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The Supercomputer Toolkit is a family of hardware modules
(processors, memory, interconnect, and input-output devices) and a
collection of software modules (compilers, simulators, scientific
libraries, and high-level front ends) from which high-performance
special-purpose computers can be easily configured and
programmed. Although there are many examples of special­
purpose computers (see [4]), the Toolkit approach is different in
that our aim is to construct these machines from standard,
reusable parts. These are combined by means of a user­
configurable, static interconnect technology. The Toolkit's software
support, based on novel compilation techniques, produces
extremely high-performance numerical code from high-level
language input.

We have completed fabrication of the Toolkit processor module, and
several critical software modules. An eight-processor configuration
is running at MIT. We have used the prototype Toolkit to perform
a breakthrough computation of scientific importance-an
integration of the motion of the Solar System that extends previous
results by nearly two orders of magnitude.

While the Toolkit project is not complete, we believe our results
show evidence that generating special-purpose computers from
standard modules can be an important method of performing
intensive scientific computing. This paper briefly describes the
Toolkit's hardware and software modules, the Solar System
simulation, and conclusions and future plans.
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The Supercomputer Toolkit:
A general framework for special-purpose computing!

Special-purpose computational instruments will play an increasing role
in the practice of science and engineering. Although general-purpose su­
percomputers are becoming more available, there are significant applica­
tions for which it is appropriate to construct special-purpose dedicated
computing engines. The Supercomputer Toolkit is intended to make the
construction and programming of such special-purpose computers routine
and inexpensive, in some cases even automatic.

The Toolkit is a family of hardware modules (processors, memory, in­
terconnect, and input-output devices) and a collection of software modules
(compilers, simulators, scientific libraries, and high-level front ends) from
which high-performance special-purpose computers can be easily configured
and programmed. The hardware modules are intended to be standard,
reusable parts. These are combined by means of a user-reconfigurable,
static interconnect technology. The Toolkit's software support, based on
novel compilation techniques, produces extremely high-performance numer­
ical code from high-level language input, and will eventually automatically
configure hardware modules for particular applications.

Our Supercomputer Toolkit is intended to help bring scientists and en­
gineers back into the design loop for their computing instruments. Tradi­
tionally, scientists have been intimately involved in the development of their
instruments. Computers, however, have been treated differently-scientists
who require the highest performance computation are primarily users of
general-purpose computers supplied by a few remote vendors. These com­
puters must, almost necessarily, be expensive shared resources with high
administrative overhead, because obtaining generality while maintaining
high performance comes at the price of more complex hardware and more
sophisticated software than would be required in a machine whose design
has been specialized to a particular problem.

In contrast, a less expensive specialized computer can become an ordi­
nary experimental instrument belonging to the group that constructed it.
Once the machine has been constructed, the group can dedicate it to com­
putations that run for many hours, days, or weeks without significant cost.

lwith apologies to Joel Moses [18].
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This is a social change which, we believe, has the potential of introducing
a qualitative change in the way scientific and engineering computation is
accomplished. (See, for example [13].)

Over the past four years, the MIT Project for Mathematics and Com­
putation and Hewlett-Packard's Information Architecture Group have been
collaborating on the design and construction of a prototype Supercomputer
Toolkit. A system configured with eight processors is has been running at
MIT since the spring of 1991.

In a demonstration of the success of the Toolkit approach, we used the
prototype Toolkit to compute the long-term motion of the Solar System,
improving upon previous integrations by two orders of magnitude. This
was a computation of major scientific significance, because it confirmed
that the motion of the Solar System is chaotic. A report on this analysis
was published in Science [23], which devoted an editorial to the significance
of this achievement [16].

Our prototype Toolkit is targeted at numerical computations where per­
formance is limited by the need to integrate systems of ordinary differential
equations. Such computations are characterized by a bottleneck in scalar
floating-point performance rather than in I/O or in memory bandwidth.
These computations are typically not easy to vectorize. Highly pipelined
vector processors do not do well on them, because the state variables of
the system must in general be updated by computing different expressions.
In the Solar System computation, our eight-processor Toolkit-assembled
from standard TTL parts that were readily available in 1989, and pro­
grammed in highly abstract Lisp code-achieves scalar floating-point per­
formance equal to eight times a Cray IS programmed in Cray Fortran.
While this does not match the speed of the fastest available supercomputer
(even in 1989), the relative price advantage of the Toolkit allows it to be
used for applications that would be otherwise infeasible. The Solar System
computation, for example, required running the Toolkit for 1000 hours­
an amount of time that would be prohibitively expensive on a commercial
supercomputer.

The Toolkit's price/performance advantage derives from two architec­
tural principles that we followed in the hardware design, coupled with the
compiler technology that we are developing to support scientific computa­
tion. The first architectural principle is the use of problem-specific commu­
nication paths. Starting with a particular algorithm, one can often partition
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the problem among the available processors and find a static arrangement
of interprocessor communication paths that admits nearly optimal utiliza­
tion of processing power for that algorithm. We believe that for many
important scientific applications, high-performance configurations can be
generated in a straightforward way, perhaps even automatically, and easily
constructed and programmed using Toolkit modules.

The second architectural principle is the use of synchronous ultra-long
instruction word machines. Even in problems that are not vectorizable, sci­
entific applications typically have substantial data-independent structure.
One can configure a totally synchronous machine, in which most interpro­
cessor communication is scheduled statically at compile time. In effect, the
multiple VLIW execution units of the machine are programmed as a sin­
gle ultra-long instruction word processor. This organization eliminates the
need for (program) synchronization, bus protocols, run-time handshaking,
or any operating-system overhead.

The Toolkit's compiler uses a novel strategy based upon partial eval­
uation [7, 9]. This exploits the data-independence of typical numerical
algorithms to generate exceptionally efficient object code from source pro­
grams that are expressed in terms of highly abstract components written in
the Scheme dialect of Lisp [14]. This has enabled us to develop a library of
symbolic manipulation components to support the automatic construction
of simulation codes. As a measure of success, our Solar-system simulation
code, constructed with this library, issues a floating-point operation on 98%
of the instructions.

The Toolkit approach has obvious limitations. Neither our hardware
architecture nor our interconnection technology can be expected to scale to
systems with many hundreds of processors. On the other hand, the Toolkit
does realize a means, practical within the limits of current technology, to
provide relatively inexpensive supercomputer performance for an important
class of problems. Efforts with similar goals include the iWARP work at
eMU [11] and the NuMesh work at MIT [25]. The iWARP cell is a building
block for a variety of processor arrays. The NuMesh is a packaging and in­
terconnect technology supporting high-bandwidth systolic communications
on a 3D nearest-neighbor lattice.

Our work on the Toolkit is far from complete, and the present paper is
a snapshot of an experiment in progress, rather than a report on a finished
project. We have reached a significant milestone in that an eight-processor
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system is working, significant software support has been implemented, and
a major application has run successfully. On the other hand, we have much
work yet to do, particularly on automatic compilation of parallel programs
and automatic configuration of hardware modules. We have not yet at­
tempted applications that require large memory, or for which an appropri­
ate Toolkit configuration would be larger than a few boards. Nevertheless,
we hope others will be interested in the experience we have gained so far
and in the prospects for the future.

Section 1 describes the Toolkit hardware. Section 2 presents the low­
level programming model. Section 3 describes the high-level programming
model and the compilation technology. Section 4 gives some details on
our benchmark application to long-term integrations of the Solar System.
Section 5 contains conclusions and future plans.
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Figure 1: Interconnection Graphs. Each Toolkit processor module has two bidirectional

I/O ports. Any interprocessor connection graph can be configured with each node having

degree up to about 8. The figure shows how to build various network architectures: a

mesh, a ring and communicating clusters.

1 Toolkit Hardware

At the highest level, the Toolkit is a network of processors, memories, and
I/O modules with the topology chosen or suggested by the user, possibly
with the help of the compiler. Processors have two I/O ports that are
connected with fine-pitch ribbon cables to a number of other similar ports.
Limiting the number of ports simplifies the hardware design, yet permits a
variety of network graphs. Any connection graph may be implemented by
placing a processor on each branch of the graph, as shown in figure 1. A
node in the graph is actually a manually installed shared bus that we have
tested with up to eight ports.

An additional one-wire "global-flag" connects between processors in a
similar way. It may be set and sensed by each processor. Its primary use
is for software synchronization as shown in section 2.6.

Once the customized Toolkit is assembled, it appears to the programmer
that all elements run in lock step. The communication paths are under
complete control of the software. There is no hardware for arbitration or
bus protocol. The program specifies the source and sinks for data on each
bus on each cycle. Software convention determines whether the bus value
is data, address, or control information.
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All cables for data communication, clocks, and host communication
connect to the front edge of each processor board. A user assembles a
machine by plugging in the required modules and connecting the cables
appropriately. When a particular machine is no longer needed, it can be
disassembled, and its modules can be reassembled into other configurations.

Each Toolkit processor is a high performance computer with its own
private memory for code and data. The processor design was guided largely
by two factors: the class of problems we were targeting; and the use of off­
the-shelf technology available in 1989. The class of problems is the solution
of systems of ordinary differential equations-computations characterized
by a large number of floating-point operations on a relatively small amount
of data. Given the very small design team, the technology choices were
confined to readily available commercial parts.

The architecture is centered around a high-performance floating-point
chip set. The remaining hardware is designed to feed operands to the
floating-point chips without interruption. Figure 2 shows a block diagram
of the processor.

The prototype Toolkit is housed in a minicomputer chassis borrowed
from an existing Hewlett-Packard product line (HP9000/850). The pro­
cessor contains about 220 integrated circuits laid out on a 14 x 16 inch
printed-circuit board as shown in figure 3. The board is eight layers with
8-10 mil traces. All components use TTL logic levels. Our current collec­
tion of eight processor boards consumes about 1200 watts. The cycle time
is 80 ns, which results in an instruction rate of 12.5 million instructions per
second.

The cost of the hardware was about $3,300 per board. The cost of the
hardware for the whole project was less than $40,000, including 9 boards,
and chassis.

The following sections contain a brief description of the hardware. For
more details the reader is referred to [2].
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Figure 2: Processor Architecture. The Toolkit processor consists of floating-point unit

(ALU and Multiplier), a register file, two data memories, each with its own address gen­

erator (AG), two I/O ports, instruction memory, and a program sequencer. The figure

shows the major buses: X, Y, T, Left, and Right. Not shown are the side paths, the

internal paths in the Math chips, and the host interface.
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Figure 3: Toolkit processor module. The six large pin grid arrays along the centerline
are the four register files, the AL U and the Multi plier. The other specialized chips are the
address generators in the 68-pin square ICs, and the the sequencer in the 48-pin dual inline
package. Along the left edge of the board are connectors for the clocks, I/O cables, and
host cable.
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1.1 Floating-point unit

The heart of the processor is a pair of Bipolar Integrated Technology
(B.LT.) floating-point math chips [10]2. Both chips have 32-bit I/O paths
and full 64-bit internal paths. To simplify the design, all operations are
done to double precision. Operations complete in one cycle except for the
Multiplier's divide and square root, which are multi-cycle operations.

Separate instruction bits to each math chip allow the ALU and Multi­
plier to be controlled independently. The peak floating-point performance
is therefore two operations per cycle, or 25 MFLOPS per processor at the
current 80ns clock rate. Section 2.7 below describes an inner-product rou­
tine that runs at this peak rate. In practice, we have been able to sustain
roughly half this rate-about 12 MFLOPS per processor-on the applica­
tions of interest. As a point of comparison, the HP9000/835 workstation,
a contemporary machine using similar technology (the same math chips,
RAM, and instruction rate), was rated at about 2 MFLOPS on a common
floating-point benchmark.

1.2 Register File and Buses

As illustrated in figure 2, the processor contains a central register file that
communicates with the data memories, math chips, and I/O ports. The
main buses, the data memories, the register file, the I/O ports, and the
communication cables are protected by one parity bit for each byte of data.
The register file is built with four register-file chips that logically hold
thirty-two double-precision entries.

There are other data paths in the architecture that are not shown in
figure 2. Recirculation paths inside the math chips allow results to bypass
the register file to become operands on either math chip. This feature is
illustrated in Section 2.7 with a program that computes inner-product.

There are two "side paths" that permit transfers between the address
generators, floating-point unit, and microinstruction register. In our VLIW
architecture, these buses are the communciation path between the four
distinct functional units. An important design consideration was to insure
adequate functionality while avoiding limits on the cycle time. The 16-bit

2The floating-point chip set consists of the B2120A-25 ALU, the B21l0A-55 Multiplier,
and four B2210A Register Files.
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buses link the X and Y register file outputs with the immediate input on
the left and right address generators. They allow floating-point values to
be used in address computations. In the other direction, constants in the
instruction can be driven onto the X and Y buses, to be used as operands
by the math chips. This was the minimum functionality that we expected
to need to support our applications.

1.3 Data Memory

To keep the system balanced with respect to bus bandwidth and to keep
the math chips as busy as possible, we chose to have two independent data
memories. Each holds 16K double-precision values for a total of 256K bytes
on each processor. The data memory is implemented with 20ns 16K x 4-bit
static RAMs. The RAMs are accessed once in each instruction cycle.

The address generators are simple 16-bit single-chip microprocessor
ALU slices 3. The chip contains a general purpose ALU backed by a 64­
entry address-register file.

1.4 Sequencer and Instruction Memory

Overall program flow is controlled by the sequencer chip. Conditional jumps
are based on a number of floating-point flags, the global flag, and a flag
from the host processor. The pipelined sequencer calculates the address
of the instruction that will be executed two cycles later. Thus, a branch
instruction issued in cycle N takes effect in cycle N + 2. The instruction
directly following a jump instruction is always executed.

Independent instruction fields control the operation of the four func­
tional units: floating-point, left and right address generators, and sequencer.
Instructions are 168 bits (21 bytes) in length, implemented with the same
RAMs as the data memory. A processor holds 16K instructions or 336Kbytes.

1.5 Input / Output Ports

Each I/O port is a double precision register and a very high current TTL
transceiver. A port transmits a word between processors in two cycles.

3The address generator and sequencer chips are 16-bit CMOS versions of the familiar
AMD 2901 microprocessor slice and the AMD 2910 microprogram controller.
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There is no hardware arbitration on the I/O ports so the programmer must
develop a convention for controlling access to each communication channel.

The inter-board connections are designed to achieve a "first wavefront"
communication path. The transmission lines flow continuously from point
to point with no branches or stubs. On the board, they are routed in a
continuous path from an input connector, to the transceiver, and then to
an output connector. Cables, connectors, traces, and terminators all have
a controlled impedance of 80 ohms. This interconnection scheme requires
twice as many connectors as a traditional design but provided a superior
electrical environment for signals.

1.6 Clocks

System clocks are generated from a single crystal on a separate clock/host­
interface board. Copies of the master clock are carefully buffered and dis­
tributed to hold clock skew to ±1 ns. This margin is quite adequate for
our design.

The processors use a tapped delay line to create controlled clock edges
at 7ns intervals. Two programmable logic arrays combine various taps
to create different clock waveforms. This clocking methodology proved
to be very flexible during the design phase. It was easy to achieve good
performance with a wide variety of clocking requirements for different off­
the-shelf parts. It promoted reliable design of setup and hold times. On the
other hand, the large number of clocks were complex to modify, terminate,
and control.

1.7 Host Interface

Processors communicate with the host workstation via a 16-bit general
purpose parallel interface. This serial protocol runs at about 1 usee for each
transaction. The interface controls a 29-byte-Iong scan path that threads
through the instruction register and address registers. This interface is
very slow compared to the rest of the machine, and it restricts the range
of applications of our prototype machine. The host interface is one of the
first areas of the design that should be improved.
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2 Toolkit Low-level Programming Model

The Supercomputer Toolkit processor is programmed as a very-long in­
struction word (VLIW) computer. The programmer has full control of all
of the hardware resources discussed in section 1. Thus, in every cycle, the
following operations can be performed in parallel:

• Two floating-point operations, one in the ALU and one in the Mul­
tiplier. The ALU and Multiplier share input and output ports so
two values can be fetched from the register file and one result can be
written back.

• Two memory-I/O bus transactions, one on the Left bus and one on
the Right bus. Data is exchanged between memory and the main
register file, or between the register file and the I/O port.

• Two address computations, one in the left address generator and one
in the right address generator. The addresses will be used to access
the data memories in the following cycle. The address generators
have internal register files to support these operations.

• One sequencer operation, to generate an instruction address. Typical
sequencer instructions include conditional branch, jump, continue,
and call.

• Two flags may be set: the global flag goes to neighboring processors;
the host flag goes to the host workstation.

To program the Toolkit at this level, we use a primitive symbolic assembly
language. An instruction appears as a list of tagged fields, listed any order.
The assembler supplies default values for omitted fields.

((flop )
(lmio ) (rmio )
(lag ) (rag )
(sequencer ... )
(flags ...) )

;floating point operations
;left and right I/O bus transactions
;left and right address computations
;sequencer operations
;set flags
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The fields may be listed any order. The assembler supplies default values
for omitted fields.

The remainder of this section briefly describes the fields and provide
some programming examples. Additional details and more extended exam­
ples can be found in [2].

2.1 Floating-point Operations

The ALU and Multiplier operate simultaneously. Each Toolkit instruction
has a separate opcode field for the ALU and Multiplier. Any ALU opcode
can appear together with any Multiplier opcode. Most floating-point, inte­
ger, and logical operations require one cycle. Divide requires 4 cycles and
square root requires 7 cycles. The entire list of available operations can be
found in the B.LT. data sheet for this chip set [10].

The six-cycle sequence shown in figure 4 illustrates the pipelining of
these operations, as well as the assembler syntax for the floating-point por­
tion of a Toolkit instruction. As illustrated here and in the examples to
follow, the processor pipeline is controlled partly in hardware and partly
in software. For example, floating-point opcodes are specified in the same
instruction as the operand register numbers. Pipeline registers hold and
delay the opcodes while the register read takes place. Then, the opcodes
and operands enter the math chips together on the following cycle. The
command to latch the math chip result register (&:latch) is specified in an­
other instruction, and the command to write the result back to the register
file is specified in a third (t ... ).

2.2 Bus Operations

The two memory-I/O buses can perform a 64-bit transfer either between
registers and memory, or between registers and an I/O port. There are
no direct register to register operations or memory to memory operations.
Register-memory transfers require an address to have been generated during
the previous cycle. For example, the instruction

«lmio m->r r23) (rmio r->m r17))

loads r23 with the contents of the left-memory address and stores r17 into
the right memory address.
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Cycle

1

2

3

4

5

6

Instruction

«flop (x r10) (y r11) (* dmult x y)))

«flop (x r12) (y r13) (* dmult x y tlatch)
(+ dadd x y)))

«flop (x r14) (y r15) (* dmult x y tlatch)
(t * r5) (+ dadd t z tlatch)))

«flop (* tlatch) (+ tlatch)))

«flop (t + r6)))

«flop (t * r7)))

Figure 4: Pipelining. This six-cycle sequence illustrates the pipelining of floating-point

operations. The instruction in cycle 1 places the contents of rlO on the X bus, the contents

of rri on the Y bus, and passes the double-precision multiply opcode to the Multiplier.

In cycle 2, the multiplier computes the product requested in cycle 1, and then latches the

result, rlOrU, into its result register. Also during cycle 2, instructions and data are passed

to the Multiplier and ALU requesting both the product r12r13 and the sum r12 + r13. In

cycle 3, the product rlOrU is driven from the Multiplier onto the T bus and is written

into r5. This value is also specified as an operand for the next ALU operation (the t

after dadd). Simultaneously, the product r12r13 and the sum r12 + r13 are computed and

latched into the result registers ofthe Multiplier and ALU. Data for the next multiplication

is transferred from registers r14 and r15' The second ALU operand refers to the ALU's

result; The result, rl2 + r13, is transferred over the ALU's internal feedback path from the

result register back to an operand register. In cycle 4 the new sum (rlOru + r12 + r13) is
computed and latched by the ALU. The Multiplier computes and latches r14r15. In cycle

5, the ALU result is written to r6 via the T bus. In cycle 6 the Multiplier result computed
and latched during cycle 4 is written to r7.

15



2.3 Input/Output Operations

Communication between boards is accomplished by transferring 64-bit quan­
tities between registers and the I/O ports. For example, suppose that the
left I/O port of processor 1 is connected to the right port of processor 2 and
to the left port of processor 3. The following code fragment transmits the
contents of rro in processor 1 to r20 in processor 2 and to r25 in processor
3:

Cycle Processor 1 Processor 2 Processor 3

1 (lmio r->io riO)
2
3 (rmio io->r r20) (lmio io->r r25)

2.4 Address Generation

The two address generators produce a new data memory address every
cycle, which is used in the following cycle. Each address generator has
its own internal ALU, and 64 16-bit registers to store addresses. Source
operands come from the internal registers, from a 16-bit immediate field in
the instruction word, or from the main register file via the side paths.

ALU operands are denoted by A and B, the immediate constant field
by D, a zero source by Z. Available ALU operations include addition, sub­
traction, and Boolean operations. The result of an operation can be passed
to the address generator output, and may be written back to the internal
address-register selected by B.

Here are two examples that illustrate the use of the address-generator
field. More details can be found in [2].

(lag (add dz nop low) (d 1117)) The left address generator performs
the addition of D and Zero with carry-in set low. The result, 1117, is
passed to the output, without writing it back to the address-register
file (nop).

(rag (add zb ramf high) (b ag-rO)) This performs pre-increment in­
dexed addressing using register ag-rO as the index register. The right
address generator increments the contents of ag-rO by adding it to
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zero with the carry-in set high. The incremented result becomes the
address-generator output and is stored back into ag-rO as specified
by the destination operation ramf.

2.5 Instruction Sequencing

The sequencing operations [15] include conditional branches, subroutine
calls, and looping, all maintained through a 33-deep on-chip stack. For
example, loops are implemented using the sequencer operations push and
rfct. Push pushes the next address onto the internal stack, and sets an
internal counter to the number of loop iterations minus one. Rfct decre­
ments the counter and keeps branching to the saved address until the count
becomes negative, at which point it pops the stack and falls through the
loop. Sequencer operations are pipelined and take effect one cycle after they
appear in the instruction stream. At this point, when no jump is present,
the sequencer location counter (PC) contains the instruction's location plus
2. For example, the first instruction in the body of a push/rfct loop will
be two cycles after the appearance of the push in the instruction stream."

Figure 5 shows a subroutine that uses the loop instruction to upload to
the host a known-length vector by repeatedly calling the upload subroutine,
which uploads the floating-point number in r1. The vector is stored in
consecutive locations in left memory. The caller initializes the left address­
register named ptr to point to the first of these locations. The vector
length minus one is the constant n-1, which must be known at assembly
time. The subroutine is called with a cj s instruction (which stacks its own
location plus 2) followed by a nop. The subroutine returns with a crtn
(which jumps to the address at the top of the stack and pops the stack)
followed by a nop.

2.6 Multiprocessing and Synchronization

Since all Toolkit processors are driven by a single master clock, the individ­
ual processors are electrically synchronized in terms of when cycle bound­
aries occur. However, each processor has its own sequencer and instruction

4The instruction directly following a jump is referred to as the ''jump slot" or "delay
slot" in modern reduced instruction set computers.
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Cycle
(label upload-vector)

1 ((sequencer push true n-1»
2 ((lag (add zb nop low) (b ptr»)

;setup loop index
;address for first element

;;Body of loop is cycles 3 through 6
3 ((lmio m->r r1) ;move vector element to r1

(sequencer cjs true upload» ;subroutine call to upload
4 () ;delay slot for the cjs
5 ((sequencer rfct» ;test/decrement loop counter
6 ((lag (add zb ramf high) (b ptr») ;increment the vector pointer

7
8

((sequencer crtn true»
o

;return from upload-vector
;delay slot for the crtn

Figure 5: A Toolkit subroutine to upload a vector to the host, using a simple loop
counter in the sequencer. Note in this example that the sequencer operations push, rfct,

cjs (conditional jump to subroutine), and crtn (conditional return from subroutine) are
here all conditionalized with true, so that they always take effect.

memory, so the operations performed by the processors are, in general, in­
dependent of one another. When data is transferred among processors the
programmer must arrange that the receivers all read the data two cycles
after the transmitter drives it out. This can be passively arranged by cycle
counting or by an explicit synchronization action.

The one-bit global flag can be used to maintain synchronization among
processors during the course of a computation. One programming technique
is to maintain synchronization between processors at all times by having
each processor execute the same instruction sequence. All processors branch
simultaneously, based on the condition being asserted on the global flag, in
effect, behaving as if there was one central controller governing all proces­
sors. This approach works well on vectorizable, data-independent problems,
but breaks down when local data-dependent decisions must be made.

A more complex alternative is to allow each processor to execute branches
independently, based on its own local data, with synchronization occurring
only occasionally when communication is required.

For example, a step in a multiprocessor program might require each
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Cycle
(label wait-for-all-boards)

1 «sequencer ldct true wait-for-all-boards-done))
2 «sequencer cjp true wait-for-all-boards-assert-ready))

(label wait-for-all-boards-assert-ready)
3 «sequencer jrp global wait-for-all-boards-assert-ready)

(flags (global . low)))
(label wait-for-all-boards-done)

4 0
5 «sequencer crtn))
6 0

Figure 6: Processor Synchronization. This routine uses the global flag to synchronize

processors so that they will all return in the same cycle when the flag is deasserted by all

boards. The Toolkit assembler default for the flags field asserts the global flag, ensuring

that it will remain asserted until all processors execute the instruction in cycle 3. As each

processor calls the routine, it waits at (3) in a I-cycle loop and deasserts the flag. The

loop is implemented with the sequencer jrp conditional jump instruction, which branches

either to the address specified in the instruction, or to the address stored in the internal

counter, depending on the state of the flag. The counter register is loaded by the ldct

instruction in cycle 1. Note that a one-cycle loop is attained even though the sequencer

is pipelined, by including a jump instruction (3) in the "delay slot" of a previous jump

(2) (cjp is a conditional jump to its label). Interested readers should trace through the

control structure here in detail, noting that when the loop terminates, the no-op at 4 is

executed twice.

processor Pi to perform a computation Oi, where different C; may require
different numbers of cycles. In this case, the global flag can be used as
a "busy" indicator: As long as each processor is busy, it asserts the flag.
When all processors are done, they release the flag, informing all processors
that they can proceed to the next phase of the computation. The subroutine
wait-for-all-boards, shown in figure 6, can be used to implement this
kind of synchronization. Any processor calling this routine will remain
in a wait loop until all processors have called the routine, whereupon all
processors return in the same cycle.
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2.7 Benchmark Examples

Figure 7 shows a single-processor program that computes the inner product
of two vectors at the processor's peak speed of two floating-point operations
per cycle (25 double-precision MFLOPS at the current clock rate). The
two vectors are stored in memory, one in the left memory and one in the
right memory. The routine is pipelined to use a two-cycle loop that does
two multiplications and two additions. The code of figure 7 uses both the
arithmetic pipeline discussed at section 2.1 and figure 4 and the sequencer
pipeline (delay slot) discussed at sections 2.5 and figures 5 and 6.

Another Toolkit demonstration program (code not shown here) solves
n x n systems of linear equations Ax = b by means of Gauss-Jordan elim­
ination with full pivoting, using the algorithm given in [19]. The running
time of the algorithm is dominated by the row reduction performed each
time a pivot is selected. This involves subtracting a multiple of the pivot
row from each other row of the matrix, as expressed in the following Fortran
program:

DO 21 LL=1,N
IF (LL.NE.ICOL) THEN

DUM=A(LL,ICOL)
A(LL,ICOL)=O.O
DO 18 L=1,N

A(LL,L)=A(LL,L)-A(ICOL,L)*DUM
18 CONTINUE

B(LL)=B(LL)-B(ICOL)*DUM
ENDIF

21 CONTINUE

The Toolkit implementation runs the inner loop (DO loop 18) at a rate
of one floating-point operation per cycle (12.5 MFLOPS). This is accom­
plished by holding the matrix A in left memory, but copying the pivot row
A[ICOL,*] into right memory when the pivot is chosen. Using both mem­
ories provides enough bandwidth to schedule a floating-point operation on
every cycle of the inner loop.

The bottleneck in this computation is the shared floating-point result
bus which is shared by the Multiplier and ALU. Thus, even though subtrac­
tions and multiplications could be done simultaneously, only a single result
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Cycle
(label inner-product)

1 ;;setup loop count, data address pointers, clear data path:
«sequencer push true n-1) ;L:=n-1, TOS:=PC+2
(flop (x r10) (y r10) (* dmult x y» ; [r10] =0
(lag (add dz ramf high) (d lbase-1) (b a1» ;A/ ag := 1 + lbase-1
(rag (add dz ramf high) (d rbase-1) (b a1») ;Arag : = 1 + rbase-1

2 ;;load first data items into registers, increment data pointers:
«flop (x r10) (y r10) (* dmult x y tlatch) (+ dadd x y»

(lmio m->r r1) ; [r1]:= [1 + lbase-1],
(rmio m->r r2) ; [r2]:= [1 + rbase-1],
(lag (add zb ramf high) (b a1» ;A/ ag : = H[al/ejtJ
(rag (add zb ramf high) (b a1») ;Ar ag : = H[alrightJ

3

4

;; The next two cycles are the inner
«sequencer rfct)
(flop (x r1) (y r2) (t *)

(* dmult x y tlatch)
(+ dadd t z tlatch»

(lmio m->r r3)
(rmio m->r r4)
(lag (add zb ramf high) (b a1»
(rag (add zb ramf high) (b a1»)

«flop (x r3) (y r4) (t *)
(* dmult x y tlatch)
(+ dadd t z tlatch»

(lmio m->r r1)
(rmio m->r r2)
(lag (add zb ramf high) (b a1»
(rag (add zb ramf high) (b a1»)

loop.
;PC:= TOS if L==O, L:=L-1
;T drives mul result to ALU
;compute r1 * r2
;compute mul + accumulator
; [r3]:= H[al/ejt]

; [r4] := 1+[alright]

; A/ag := H [al/ejtJ

;Ar ag : = H [alrightJ

;T drives mul result to ALU
;compute r3 * r4
;compute mul + accumulator
; [r1]:= H[al/ejt]

; [r2]:= H[alrightJ

;A/ag : = H [al/ejt]

;Ar ag : = 1+[a lrightJ

5 «flop (t *) (* tlatch) (+ dadd t z tlatch») ;drain pipeline
6 «flop (t *) (+ dadd t z tlatch»)
7 «flop (+ tlatch» (sequencer cjp true done»
8 «flop (t + r5») ;store final result in r5

(label done)

Figure 7: Inner Product. This routine computes the inner product of two vectors of

length 2n at the processor's peak speed of2 floating-point operations per cycle. The vectors

are stored in left and right memory beginning at locations l+lbase-1 and l+rbase-1.

The inner loop, which does two multiplications and two additions, is executed n times.

The ALU result register (z) acts as the accumulator. In the annotations L, TOS, and PC

are the loop counter, the top of stack, and the program counter, respectively. A/ag is the

address from the left address generator, etc. Register contents are denoted as (name}.

21



can be written to the registers on each cycle. In contrast, the inner-product
program can sustain two floating-point operations per cycle because it uses
the ALU result register to hold the partially computed sum, and writing
to the registers is not required.
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3 High-level Programming Model

The Toolkit software environment includes a compiler that converts numeri­
cal routines written in a high-level language (the Scheme dialect of Lisp [14])
into extremely efficient, highly pipelined Toolkit programs. These compiled
routines can be combined with hand-written assembly language programs
by means of a programmable linker.(See [24] for another system where Lisp
source code is translated to VLIW code.)

Our present compiler requires the programmer to divide programs into
data-independent segments, that is, segments in which the sequence of op­
erations is not dependent on the particular numerical values of the data
being manipulated. For instance, the sequence of multiplications and addi­
tions performed in a Fast Fourier Transform is independent of the numer­
ical values of the data being transformed. The compiler generates Toolkit
instructions for a program's data-independent computations, leaving the
programmer to implement the data-dependent branches in assembly lan­
guage.

3.1 Compiling Data-independent Computations

The first stage of the compilation process uses the partial-evaluation tech­
nique described in [7] and [9] to extract the underlying numerical com­
putation from the high-level program. The first stage accepts a data­
independent program written in the Scheme, a dialect of Lisp, together with
information that specifies the format of the program's inputs and outputs
(see [7]). The result of the first stage is a linear block of numerical opera­
tions. Unlike the output of traditional compilers for high-level languages,
which may include procedure calls and complex data structure manipula­
tions, the compiled output produced by partial evaluation consists entirely
of numerical operations-all data-structure operations have been optimized
away by partial evaluation. This purely numerical program is further op­
timized using traditional compilation techniques such as constant-folding,
dead-code elimination, and common-expression elimination. The resulting
program has a data-flow graph that is acyclic; this becomes the input to
the second stage.

The second stage of the compiler uses the graph to produce actual
Toolkit instructions for one processor, choosing an order for the numeri-
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cal operations that optimizes performance. This is accomplished in two
phases. The first phase chooses a preliminary order of operations that at­
tempts to minimize the number of loads and stores and assigns the spilled
intermediate results to individual memory banks, with no regard for latency
of operations or pipeline delays. This phase is similar to the instruction or­
dering and register allocation algorithms as described in chapter 9 of [6].

The order of operations produced by the first phase serves as advice to
the second phase, which proceeds (machine) cycle-by-cycle attempting to
fill all available slots in the pipeline and managing allocation of resources
such as memories, buses and registers.

This two-phase strategy seems to give very good performance. It com­
bines the traditional "results-up scheduling," in which the data-flow graph
of the computation is analyzed to determine the ordering of the instructions
that maximizes immediate reuse of intermediate results and reduce mem­
ory traffic, with "cycle-based scheduling," which works forward through the
program from the operands towards the results, choosing the order of the
instructions incrementally in an attempt to keep the processor pipeline full.
In point of fact, however, the basic block produced by the partial evalu­
ator is so large that any non-trivial register allocation technique could be
expected to do well.

Compiled programs bear little resemblance to hand-coded programs. In
hand-written programs, pipeline stages relating to a particular operation,
such as a multiply, tend to be located close to each other. In contrast, the
compiled code spreads computations out over time in order to fill in pipeline
slots. The compiler schedules loads and stores retroactively, intentionally
placing them as far back in time as possible, to leave memory access op­
portunities available for later instructions. Indeed, loading a register from
memory may occur dozens of cycles before the operand is used. Partial
evaluation makes this extreme lookahead possible by providing huge basic
blocks of straight-line numerical code.

The compiled code tends to be extremely efficient, even when gener­
ated from very high-level source code. As a simple example, figure 8 shows
a highly abstract definition of a vector addition procedure add-vectors,
implemented by applying to the addition operator a general transforma­
tion vector-elementwise, which converts an n-ary scalar function f into
an n-ary vector function that applies f to the corresponding elements of
n-vectors, vI = (vLv~, ... ),v2 = (vi,v~, ... ), ... ,vn = (vf,v2', ... ), and pro-
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duces the vector of results (f(vi, ... ,vf), f( v~, ... ,v2'), ...).
This implementation of add-vectors is inefficient in most Scheme im­

plementations. Since the procedures operate on vectors of any length, there
must be a run-time loop that counts through the vector index (here imple­
mented in generate-vector). An even greater source of inefficiency is that
the arity ofthe procedure argument f is not known to vector-elementwise,
which therefore must explicitly construct lists for f at run time.

The compilation is specified by applying add-vectors to two vectors,
each consisting of four structures called placeholders (see [7]). The place­
holders represent the numeric inputs to the compiled program. By specify­
ing the length and the elements of vector-1 and vector-2 the placeholders
make the program data-independent. Thus, specifying the number of vec­
tors and vector length permits the compiler to generate code after all tests
and operations on data structures are performed at compile time. This
leaves only the actual component additions as the only "real work" to be
performed at run time.

Figure 9 shows the compiled output. The entire computation, including
moving data to and from memory, is accomplished in nine cycles. This
density of "useful" operations-4 additions in 9 cycles-is untypically low
for compiler output, because the program is so short. A more typical result
is found in our Solar System integration, where the Scheme source program,
written in similarly abstract style, computes and integrates the General­
Relativistic gravitational force between pairs of planets. For this program,
the compiler generates code in which 98% of the cycles contain floating­
point operations.

We have also recently begun to extend the partial-evaluation approach
to deal with parallel computations, scheduling the compiler output to mul­
tiple Toolkit boards. As with register allocation, it appears that the basic
blocks produced by partial evaluation are so large that many techniques
can be expected to work well. For example, a prototype compiler by
Surati / citeBerlinSurati [21] automatically extracts fine-grained parallelism
from conventionally written data independent programs. As a benchmark,
the compiler was able to generate automatically-parallelized code for the
n-body problem, targeted to an eight-processor Toolkit configuration. This
code achieves a speedup factor of 6.2 over the almost optimal uniproces­
sor code produced by our current Toolkit compiler. This speedup is no­
table, given the relatively high latency of transmitting data between Toolkit
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(define (vector-elementvise f)
(lambda (vectors)

(generate-vector
(vector-length (car vectors»
(lambda (i)

(apply f (map (lambda (v) (vector-ref v i»
vectors»»»

(define (generate-vector size proc)
(let «ans (make-vector size»)

(let loop «i 0»
(if (= i size)

ans
(begin (vector-set! ans i (proc i»

(loop (+ i 1»»»)

(define add-vectors (elementvise +»

(define vector-1
(vector (make-placeholder 'vector-1-element-1)

(make-placeholder 'vector-1-element-2)
(make-placeholder 'vector-1-element-3)
(make-placeholder 'vector-1-element-4»)

(define vector-2
(vector (make-placeholder 'vector-2-element-1)

(make-placeholder 'vector-2-element-2)
(make-placeholder 'vector-2-element-3)
(make-placeholder 'vector-2-element-4»)

(add-vectors vector-1 vector-2)

Figure 8: This highly abstract implementation of add-vectors works for an arbitrary

number of vectors of arbitrary length. Using placeholders, the definition is automatically

specialized to add two vectors of length four.
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«lag (add dz nop low) (d 5» (rag (add dz nop low) (d 1»)
«lag (add dz nop low) (d 7»
(rag (add dz nop low) (d 3»
(lmio m->r r20)
(rmio m->r r19»

«flop (+ dadd x y) (x r20) (y r19»
(lag (add dz nop low) (d 4»
(rag (add dz nop low) (d 0»
(lmio m->r r3)
(rmio m->r r26»

«flop (+ tlatch dadd x y) (x r3) (y r26»
(lag (add dz nop low) (d 6»
(rag (add dz nop low) (d 2»
(lmio m->r r9)
(rmio m->r r8»

«flop (+ tlatch dadd x y) (x r9) (y r8) (t + r20»
(lag (add dz nop low) (d 8»
(rag (add dz nop low) (d 8»
(lmio m->r r19)
(rmio m->r r17»

«flop (+ tlatch dadd x y) (x r19) (y r17) (t + r3»
(lag (add dz nop low) (d 9»
(rag (add dz nop low) (d 9»
(lmio r->m r20)
(rmio r->m r20»

«flop (+ tlatch) (t + r9»
(lag (add dz nop low) (d 10»
(rag (add dz nop low) (d 10»
(lmio r->m r3)
(rmio r->m r3»

«flop (t + r19»
(lag (add dz nop low) (d 11»
(rag (add dz nop low) (d 11»
(lmio r->m r9)
(rmio r->m r9»

«lmio r->m r19) (rmio r->m r19»

Figure 9: Compiled output for the program shown in figure 8.
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boards (3 cycles per 64-bit word). The speedup for this automatically­
extracted parallelism compares favorably with speedup ratios obtained us­
ing manual restructuring of code for parallel supercomputing.5

3.2 The Programmable Linker

Currently, the compiler handles only straight-line code 6 and permits calls to
a library of hand-coded numerical subroutines. This restriction is severe but
tolerable for many important applications-many numerical programs con­
sist of long segments of straight-line code separated by just a few run-time
tests. For example, integrating a system of ordinary differential equations
over an interval with an explicit-formula integrator such as Runge-Kutta
requires run-time tests only to determine if the end of the interval has been
reached, and, for an adaptive integrator, whether to adjust the step-size.
In contrast, an implicit-formula integrator such as Backward Euler requires
the solution of systems of linear equations to choose good pivots, thereby
generating data-dependent operations. This is currently beyond the capa­
bility of the compiler, and the Toolkit numerical subroutine library includes
a hand-coded linear-equation solver that can be used in conjunction with
compiled code.

Combining compiled and hand-written assembly code is accomplished
using a programmable linker. For instance, to produce a program that ac­
complishes Runge-Kutta integration, one writes a simple assembly-language
loop that counts to the end of the time interval. Within each iteration, the
loop calls a compiler-generated subroutine that computes the integrand
(compiled from source code written in Scheme)."

It is amusing to observe that this style of pasting together hand-written
and compiled code inverts the traditional role of high-level and low-level
programming. Ordinarily, one writes code in a high-level language that may
call hand-written assembly-code subroutines for speed-critical applications.

5For example, experiments performed at University of Illinois, using manual restruc­
turing of code on a suite of benchmarks for the Cray YMP, report an average speedup
factor of 4.0 for 8 processors [12].

6 Although, as illustrated by the example in figure 8, many programs that are apparently
data-dependent become data-independent when the data structures are specified using
placeholders.

7See [2] for a detailed example.
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Here, we write the inner-loops in a high-level language, and compile them
for inclusion as subroutines, called from hand-written assembly code.

29



4 Example: A Breakthrough in Solar-System Inte­
grations

One of our motivating examples in embarking on the Toolkit project was our
experience with the Digital Orrery [5]. The Orrery, constructed in 1983­
1984, is a special-purpose numerical engine optimized for high-precision
numerical integrations of the equations of motion of small numbers of grav­
itationally interacting bodies. In 1988, Sussman and Wisdom [22] used
the Orrery to demonstrate that the long-term motion of the planet Pluto
is chaotic. The positions of the outer planets were integrated for a sim­
ulated time of 845 million years, a computation in which the Orrery ran
continuously for more than three months.

It was natural, then, that our first task for the new Toolkit was to
duplicate some of the Orrery's outer planet integrations." This allowed us to
check out and debug the Toolkit on a real problem. We quickly implemented
a high-order multistep integrator of the Stormer type-written in Scheme
and compiled using the Toolkit compiler-and discovered that each board
of the Toolkit was about three times faster than the entire Orrery on this
program. Some of this speedup was because the Orrery did not have a
single instruction to compute square root or divide. In the Orrery, such
operations were performed by Newton's method, using a table to get initial
approximations.

Wisdom and Holman [26] then developed a new kind of symplectic in­
tegrator for use in Solar-System integrations. This integrator is about a
factor of ten faster than the traditional Stormer's method, but it appears
not to accrue too much error over long time scales.

With the speedups available from the Toolkit and the new integrator,
we performed a 100-million-year integration of the entire Solar System (not
just the outer planets, as with the Orrery), incorporating a post-Newtonian
approximation to General Relativity and corrections for the quadrupole mo­
ment of the Earth-Moon system. The longest previous such integration [20]
was for about 3 million years. The results of the integration verify the prin­
cipal results of the Orrery integrations. This confirms that the evolution of
the Solar system as a whole is chaotic with a remarkably short time scale

8With the completed construction of the Supercomputer Toolkit, the Orrery was offi­
cially retired, and was transferred to the Smithsonian Institution in August, 1991.
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of exponential divergence of about 4 million years. A complete analysis of
the integration results appears in [23].

Our integration used eight Toolkit boards running in parallel. Each
board simulated a Solar System with slightly different initial conditions.
The evolving differences were compared to estimate the largest Lyapunov
exponent". The differences in initial conditions were chosen to be 1 part in
1016 in one coordinate of a planet. We found that the chaotic amplification
of this difference is such that a 1 em difference in the position of Pluto at
the beginning of the integration produces a 1 Astronomical Unit difference
in the position of the Earth at the end of the integration.

Programming the integration proceeded essentially along the lines indi­
cated in section 3.2. The integrator and the force law were written as high­
level Scheme programs. The accumulation of position was implemented in
quad precision (128 bits), and the required quad precision operators were
written in Scheme.!? The Scheme source was compiled with the Toolkit
compiler, and the resulting routines were combined with a small amount of
Toolkit assembly code. The compiled code contains almost 10,000 Toolkit
cycles for each integration step, and more than 98% percent of the cycles
perform floating-point operations.

The host-side control program was also written in Scheme. The Toolkit
was downloaded with initial conditions. It was then repeatedly run for 106

7.2-day integration steps, with the state uploaded to the host at the end of
each 106 step segment. Each segment and upload took about 12 minutes of
real time. The 100 million year integration took about 5000 such segments,
for a total time of about 1000 hours of run time.

9The Lyapunov exponent is a measure of the tendency of nearby solutions to diverge.
lOIn hindsight, the use of quad precision appears to have been overly conservative for this

problem, and we plan to rerun the computation at ordinary double precision to confirm
this.
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5 Summary and Conclusions

We consider the Solar System simulation to be a demonstration of the
success ofthe Toolkit project. A breakthrough computation was performed
with a reasonable amount of cost and effort, and most importantly, the
computation led to important scientific insights. We are currently pursuing
applications to circuit simulation and to optimization and control.

In hindsight, there are a few places where the Toolkit architecture could
have been improved. There are no datapaths that allow results to be stored
in code memory, so that, for example, all repeat counts in the sequencer
must be fixed at compile time. The sequencer chip provides no method
to view the addresses stored in its internal registers without executing the
instructions at those addresses. This makes it difficult to catch and process
interrupts, e.g., those caused by parity errors. A better design would make
that state more accessible. It would be convenient to set and sense condition
codes based upon results of address-generator computations. Also, the ALU
and Multiplier share a single result bus which limits the opportunities to
use these units simultaneously. These are details arising from our choice of
1989-standard parts. A second-generation Toolkit design would be almost
certainly be based upon parts with higher levels of integration, such as high­
speed microprocessors. The use of standard microprocessors brings with it
standard software, some of which can be used with little modification.

A more serious limitation of our prototype Toolkit is that we have pro­
vided only slow communication with the host. This limits applications to
those that require very little communication, such as the long-term inte­
gration of systems of ordinary differential equations. It is relatively easy
to improve this by fabricating a special board with connections to the fast
interprocessor communication channels. Such a communications adapter
could buffer communications to and from the host, at host-memory speed.
Improving this communication is a top priority for future hardware devel­
opment.

On the software side, we believe that the Toolkit's scientific package and
the Toolkit compiler are major steps forward. Nevertheless, our software­
support system has a long way to go. While the compiler makes it easy
to compile straight-line code, thus automating the translation of large
algebraically-specified systems such as force laws, the compiler has no con­
cept of data-structure or of data-dependent conditional jump. Thus, for
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example, all of the complex control structures that support implicit inte­
grators with variable stepsize and variable order (such as Gear's method
for stiff systems) must currently be tediously constructed in assembly lan­
guage. Extending the range of applications that can be handled by the
compiler is a clear direction for future work.

In summary, despite its prototype status, the Toolkit demonstrates a
means practical within the limits of current technology, to provide relatively
inexpensive supercomputer performance for a limited, but important class
of problems in science and engineering. The key is to avoid the generality­
both in architecture and in compilation technology-that cause computers
of comparable speed to be expensive to design, build, and program. The
result is machines that are not as fast as the fastest supercomputers, but
whose price advantage permits them to be used for applications that would
be otherwise infeasible.
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