packard
Laboratories and Stanford University on asynchronous circuit design.

2 The Muller unfolding

The diagram below shows a closed asynchronous circuit composed of two inverters and a Muller
C-element. This is identical to Muller’s Figure 2, [9, page 225].
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The behaviour of this circuit is given by the following Boolean circuit equations, [9, 7.8], in
terms of the wires 21, 5 and z3.

T = Tx3VITiT2VIT1T3
Ty, = -2y
(Bg = "I

For given voltage levels on the wires z1, 22 and z3, these equations describe the new voltage
levels, z/, x4, «5, caused by the circuit components. Muller’s famous C-element remembers its
previous value until its inputs have both gone high or both gone low, at which point it changes
value. C-elements are frequently used in asynchronous designs.

The behaviour of this circuit can be represented by the transition diagram (2). The states
of this diagram are triples of Boolean values corresponding to the voltage levels on z;, z2 and
z3, respectively. An asterisk superscript indicates that the corresponding Boolean value is
unstable and the circuit equations are tending to change that value. The transitions between
the states are given by Muller’s rule [9, (3.1)], which is usually referred to nowadays as the
General Multiple Winner model, [1, §2.5].

—— *

[y

1*

—

N
/

*

101> l 11*0
0

N

[y

. (2)

==

s

0*1

i
010* \
*1

S

e

(=




(For a detailed discussion of the significance of the vertical transitions, from 111 to 100 and
from 000 to 011, see [6].)

Muller’s construction of the lattice of “cumulative states”, [9, §7], is based on the idea
of counting the number of times the voltage on each wire in the circuit changes value. A
cumulative state is a triple of non-negative integers, (%, , k), corresponding to the counts for
the wires x,, z and z3, respectively. The partial order is induced from the transitions in (2).
For the circuit above we shall follow Muller’s example and start counting from 011. Muller’s

cumulative diagram—actually the Hasse diagram of the partial order—then looks as follows,
[9, Figure 3].
(0,0,0)

Although we have not formally defined Muller’s construction we hope that the sketch given
above will give some intuition for it. What we want to do in the remainder of this section is
to take Muller’s idea and look at it in the more familiar context of Petri nets. We first recall
some notation and definitions.

A* will denote the set of (finite) strings of symbols from A while A+ will denote the
multisets on A considered as functions from A to the natural numbers, N. If I,m € A% then
(I £ m)(a) = l(a) £ m(a) (provided ! — m is well-defined) and (nl)(a) = n(l(a)), for n € N.
If s € A*, [s] € AT denotes the corresponding multiset or Parikh vector, [11, Definition 13].
Note that [—] is additive: [st] = [s] + [¢]-

A labelled transition system (LTS) is a quadruple, L = (S, Ar, Rr,%1), where S, is a
set of states, Ay, a set of actions, Ry C S; X Ar x Sr a set of transitions and i1, € Sp an
initial state. Similarly, a transition system (TS) is a triple U = (Sy, Ry, iwv). (We shall drop
the suffixes when the context disambiguates the reference.) We adopt the usual notation for
transitions: p - ¢ for (p,a,q) € Ry and p = ¢ for the “transitive closure” labelled by strings
s € A*. Similarly for the unlabelled versions, p — ¢ and p = ¢q. Every LTS, L, has an
underlying TS where p — ¢ if, and only if, p = ¢ for some a € Sz. A TS is acyclic if => is
anti-symmetric; = is then a partial order. If U is an acyclic TS then p(U) = (Sy,=>) denotes
the associated poset. If L is an LTS, its connected part, denoted L., is defined as L restricted
to those states which are reachable from 7. Similarly for a transition system. The traces of L



are traces(L) = {s € A} | i = p for some p € SL}.

Definition 2.1 A Petri net, N = (B, A, F, My), s a quadruple where B is a set of places, A
is a set of transitions, F C (A x B) U (B x A) is a flow relation and My € B is an initial
marking.

A marking is any element of B*. If z € BU A then the preset of z, *z, and the post-set of
z, z*, are defined by ‘s ={y€ BUA| (y,z) € F},z*={ye€ BUA| (z,y) € F}.

Definition 2.2 Let N = (B, A, F, M) be a Petri net. Its associated LTS, denoted LTS(N), is
defined as follows:

* Sitsv) = Bt
* AiTs(v) = 4;
® Ritsvy = {(M,a, M) [*a < My, Mz =M;—-"a+a'};

® i TS(v) = Mo-

A net is 1-safe (or safe) if My and each marking reachable from My is set like: M(b) < 1, Vb €
B. The traces of N are just the traces of the corresponding LTS: traces(N) = traces(LTS(N)).
The nets we deal with in this paper will all be finite (ie: both B and A will be finite) and
1-safe. The finite 1-safe net shown below will be our running example.
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Muller counted changes in voltage level. We intend to count firings of transitions. The
easiest way to count the transitions on a trace s is to use the multiset [s] which can be thought
of as a vector of numbers indexed by the names of the transitions. This is similar to Muller’s

cumulative state. Let s < ¢t denote the usual prefix ordering on strings and recall that [s] = [t]
if, and only if, s and ¢ are permutations of each other.

Definition 2.3 If s,t € traces(N) then [s] < [t] if, and only if, there are §',t' € traces(N)
such that, s <t', [s] = [¢'] and [t] = [t'].

This is the prefiz ordering up to permutation which was first introduced in [5, §2.2]. It was
pointed out there that, in general, < is not a partial order.

Lemma 2.1 < defines a partial order on the multisets of traces of N.



Proof: It is clear that [s] < [s]. Suppose that [s] < [¢] and [t] < [s]. Then there are s’ < t/
with [s'] = [s] and [t'] = [t]. There are also t” < s” with [¢"] = [s] and [t"] = [t]. Since the
lengths of s, s’ and s” are all the same and similarly the lengths of ¢, ¢’ and t” are all the same,
it must follow that s and ¢ are of the same length. But the same must then apply to s’ and ¢’
and so s’ = t'. Hence, [s] = [t], as required.
Now suppose that [s] < [t] and [t] < [u]. We then have &',t',t",u' € traces(N) such that
s <, [s]=]s], [t'] =[t] and t” < o/, [t"] = [t], [u] = [u]. At this point we have to use the fact
that our traces are coming from a net. Let us suppose that Mp L M’ and My % M". Since
[t"] = [t] it follows from the firing rule for nets that M’ = M": the order in which transitions
are fired makes no difference to the eventual marking. Since t” < u’ we can find a string v
such that ' = t"v. It is then clear that v is a firing sequence from the marking M’. Hence,
t'v € traces(N). Since [t'] = [t"] it follows from the additivity of [—] that [t'v] = [t"v] = [4].
8o we have &/, tv € traces(N) such that s <t <t [] = [s], [t'v] = [4] = [u]. Hence
[s] < [u] and < is a partial order.
QED

Definition 2.4 If N = (B, A, F, My) is a finite 1-safe Petri net, the Muller unfolding of N is
the poset mul(N) = (X, X) where X = {[s] € At | s € traces(N)} and X is the prefiz ordering
up to permutation.

Landweber and Robertson use similar methods to associate a Parikh space to an arbitrary
net, [8, §3], and consider the poset structure imposed by the “natural”, or pointwise, order on
multisets: | < m if, and only if, [(a) < m(a) for all a € A. It is clear that this poset structure
can only reflect the dynamics of the net in restricted cases. If the net is persistent then the
Parikh space is a lattice, [8, Theorem 3.1], in fact, a semi-modular lattice, [15, Theorem 3.1].
If N is safe and persistent it is not hard to see that mul(N) is isomorphic as a poset to
the Parikh space of N. However, the poset strucutre of mul(NN) is based on the underlying
behaviour of the net and not on the “un-natural” ordering on multisets which has, in general,
absolutely no connection with the net. More recently, a Muller-style cumulative diagram for
an arbitrary labelled transition system has appeared in [16, §2.4]. Unfortunately, this does
not define a partial order. We give a correct construction in the full version of this paper, [6,
Definition 2.1]. A cumulative diagram for a finite (not necessarily safe) Petri net is also defined
in [16, §4.1.1] by different methods. This construction agrees with mul(N) when N is safe but
is less convenient to use. The work of [16] attempts to apply net theory to asynchronous circuit
design, a difficult undertaking for reasons which are discussed further in [6]. Our agenda here is
the converse, we seek to apply Muller’s ideas on analysing asynchronous circuits to net theory



and, in particular, to understand the implications for event structures and causality.
(0,0,0)
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The Hasse diagram of the Muller unfolding of example (3) is shown in (4). Since N has only
3 transitions, a, b and ¢, we have used the simplified notation (¢, j, k) to denote the multiset
I for which l(a) = ¢, I(b) = j and I(c) = k. We can make some simple deductions from this
example. The states (1,1,0) and (1,0, 1) both cover the state (1,0,0). But the least upper
bound of (1,1,0) and (1,0, 1) is clearly (2,1, 1) which does not cover either (1,1,0) or (1,0, 1).
This means that mul(N) cannot be an event domain, [2], for axiom C would be violated.
Hence, there can be no General Event Structure whose domain of configurations (or, at least,
the compact elements thereof) is isomorphic to mul(N). This implies in particular that the
Nielsen, Plotkin, Winskel unfolding in [10] is different from the Muller unfolding.

This brings us to the main problem of this paper. Can we find a generalized event structure
which gives the Muller unfolding as its domain of configurations?

3 A logical approach to causality

In this section we give a background sketch of the logical approach to causality. Our main
purpose is to give some intuition for £3 and to show that it can be rigorously defined. The basis
of the logical approach is that causality should be thought of as an observation on the state of
a system. The observation indicates whether or not an event may occur. A logic of causality
is then an appropriate language in which such observations can be stated. Following Winskel,
we regard the state of a system as a configuration: “a set of events which have occurred by
some stage in a process”, [14, §1.1], Furthermore, we interpret the principle of finite causes in
a strong form as a statement of completeness for a logic of causality: any two observations
which agree on all finite states are equivalent.

The mathematical ingredients are as follows. Let E be a set of events and let Fin(FE)
denote the set of finite subsets of E. We seek logics £(F) which are equipped with a pairing
=C L(F) X Fin(F) between formulae in the logic and states of the system. We shall write
this as s |= p for s € Fin(E) and p € L(E). This pairing tells us when an observation p holds
on the state s. Given such a pairing, an L-automaton, G = (FE, p), is a pair consisting of a set
of events F and a function p : E — L(E) which associates to each event its cause, considered
as an observation in the logic. The behaviour of an £-automaton is described by the following

“Inference rule”;

s — sU {e}



which gives rise to a labelled transition system on the states of the automaton.

Definition 3.1 If G = (E,p) is an L-automaton, its associated labelled transition system,
denoted LTS(G), is defined as follows:

o Si75(G) = Fin(E);

* AiTsG) = E;
* Rty =1{s>su{e}leds, skEple));
* 156 = ¥-

Let TS(G) denote the underlying transition system of LTS(G). Since each transition increases
the size of the state by one event, it is clear that TS(G) is acyclic.

Definition 3.2 IfG = (E, p) is an L-automaton, its domain of configurations, denoted p(G),
is defined as p(G) = p(TS(G),).

As is customary, we consider only those states which are reachable from the initial state,
@. Strictly speaking the domain of configurations as defined here includes only the compact
elements. We can recover the full domain by taking a directed completion, [13, §9], if necessary,
but we shall work only with the compact elements in this paper. The reader should note that
the full domains are not Scott domains, in general.

These constructions are parametric in the choice of logic. Given any logic for which a
notion of observation pairing has been defined, we get a corresponding class of automata
whose behaviour is given uniformly by (5).

The remainder of this section leads up to the definition of £3. We shall first define £,
and thereby explain the close relationship between logics of causality and topology, which is
an essential feature of our approach. We shall then mention L;, and state its relationship to
Winskel’s General Event Structures. This should make clear the sense in which £-automata
are generalized event structures. Finally, we shall use topological methods to define Ls.

For any logic £ we can define the function 8 : £(E) — 2F"(E) where

0(p) = {s € Fin(E) | s = p}. (6)

By the principle of finite causes, if 8(p1) = 6(p2), then we should regard p; and p; as indis-
tinguishable observations. This indicates that the logics we want to find can be regarded as
collections of subsets of Fin(E).

The simplest observation that we can make is that a given event, e € F, has occurred.
(By “occur” we mean that e € s, where s is the current state of the system.) We shall denote
this observation by the same symbol, e. It is characterised by the rule s = e if, and only if,
e € s. It follows that p(e) = {s | e € s}. If s € Fin(E) let st= {t € Fin(F) | s C t}. We
can then write p(e) = {e}f. A subset z C Fin(FE) is upwards closed if st C ¢ whenever s € z.
In particular, p(e) is upwards closed. Let Fin(E)t denote the set of upwards closed subsets
of Fin(FE). It is easy to see that this is a topology; in fact, it is the smallest topology which
contains the sets {e}1, for each e € E. It is called the Alexandrov topology on Fin(E), (13,
Example 3.6.2], and it is our first candidate for a logic of causality: £,(F) = Fin(E)t.

This definition is not very “logical”! We have not provided a syntax for our observations,
nor have we explained the axiomatic basis of the logic. To do this we must use frame theory,

7, 13].



Definition 3.3 A frame F is a poset in which (1) all finite meets exist; (2) arbitrary joins
exist; (3) binary meets distribute over arbitrary joins, a A \/;ci{bi} = Vier{a A b;}.

Frames provide a syntax with arbitrary (infinite) disjunctions and finite conjunctions as well
as the constants T and F. Note that the open sets of any topology always define a frame. A
homomorphism of frames, f : F — G, is a function which preserves finite meets and arbitrary
joins. Frames and their homomorphisms form a category which is algebraic over the category
of sets, [7, I1.1.2]. That is to say, despite the infinitary operation, free frames exist and frames
can be constructed by generators and relations in a familiar algebraic manner, [13, Chapter 4].
Let Fr(FE) denote the free frame generated by E.

It is easy to define an observation pairing on Fr(E); it arises naturally out of the frame
theory. If s € Fin(FE), define the function v, : E — {T,F}, from E to the trivial Sierpinski
frame, by vs(e) = T if, and only if, e € s. By the universal property of a free frame, this
function lifts to a frame homomorphism v, : Fr(E) — {T,F}, (for which we use the same
notation). Define s |= p if, and only if, vs(p) = T. If 6 is defined as in (6) then it is proved in
(4, Proposition 3.1] that § : Fr(E) — Fin(E)t is an isomorphism of frames. This explains the
syntax and equational theory of £;.

An example may help to make this seem less abstract. Consider the £;-automaton

G =

Qo o
o -

Ve

We shall always write automata in this way: the left-hand column has the events while the
right-hand column has the corresponding observations. This example is isomorphic to the
parallel switch in [14, Example 1.1.7] and the reader can check that the Hasse diagram of p(G)
coincides with the diagram of configurations sketched by Winskel. (For more information on
L1-automata and their relationship to Milner’s idea of confluence in CCS, see [5].)
Unfortunately, £;-automata are entirely conflict-free. Negation is the logical connective
which seems closest to the idea of conflict and frames do have some kind of a negation, called
the pseudo-complement. In fact frames have a Heyting implication, p — o, defined by the rule

pro=\/ =z
zAp<Lo
The negation is then given by —p = p — F. It is not difficult to show that for £; this negation is
completely trivial: for any p € Fr(E),if p # F then —p = F, [3]. This confirms the conflict-free
nature of £;.

It is not straightforward to find causal logics with a non-trivial negation and a tractable
axiomatic basis, [3, 4]. This is the central problem in the logical approach to causality. The
difficulty arises because Heyting implication is a secondary operation in a frame: it is not pre-
served by the frame homomorphisms. If we considered it to be a primary operation and required
homomorphisms to preserve it then the resulting category—of complete Heyting algebras—
would no longer be algebraic and free objects would no longer exist, [7, 1.4.10]. What this
means for us is that we cannot simply throw in a negation and expect to generate logics by
algebraic methods as we did above for £;.

One possibility is to push the negation out of the logic and into the semantics of the obser-
vation pairing. Let L;(F) = Fr(FE) x Fr(E) consist of the language of pairs of observations

from L. Define the observation pairing by

sk (p,0)iff s = pand s o



It is proved in [4, Theorem 4.1] that Winskel’s General Event Structures correspond bijectively
to Lo-automata for which the second component of the observation is “essentially” constant.
(For a precise statement, see [4].) This correspondence induces an isomorphism on the domains
of configurations so that £y-automata are a strict generalization of General Event Structures.
Unfortunately, they are still not general enough to capture the Muller unfolding. We need a
logic which is capable of dealing with more complex conflicts.

Let us return to first principles. The simplest negative observation we could make is the
non-occurrence of e. Let € denote this observation. It is characterised by the rule s |= € if|

and only if, e ¢ s. Guided by what we did above, let us consider the smallest topology which
contains such observations.

Definition 3.4 L3(E) = the topology generated by {6(e),0(e) | Ve € E}.

To understand the syntax behind L3, and in particular to see whether it has an effective
negation, we need to look at the frame theory. Let E = {¢ | e € E}. Suppose that s € Fin(E).
By the universal property of free frames, s defines a homomorphism of frames, v; : Fr(EUE) —
{T, F}, satisfying

vs(e) =T

ve(8) =F } if, and only if, e € s.

Let § : Fr(EUE) — 2F"(F) 1t is clear that 8 is a frame epimorphism onto £3(F). Hence,
frame theory tells us that there exists some set of relations in Fr(E U E) such that

Fr(EUE)

— FE
< relations > = La(E)

is an isomorphism of frames.

But what are the relations? It is not hard to see that e A€ = F and eVE=T in L3(F): an
event cannot both be in s and not be in s while any event must either be in s or not be in s.
Hence e and € are complements of each other, [7, [.1.6], and therefore —e = €. We have found
a non-trivial negation which does the right thing on the basic observations. If E is finite, then
it is proved in [3] that

) Fr(EUE)
"<eANe=F,eve=T>

__y oFin(E) (= 22E)

is an isomorphism of Heyting algebras. Hence, £L3(F) is the free Boolean algebra on E. (The
frame presentation corresponds to disjunctive normal form.) Unfortunately, life is not so
straightforward when F is infinite, which is the case of interest to us here. It is not hard to
see that \/;c;€; = T in L3(FE) for any infinite subset of events {e; | ¢ € I'}: any infinite subset
of events must contain some event which does not occur in a given finite subset. The topology
we have constructed has a surpisingly complex presentation as a frame when FE is infinite.

In particular, £3(F) is not a classical logic when F is infinite! The negation does not obey
both de Morgan laws and ——p # p. (The significance of intuitionism arising in this context
is discussed further in [3].) Luckily, one of the de Morgan laws holds in any Heyting algebra:
~(pV o) =-pA-o,[7, 1.1.11], and this is sufficient for the purposes of the next section. We
shall spare the reader from any further details of the axiomatics of £L3(F). A full account may
be found in (3].

With this background regarding L3 in place, we can finally embark upon the main con-
struction.



4 Capturing the Muller unfolding

Let N = (B, A, F, My) be a finite 1-safe Petri net. The first step is to determine the events of
our automaton. It is natural to take these to represent the firings of transitions since, after all,
that is what is counted in mul(N). Let N* denote the positive natural numbers. Our events
will be elements of A x N*, written as a;, which should be thought of as representing the ¢-th
firing of transition a.

The observations corresponding to these events are harder to write down. Consider a place
% in the net N and those transitions which are incident on it as shown below.

Here, *u = {z,y} and v* = {a,b,c}. We shall regard (7) as a generic example which will

allow us to lighten the syntax considerably. It will be convenient to use the auxiliary function
¢ : B — Z defined by ¢(u) = Mp(u) + |u*| — 1.

Definition 4.1 Given the net N = (B, A, F, My), define the Ls-automaton A(N) = (E, p) by
E=AxN"* and

Su={z,y}
e N
plan) = /\ \/ (ziAy; )A=( b Ve ). (8)
u€®a i+j=ntk+i—¢(u) u':{a,b,c}

4,320; k,i>1
The following conventions will be used to interpret (8):
e 20=T, Vz € A;
e AQ=Tand VO =F.

Note that, because N is finite, p(a,) € L£3. The reader’s attention is drawn to the discrepancy
between the restrictions on the indices %, j—corresponding to transitions in *u—which are
required to be only non-negative, and the indices k,l—corresponding to transitions in u*—
which must always be positive. These restrictions and the discrepancy between them are
important to the correct working of (8). The example net in (3) has the £3-automaton shown
below.

an Vi+j=n—1 bi A 7]
Cp Vz'=n+j—1 a; A "le

In order to understand how (8) arises, consider the behaviour of the net in the vicinity of
the place illustrated in (7). Assume that this place, u, is not marked in the initial marking so
that Mo(u) = 0 and ¢(u) = 2. (The reader will easily be able to supply a similar argument
when u is marked initially.) In order that 4 becomes marked at some point it is necessary that
the number of times z and y have fired, in total, should exceed by 1 the number of times a,
b and c have fired, in total. (Notice that we have just made use of the fact that N is 1-safe.)
Suppose that z and y have fired ¢ and j times respectively, and that b and ¢ are about to fire
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for the k-th and I-th times, respectively. Suppose further that a is about to fire for the n-th
time. If » is marked, it then follows from what was said above that

itj=n—14k—14+1-1+1,

which we may rewrite as i + j = n+ k + 1 — ¢(u). This is exactly the constraint which appears
under the disjunction in (8). The term within the disjunction tries to capture the fact that z;
and y; have occurred while neither by nor ¢; has. In order for a to be able to fire, all its places
must be marked, which accounts for the outermost conjunction in (8).

This discussion does not prove anything; it merely suggests that (8) is a necessary conse-
quence of the firing rule for the given interpretation of the events a;. Note, in particular, that
p(a,) makes no mention of a,_;. It is not at all obvious from (8) that A(N) offers the events
a; in order of increasing . This precedence is required by the interpretation we have given to
the a;: it would be unfortunate, to say the least, if the second firing of a took place before the
first firing of a! It is instructive to consider a pathological situation where this does in fact
arise, which has to be excluded from the main theorem. Consider the net with only a single
transition, @, and no places. Since *¢ = (), the conventions above imply that the net has the
automaton

an, T

which allows any of the events a,, to occur initially. This clearly does not generate the Muller
unfolding. This net behaves as though there were a place in the preset of a with an infinite
number of tokens which suggests that the pathology is related to what goes wrong in non-safe
nets. This falls outside the scope of the present paper. Our concern here is to exclude such
examples from the statement of the theorem. If N is 1-safe then a transition a with *a = §
must also have a* = (. Since we deal only with 1-safe nets, it is sufficient to require that no
transition is isolated, [12, §1.5].

Before giving a precise statement of the main theorem we need to identify the underlying
function which induces the isomorphism. The states of mul(N) are elements of A* while the
states of p(A(V)) are elements of Fin(A x N*). We can, of course, identify Fin(A x N*) with
a subset of (A x N*)* in the obvious way. Let v : A* — (4 x N*)* be defined by

N 0 ifi>I(z)
v{l)(z,9) = { 1 otherwise )
where | € A*. It is easy to see that v must be injective: if v(I;) = v(l2) then I; = I3, and,
furthermore, that v(l) is always a subset, not simply a multiset, of (A x N*). If A is finite,
which it will be in what follows, it is clear that » : At — Fin(A x N*). If, for instance,
s = acbca, then the reader can easily check that v[s] = {ay, az,b1,¢1,c2}. We can now state

the main result of this paper.

Theorem 4.1 Let N = (B, A, F, My) be a finite 1-safe Petri net with no isolated transitions.
The function v : AT — Fin(A x N*) induces an isomorphism of posets from mul(N) to

p(A(N)).

The proof of this is more difficult than one might expect. We are only able to sketch the
outlines of the argument here; full details appear in [6]. The proof falls naturally into two

parts: what haPPens initially and what haﬂ)ens after some sequence of transitions have fired,

The frst part is straightforward and we give its proof in full to give a flavour for the kind of

arguments which are used.
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Proposition 4.1 With the assumptions of Theorem 4.1, if a € A is a transition which is
enabled at the marking Mg, then § = p(a1) in A(N). Conversely, if @ = p(an) in A(N), then
n =1 and a is enabled at M.

Proof: Suppose that a € A is enabled at My. Choose u € *a which we may always do since
N is 1-safe and no transition of NV is isolated. Since N is 1-safe, Mp(u) = 1 and ¢(u) = |u’|.
Suppose as usual that the vicinity of the place u is described by the picture (7). According to
(8), the contribution of u to p(a;) looks like

\/ (zi/\yj)/\—\(kacz).
i+j=k-14I1-1

Consider the sub-term o = (zg A yo) A =(b1 V ¢1) = —(b1 V ¢1) which satisfies the restrictions
imposed by (8). Clearly, @ = 0. Since we can find such a sub-term for any u € *a, it is clear
that @ |= p(a1)

Now suppose that § = p(a,,) in A(N). Choose u € *a, which, as above, we may always do.
It follows from (8) that

0 E (z,-/\yj) /\—!(kacl). (10)

for some sub-term satisfying i+ j = n+k+ 1! — ¢(u). Since @ | z; if, and only if, ¢ = 0, this is
only possible if either *u = @ or 7 = j = 0. In either case, the remaining indices must satisfy
n+ k+ 1= ¢(u). We can rewrite this as

Mo(u)—1=(n-1) + (k—-1) + (I-1).

Since 7, k,1 > 1 we must have that Mp(u) > 1 from which we deduce—since N is 1-safe—that
Mop(u) = 1. Since this holds for any u € *a, the transition a is clearly enabled. Furthermore,
(n—1)+(k—1)+(1-1) = 0, from which we conclude, in particular, that » = 1. This completes
the proof.

QED

Now suppose that s € traces(N) and that My = M;. Let Q = (B, A, F, M;) be the
resulting net, which also satisfies the assumptions of Theorem 4.1. We shall use subscripts to
distinguish between the nets N and @, asin px and pg. We want to compare the observations
in A(N) with those in A(Q). This will enable us to use Proposition 4.1 on @ but to refer this
information back to N.

Let { : A* x Fin(A x N*) = Fin(A x N*), which we shall write as {;(w), be defined by
the following rule:

Cs(w) | zn if, and only if, either, n < [s](z), or, w | Zp_[5)(z)-

Since w |= z,, is equivalent to z,, € w, when n > 1, it is clear that this rule gives an unambiguous
definition of (. This function has many interesting properties: {.(w) = w, {;(:(w) = (s:(w) and
¢s(0) = v[s], [6, Lemma 5.2]. The following examples may also help to clarify its behaviour:

Ce({al, b2}) - {(11, b2}1
Ca({a’h b2}) = {al, az, b2}a
Cas({@1,b2}) = {a1,az,b1,b3}.

We shall be particularly concerned with subsets of (A x N*) which, so to speak, have no gaps
in their indices. We can identify them in the following way.
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Definition 4.2 An element w € Fin(A X N*) is said to be sequenced if w = (s(0) for some
s€ A"

For example, {a;,b;,b,} is sequenced, while {a;,b,} is not. More precisely, if w is sequenced
and w |= 2, then w |= z; for any 1 < ¢ < n, [6, Lemma 5.3].

The next result is the key ingredient in the proof of Theorem 4.1. Recall the definition of
the net @) given above.

Proposition 4.2 With the assumptions of Theorem 4.1, let a € A and assume that n > [s](a)
and that w € Fin(A x N*) is sequenced. Then,

Gs(w) | pn(an) if, and only if, w = pg(an—{s)(a))-

The proof of this reduces easily to the case where s = e for some e € A, which then follows
from a careful case analysis. Proposition 4.2, in conjunction with Proposition 4.1, allows us
to work out whether or not A(N) will offer a,, after N has offered s. This gives us sufficient
information, inductively, to complete the proof of Theorem 4.1. We hope that this brief sketch
has given the reader some idea of how the proof works.

5 Conclusion

The field of asynchronous circuit design has undergone a great resurgence in recent years, [1].
We believe that the concurrency theorist can find many interesting questions to look at in this
application area and we hope that our version of Muller’s construction will set a precedent for
this. The logic of causality, £3, which we have introduced here is successful at dealing with the
complexities of the Muller construction but its axiomatic basis is itself very complex. It seems
unlikely that L3 is the optimal logic of causality, if such a thing exists at all. Is there a better
or simpler one—and corresponding event structures—which could accomplish the same task?
Questions like this make us realise that causality is still a largely unexplored subject, full of
difficult and fascinating problems. Perhaps the results of this paper will spur others towards
attacking some of them.
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