
Wi..,. Io:tEWLETT
.:~ PACKARD

Algorithm-Oriented Generic Libraries

David R. Musser, Alexander A. Stepanov
Software Technology Laboratory
HPL-94-13
February, 1994

generic algorithms,
algorithmic abstraction,
software libraries,
abstract datatypes, C++,
templates

We outline an approach to construction of software
libraries in which generic algorithms (algorithmic
abstractions) play a more central role than in
conventional software library technology or in the
object-oriented programming paradigm. Our
approach is to consider algorithms first, decide
what types and access operations they need for
efficient execution, and regard the types and
operations as formal parameters that can be
instantiated in many different ways, as long as the
actual parameters satisfy the assumptions on
which the correctness and efficiency of the
algorithms are based. The means by which
instantiation is carried out is language dependent;
in the C++ examples in this paper, we instantiate
generic algorithms by constructing classes that
define the needed types and access operations. By
use of such compile-time techniques and careful
attention to algorithmic issues, it is possible to
construct software components of broad utility with
no sacrifice of efficiency.

© Copyright Hewlett-Packard Company 1994

Internal Accession Date Only



Introduction

The last few years have seen the development of software libraries in which the library
components are parameterized by data types and functions, making them more gen
eral, or "generic," than components in older libraries. Parameterization is done using
compile time mechanisms such as generics or templates (e.g., [1, 2]) or preprocessing
mechanisms (e.g., [3]), achieving greater run-time efficiency than was possible with
older methods, such as passing at run-time the size of data elements and a comparison
function to C library routines such as qsort or bsearch. But in most cases param
eters are still restricted to scalar parameters, data types, or functions, and do not
include what might be called "container representations"-ways of representing data
containers such as sequences, sets, trees, graphs, matrices, etc. (e.g., for operations on
sequences, one might have container representations using arrays, linked-lists, ranked
red-black trees, etc.). Consequently such libraries may have to reimplement the same
algorithm many times, once for each of the possible container representations.

In our approach to software library construction, we allow algorithms to be pa
rameterized not only by scalar values, data types, and functions, but also by container
representations. Of course, many algorithms are efficient only with a particular kind
of container representation, say linked-lists, but even within this single kind of rep
resentation there is a wide variety of concrete ways of setting up node structure,
managing storage allocation, and handling error conditions. Many commonly use
ful operations on sequences, such as inserting, deleting, substituting, concatenating,
merging, and searching, can be performed with algorithms that depend for their cor
rect and efficient operation only on a few basic access operations. By expressing the
algorithms in terms of these basic access operations and making the operations pa
rameters, we permit a single expression of the algorithms to be used with any concrete
representation of the container.

Outline of the algorithm-oriented approach

The key steps of our approach to generic library construction are:

• Start with the most efficient known algorithms and data structures, identify
container access operations, such as data moves, exchanges, or comparisons,
on which the algorithms depend, and abstract (generalize) those operations by
determining the minimal behavior they must exhibit in order for the algorithm
to perform a useful operation.

• Separately develop various ways of implementing the container access operations
using different container representations with different efficiency characteristics,
such as using random access or linked structures, with further classification ac
cording to use of different processor or storage allocation strategies and different
ways of handling errors.

1



• Practice software reuse within the library itself, by identifying small algorithmic
building blocks and implementing them as separate functions from which larger
algorithms can be composed.

• Thoroughly document the algorithms in overviews that compare various algo
rithms and identify favorable contexts for their use and in individual component
"data sheets" that describe key attributes that programmers need to know for
intelligent selection and proper use.

The intended use of such a library involves several steps of selection and instantiation
of components from the library:

• selection of the algorithms to be used;

• selection of a container representation suited to the selected algorithms and
other constraints;

• combining the container representation with the algorithms, which essentially
consists of instantiating the container access parameters used in the algorithms
with types that provide those operations.

• instantiating other parameters of the generic algorithms, such as data types and
problem size.

Altogether, this flexibility means a single generic algorithm can have broad utility.
Yet efficiency is not sacrificed, because algorithmic efficiency is respected in the design
of the algorithms and their recommended uses, and because the container represen
tations and algorithms can be combined without the overhead of subprogram calls,
by using inline declarations and templates and/or macros.

The algorithm-oriented approach in C++

We demonstrated an earlier version of the algorithm-oriented approach in Ada in
References [4,5,6]. In this paper, we illustrate the approach with a number of generic
algorithms implemented in C++. These algorithms are part of a library of operations
on sequences of values, using array, linked-list, or hybrid array/linked representations
of sequences, including partitioning, merging, and sorting operations.

The algorithms in the library are designed to work with a variety of different
choices for type of data elements and container representations. The specialization
to particular choices occurs at compile time, according to definitions given in the
source code of the application program. In C++, we express generic algorithms by
means of template function definitions and container representations by template (or
ordinary) class definitions. For example, the generic quicksort algorithm given in this
paper can be combined with an array representation of sequences or a variety of other
representations.

2



Some algorithms have even greater flexibility; consider, for example, the count
algorithm, which is defined on a sequence of values and returns the number of elements
in the sequence that satisfy a given predicate. It could be used to count the number of
elements in a sequence of integers that are positive, for example, by using a predicate
on integers which tests whether its argument is positive. The algorithm used by
count is simply to consider each element in turn, and for this purpose it uses a ++
operator; this operator can be supplied as either one of the standard ones that advance
a pointer, or a user defined one that chases a link in a linked representation. The
sequence can thus be represented in a linked-list structure as well as in a block of
consecutive locations.

Type requirements on iterators and applicative ob
jects

Nongeneric algorithms are expressed in terms of types that are fixed built-in or user
defined types, not subject to substitution. Generic algorithms are expressed in terms
of type parameters that can be instantiated with any actual types that meet certain
requirements. Part of the specification of a generic algorithm is the set of requirements
on types. The fewer the requirements the more generic the algorithm is, since there
are more possibilities for actual types with which the algorithm can be instantiated.
We thus need good ways to specify the type requirements without overspecifying
them. In C++, one can use the template mechanism to express a generic algorithm,
as III

template <class T>
void f(T x) {

T y;
... g(y);

}

Here T, though called a class, can be instantiated with any type, either one defined
by the C++ class mechanism or a built-in type. Within the body of f, T can be used
explicitly in declarations (as shown) or implicitly as the supplier of functions such
as g. While it could be made explicit that g must come from T by writing T: :g (y) ,
the other requirements one needs to place on a function such as g cannot be spelled
out completely within the language. While one can infer the number and types of
the arguments and return value of g from calls such as . .. g (y), one might prefer
to have a separate specification of these type requirements against which calls could
be type-checked. Similarly, nothing about semantic or computing time requirements
on g can be specified in C++, though in some cases some requirements might be
deduced from requirements on the functionality and computing time of f.

Lacking facilities in C++, we must adopt some meta-level specification method
ology for spelling out the requirements a generic algorithm places on its template

3



type parameters. There are many possibilities, some (such as algebraic axioms or
model-based specifications) more formal than others. In this paper our approach
is essentially model-based, but not fully formal in that we do not spell out all the
specifics of the main mathematical model used, finite sequences; instead we use stan
dard terminology and notation for finite sequences and appeal to the reader's prior
experience with these mathematical objects.

Two of the broad categories of types that are used in the algorithms of our library
are iterator types and applicative types. Iterators generalize the notion of pointer, en
capsulating information about locations in objects. Applicative types provide objects
whose role is purely to supply the definition of one or more functions; they are useful
for expressing higher order algorithms, i.e., ones that take functions as parameters.
Iterator and applicative types can be defined in C++ using the class mechanism; any
such definition or built-in type that meets certain requirements, detailed below, will
do. The requirements are all on attributes of operations: operator names, argument
lists, meanings, and computing times.

Iterators

Iterators provide for sequencing through a sequence of locations and obtaining in
formation from them. Generally, iterator types are defined in C++ using the class
mechanism, but for an important class of iterators called "random access" iterators
(defined below) for sequence containers, they may simply be C++ pointer types; i.e.,
T* where T is any built-in or user-defined type). This is possible since the require
ments we place on random access iterators are consistent with C++ notation and
operation meanings for pointer types. Some of the general requirements for iterators,
including all of the requirements that must be met by sequence iterator types, are
spelled out in this section.'

Equality and inequality testing An iterator object is said to refer to a location
within a container; sometimes we also say it refers to the value, or "element," in that
location. We require that all iterator types provide

int operator==(Iterator)
int operator!=(Iterator)

(equality check)
(inequality check)

where the equality operator returns true (i.e., a nonzero value) if its operands refer
to the same location, false (i.e, zero) otherwise; and the inequality operator has the
opposite meaning. These are required to be constant time operations.

IThe remainder of this section should be treated as a reference manual for iterator terminology
and requirements; for a first reading those familiar with C++ may want to just skim this material
and rely mainly on their knowledge of C++ pointer notation and semantics for understanding the
algorithm descriptions in later sections. The ReverseIterator example of an iterator defined by a
C++ class should also help to clarify the role of the iterator requirements.

4



Dereferencing An operation we require of all iterator types is dereferencing (operator* () ).
Related to dereferencing is the classification of iterators is as readable or writable (or
both). If an iterator x for a container of elements of type T and it refers to location
i, the meaning of *x is given as follows: If i is a valid location for dereferencing, then

1. if *x is in a context that requires a value of type T-in C++ parlance, an
"rvalue" is required, as for example on the right hand side of an assignment
and x is a readable iterator, *x means the element at location i;

2. if *x is in a context that requires a location-in C++ parlance, an "lvalue"
is required, as for example on the left hand side of an assignment-and x is a
writable iterator, *x means location i itself;

otherwise, *x is undefined.
In C++, a purely syntactic means of making an iterator readable but not writable

is to declare its dereference operator as T operator« 0 or const Tt operator« O.
To make an iterator writable but not readable, one can make its dereference operator
return the iterator itself and define an operator= (const Tt) on the iterator.

A regular iterator is one that is both readable and writable; regular is the default
if no mention is made of readability or writability. Other useful terms are read
only, meaning readable but not writable, and write-only, meaning writable but not
readable.

Dereferencing is required to be a constant time operation.

Sequence elements and locations For the remainder of this paper we restrict
the discussion to the case that the container is a sequence. We assume that for any
(finite) sequence of elements Xo, Xl, • • • ,Xn-l there is a sequence of distinct locations
io, il, ... ,in, where ij is the location of Xj for j = 0, ... ,n - 1, and in is an additional
location considered to be "off the end" of the sequence. Locations io, ... ,in - 1 are
valid for dereferencing, but in might or might not be.

An array representation of sequences commonly uses a set of integers in an arith
metic progression as locations, with the off-the-end location just being the next higher
integer in the progression following the location of the last element, while a linked-list
representation uses a set of pointers, usually with the null pointer as the off-the-end
location.

Traversal classification of sequence iterators An important classification of
sequence iterators is based on the kinds of traversal they efficiently support: for
ward, bidirectional, and random access. Loosely speaking, forward iterators are those
that provide for efficient traversal through the locations io, it, ... ,in in that order; a
bidirectional iterator is a forward iterator that also provides for efficient traversal in
the opposite direction; and a random access iterator is a bidirectional iterator that
also provides for efficient "long jumps" in the sequence and for comparisons based

5



on relative position in the sequence. The precise definitions of forward, bidirectional,
and random access iterators are given in terms of the names and meanings of the
operations they are required to efficiently support, as detailed below.

Ordering of locations in a sequence We treat the locations io, it, ... ,in of a
sequence as being ordered by their indices 0,1, ... ,n. Each location i j +! is called the
successor of ij, and ij is called the predecessor of i j +ll for j = 0, ... ,n - 1.

We say that location i j is before location ik if j < k and is after location ih

if h < j. Thus it makes sense to speak of the first location in a sequence with a
particular property: no location before it has that property.

The notion of "before" is defined for all sequence iterators but forward and bidi
rectional iterators do not necessarily provide any efficient way of computing it. For
random access iterators, we do require a constant-time comparison operation int
operator«Iterator) which returns true if its first operand refers to a location be
fore that referenced by its second operand. I.e., if x refers to i j and y refers to ik ,

then x < y returns true (i.e., a nonzero value) when °:::; j < k :::; n, false (zero) when°:::; k :::; j :::; n, undefined otherwise. Random access iterators for sequences must
also provide other constant-time comparison operators <=, >, and >= whose meanings
are defined similarly.

Successor and predecessor operations All sequence iterators must also provide
a traversal operation (operator++ 0) for advancing from a location to its successor;
bidirectional iterators must also provide an operation (operator-- 0) that decre
ments from a location to its predecessor. Since C++ allows different definitions to
be given for either prefix or postfix applications of these operators [7], we define the
requirements on both:

1. For j = 0, ... ,n -1, if the iterator x refers to location i j then x++ or ++x causes
it to refer to i j +! ; x++ returns the original iterator that refers to ij while ++x
returns the new iterator that refers to ij+!. If x refers to in, then the effect and
return values of both x++ or ++x are undefined.

2. For j = 1, ... , n, if the iterator x refers to location i j then x-- or --x causes
it to refer to ij-I; x-- returns the original iterator that refers to i j while --x
returns the new iterator that refers to ij-I' If x refers to io, then the effect and
return values of both x-- or --x are undefined.

3. All four of these operations must be constant time operations.

Random access operations A random access sequence iterator must provide

Iterator operator+(ptrdiff_t)
Iterator operator-(ptrdiff_t)

6

(addition)
(subtraction)



with the meaning that for j = 0, ... , n, if x refers to location ij, then if 0 :::; k :::; n - j
then the iterator returned by x + k refers to ij+k, and if 0 :::; k :::; j then the iterator
returned by x - k refers to i j _ k • Both operations must be constant time operations.

A random access sequence iterator must also provide "long jump" operators

Iterator operator+=(ptrdiff_t)
Iterator operator-=(ptrdiff_t)

(positive long jump)
(negative long jump)

with the meaning that for j = 0, ... , n, if x refers to location ij, then if 0 :::; k :::; n - j
then x is changed by x += k to refer to ij+k, and if 0 :::; k :::; j then x is changed by x
-= k to refer to i j - k . In both cases the resulting iterator is returned. Both operations
must be constant time operations.

It is sometimes useful to construct forward or bidirectional iterator types that
provide operations that have these names and meanings but that do not meet the
requirement of constant time execution. For example a linked-list representation only
permits a positive long jump to be programmed with (the equivalent of) iteration of
++, and thus it is a linear time operation in that case. When combined with algorithms
that expect constant time long jumps, execution speed is degraded, but in some cases
not by much if other parts of the computation make significantly larger contributions
to the total time. For example our library contains a binary search algorithm that
can be combined with a forward iterator for a linked-list representation, producing
an algorithm that is linear in the number of iterator operations but only logarithmic
in the number of comparisons it does. In many cases in which comparisons are more
expensive than iterator operations, such an algorithm can beat a straight sequential
search, which is linear in both iterator operations and comparisons.

Iterator subtraction Finally, some algorithms require a sequence iterator to pro
vide

int operator-(Iterator) (iterator subtraction)

with the meaning that for 0 :::; i, k :::; n if x holds location i j and y holds location
ik , then the integer returned by x - y is j - k.2 A random access iterator must
provide iterator subtraction as a constant time operation. A forward or bidirectional
iterator is not required to provide iterator subtraction, but if it does the operation
must execute in linear time.

Iterator ranges In describing algorithms that use sequence iterators, it is conve
nient to use range notation. Let i j and ik be two locations in the same sequence, with
j :::; k; one or both of i j or i k might be the off-the-end location. Then

2Note that this is defined even if x or y holds in, the "off-the-end" value; for example, if x holds
in and y holds io then x - y returns n, the length of the sequence.

7



range [ij, ik ]

range [ij, ik )

range (ij,i k ]

range (ij, ik )

IS Zj, Zj+I, ... , Zk· . . .
IS Zj, Zj+I, •.. ,Zk-l
· . .
IS Zj+l,"" Zk· . .
IS Zj+l,' •. , Zk-l

If x is an iterator that refers to ij and y is an iterator that refers to ik , then [x,y]
means the same as [ij, i k ] and similarly for the other kinds of ranges. Many of the
sequence algorithms take iterator parameters first and last, which are regarded by
the algorithm as specifying the range [first, last); i.e., the location referred to by
last is not regarded as part of the sequence that is processed by the algorithm. Note
that in the case that first = last, the range [first, last) is empty; for such an
input most algorithms would do nothing or would return a default value.

The forward iterator requirements are met by a singly-linked list class in our library.
This class also provides addition, positive long jumps, and iterator subtraction, but
in linear rather than constant time. The bidirectional iterator requirements are met
by a doubly-linked list class; linear-time subtraction and negative long jumps are also
provided.i' All random access iterator requirements are fulfilled by pointer types in
C++. The Reverselterator type given in a later section is another example of a
random access iterator.

Applicative objects

Some of the algorithms in our library have function parameters, such as predicates.
Rather than following the common C/ C++ programming practice of passing a pointer
to a function, we can produce more efficient code by taking advantage of the ability
in C++ to overload the function call operator, operatorO, and to create types that
provide such an overloading. We call such types applicative types.

For example, our sorting algorithms are parameterized by a comparator type; i.e.,
an applicative type that provides a function to compare two values x and y of some
type T and return either a negative integer, 0, or a positive integer according to
whether x is less than, equal to, or greater than y in some total ordering of T. The
function must execute in constant time.

Such a comparator type can be defined in C++ by a class definition such as

class intComparator {
public:

intComparator(){}
int operator()(int x, int y) {return x - y;}

};

3The requirements on -- and - for a doubly linked representation imply that it is necessary to
use a non-null value as the off-the-end location in to enable backward traversal to work even when
starting from in.

8



which in this case defines operatorO in terms of subtraction. For a different way of
defining comparison, only the body of the operatorO definition would be changed.
Using the constructor, intComparator, we can create an object of this class and pass
it to a function, such as the quickSort function described in a later section, with a
call such as

quickSort(first, last, intComparator());

More generally, one could use a template class definition such as

template <class T>
class Comparator {
public:

Comparator () {}
int operator()(T x, T y) {return x - y;}

};

which provides a definition that can be used with any of the C++ signed integer
types. The constructor call for T = int would then be as in

quickSort(first, last, Comparator<int>());

In general, we say that a type is an applicative type if it is defined by a C++
class that provides one or more definitions of the function call operator. Since a C++
compiler can inline the definition of the function at the site of calls, using applicative
types not only avoids the overhead of an indirect function call, as occurs when a
pointer to a function is passed, it even eliminates the cost of a direct call!

Examples of generic sequence algorithms

To illustrate the algorithm-oriented approach in C++, we give a small sample of al
gorithms for operations on sequences, specifically partitioning and sorting algorithms
and some auxiliary data movement algorithms. Some of these algorithms require
bidirectional iterators; others require random access iterators. The partitioning and
sorting algorithms also require an comparator type to define the function used to
compare elements of the sequence.

The generic algorithms presented in this section also serve to illustrate the coding
and documentation conventions we have chosen to use. We begin with an overview
and comparison of the algorithms and follow it with datasheets for individual algo
rithms.

Overview

Two sorting algorithms, insertionSort and quickSort, are included. Both operate in
place: the result is placed in the storage occupied by the original sequence and only a

9



constant or logarithmic amount of extra storage is required. The first has O(n2
) worst

case computing time on a sequence of length n, but runs in linear time and is the sorting
algorithm of choice in special circumstances, as detailed on its data sheet. It is a stable
sort, in the sense that elements that compare equal appear in the result in the same relative
order as in the original sequence. The second is based on Hoare's quicksort algorithm
and has expected time of O(nlogn); taking O(n2 ) time is possible but occurs only with
extremely low probability. This algorithm makes more comparisons but makes substantially
fewer data moves than merge sort and thus is recommended in settings where stable sorting
is not required and the cost of a comparison is not substantially more than that of a
data move. The partitioning algorithm used by quickSort, and by other algorithms, is
unguardedPartition, which permutes a sequence into two subsequences, one containing
elements that compare less than or equal a given value, and the other containing elements
that compare greater than or equal the value.

Concrete versions of these algorithms may be found in standard references, e.g., [8, 9],
and the research literature, e.g., [10]. In constructing generic algorithms, one can often
benefit from this prior work, but one must be careful to ensure that optimizations can still
be done in a general setting and, if so, that they remain optimizations in most, if not all,
settings. For example, use of some special sentinel value in an extra array position to stop
a search, as is typica.lly done in coding insertion sort in order to have the fastest possible
inner loop, must be modified since in some instances an extra array position might not be
available. We could just abandon the sentinel technique and provide an algorithm that is
general but whose instances are in some cases less efficient than hand-tailored code. Instead,
we provide different versions of crucial routines, in which we use the sentinel technique in
one and not in the other and limit the use of the non-sentinel, less efficient version to a case
with a sma.ll number of elements.

Algorithm datasheets

Insert an element into a sorted range

Declaration

template <class Iterator, class T, class Comparator>
inline Iterator unguardedLinearlnsert(Iterator last, T value,

Comparator compare);

template <class Iterator, class T, class Comparator>
Iterator linearlnsert(Iterator first, Iterator last, T value,

Comparator compare);

Description Either function inserts value in an ascendingly sorted sequence so that the
result is still ascendingly sorted (according to compare).

Type requirements Iterator must be a regular bidirectional iterator.

Group Unary pseudo-permutation.

10



Time complexity Linear. The number of T assignments is the size of the range from
the insertion point to last.

Space complexity Constant.

Details It must be possible to assign to location last, as it is used to hold a value of the
resulting sequence.

unguardedLinearlnsert assumes there is some location before last that holds a value
no larger than value; if the last such value is in location p, it inserts value in location
p after shifting the values in the range [P, last) over by one location. If the sequence
in locations [P, last) was previously in ascending order according to compare, then the
resulting sequence in the range [P, last] is also in ascending order according to compare.

linearlnsert assumes that first f:. last, and inserts value in one of the locations in
the range [first, last), after shifting later by one all the values from the insertion point
to the end. If the values in the range [first, last) were previously in ascending order
according to compare, value is inserted in the proper place to make all the values in the
range [first,last] in ascending order according to compare.

Implementation

template <class Iterator, class T, class Comparator>
inline Iterator unguardedLinearlnsert(Iterator last, T value,

Comparator compare)
{

Iterator previous = last;
while (compare(value, *--previous) < 0) {

*last = *previous;
last =previous;

}

*last =value;
return last;

}

template <class Iterator, class T, class Comparator>
Iterator linearlnsert(Iterator first, Iterator last, T value,

Comparator compare)
{

if (compare(value, *first) >= 0)
return unguardedLinearlnsert(last, value, compare);

Iterator next = last;
moveBackward(first, last, ++next);
*first = value;
return first;

}

11



Sort a range by insertions (insertion sort)

Declaration

template <class Iterator, class Comparator>
void insertionSort(Iterator first, Iterator last,

Comparator compare);

template <class Iterator, class Comparator>
void unguardedlnsertionSort(Iterator first, Iterator last,

Comparator compare);

template <class Iterator, class Comparator>
void thresholdlnsertionSort(Iterator first, Iterator last,

int threshold, Comparator compare);

Description insertionSort sorts the range [first, last) in place, into ascending order
according to the ordering determined by compare. unguardedlnsertionSort is faster but
possibly includes additional locations preceding first in the sequence sorted (see details).
thresholdlnsertionSort is faster than insertionSort but assumes the minimum value in
[first, last) occurs in the first threshold locations. These functions are not recommended
for general use but are a good choice for sorting short or "almost sorted" sequences.

Type requirements Iterator must be a regular random access iterator.

Group Unary pseudo-permutation.

Time complexity Quadratic, in the average and worst cases. The number of compare
operations performed is about n2/4in the average case and about n2/2in the worst case, and
the number of T assignment operations is the same, where n is the size of [first, last).
For most inputs these functions are very slow compared to the best sorting algorithms.
However, they are quite fast for small sequences (n :::; 16 or so) or for large ones that are
"almost sorted" in one of the following senses: (1) the number of elements out of order is
small, or (2) the average distance between the original location of an element and its final
destination is small. For such sequences the worst case time is linear in the size of the
sequence.

Space complexity Constant.

Details All three functions are stable sorts; that is, the relative order of elements that
are equal (according to compare) is preserved.

unguardedlnsertionSort is the fastest version (has the smallest coefficient in its com
puting time bound), but it correctly sorts only under an extra assumption: that for some
location p ~ first the range [P, first) is already sorted and the value in location p is a
minimum for the extended range [P, last). The result is that [P, last] is sorted into as
cending order. Note that if p =f first, the sequence unguardedlnsertionSort leaves in

12



[first, last] is in ascending order but is not a permutation of the values originally in those
locations (some values change places with those in [P, first )).

Implementation

template <class Iterator, class Comparator>
void insertionSort(Iterator first, Iterator last,

Comparator compare)
{

if «first == last) II (first + 1 == last)) return;
for (Iterator i = first + 1; i != last; i++)

(void)linearlnsert(first, i, *i, compare);
}

template <class Iterator, class Comparator>
void unguardedlnsertionSort(Iterator first, Iterator last,

Comparator compare)
{

if (first == last) return;
for (Iterator i = first; i != last; i++)

(void)unguardedLinearlnsert(i, *i, compare);
}

template <class Iterator, class Comparator>
void thresholdlnsertionSort(Iterator first, Iterator last,

int threshold, Comparator compare)
{

if (last - first > threshold) {
insertionSort(first, first + threshold, compare);
unguardedlnsertionSort(first + threshold, last, compare);

} else
insertionSort(first, last, compare);

}

Implementation notes The basic idea is to scan the sequence from beginning to end and
insert the current element into its proper place among the previously scanned and already
sorted elements. Each insertion just involves a scan from the current location to preceding
ones, shifting elements over by one location as the scan proceeds, so that there will be a
place for the element being inserted.

For greater speed unguardedlnsertionSort uses unguardedLinearlnsert, which omits
any check for the scan passing the beginning location, first. Hence it depends on the as
sumptions stated in Details being satisfied.

Advantage of unguardedlnsertionSort is taken by thresholdlnsertionSort, which
uses insertionSort to sort the first threshold values. Unguarded scans may then be used
for the rest of the sequence, since by the assumption stated in the Description and the

13



results of insertionSort, the assumptions described in Details are satisfied for the call to
unguardedlnsertionSort.

Partition a range

Declaration

template <class Iterator, class T, class Comparator>
inline Iterator unguardedPartition(Iterator first, Iterator last,

T pivot, Comparator compare);

Description Permutes the range [f irst, last) in place, partitioning it into two ranges such
that compare(*i, pivot) ~ 0 for all locations i in the first range and compare(*i. pivot) ~ 0
for all locations j in the second range. Returns an iterator that refers to the beginning
location of the second range.

Type requirements Iterator must be a regular random access iterator.

Group Unary permutation.

Time complexity Linear. The number of comparisons performed (using compare) is
either n+ lor n+2, where n is the size of [first, last). and the number of swap operations
is at most In/2J.

Space complexity Constant.

Details There must at least one location i for which compare(*i, pivot) ~ 0 and at least
one location j for which compare(*j, pivot) ~ O. These conditions are met if there is at
least one location i in [first, last) for which

compare(*i,pivot) = O.

The beginning location p of the second range is in [first, last]. (Thus, either subsequence
may be empty.) Unlike some versions of partitioning, it is not guaranteed that

compare(*p,pivot) = o.

The permutation is not stable. (Stability in this case would mean that within each subse
quence the relative order of the elements is the same as in the original sequence.)

Implementat ion

template <class Iterator, class T, class Comparator>
inline Iterator unguardedPartition(Iterator first, Iterator last,

T pivot, Comparator compare)
{

while (1) {

14



while (compare(*first. pivot) < 0) first++;
last--;
while (compare(*last. pivot) > 0) last--;
if (last <= first) return first;
swap(*first. *last);
first++;

}
}

Implementation notes The basic idea of the algorithm is to search from the beginning
for an element that compares non-negative with pivot, search from the end for an element
that compares non-positive with pivot, and, provided the iterators haven't converged or
crossed, swap the elements found; then the iterators are moved one step further and the
process is repeated.

The inner loops need no check for running off the end of the sequence: by the assumption
described in Details, for each loop there is some element that will stop it, and after a swap
is performed, there are still elements in locations to stop both loops.

As coded, the algorithm sometimes swaps elements that compare equal, which might
seem unnecessary. But avoiding this would require adding checks in the loops for the
iterators crossing, and, of more concern, it would also mean that for a sequence with all equal
elements quickSort would obtain partitionings into 1 and k-l elements, for k = n, n-l, ... ,
which means that quickSort would take order n2 steps. The code as given results in a split
into two equal parts, so that quickSort only takes order nlog n time on such inputs.

Sort a range by partitioning (quicksort)

Declaration

template <class Iterator. class Comparator>
static void quickSortLoop(Iterator first. Iterator last.

Comparator compare);

template <class Iterator. class Comparator>
void quickSort(Iterator first. Iterator last. Comparator compare);

Description Sorts the sequence in place, into ascending order according to the ordering
determined by compare. For most inputs, this is one of the fastest sorting algorithms, but
it can be unacceptably slow.

Type requirements Iterator must be a regular random access iterator.

Group Unary permutation.

Time complexity Order nlogn, on the average, where n is the size of [first,last).
Quadratic in the worst case, but this behavior is highly improbable. Recommended in cases

15



where worst case performance is not critical, stable sorting is not required, and the cost of
a comparison (using compare) is not too high relative to that of a data move.

Space complexity Order log n, in the average and worst cases (stack space for recursive
calls).

Details This not a stable sort; that is, the relative order of elements that are equal
(according to compare) is not preserved. If stability is necessary, see mergeSort (which,
however, is not an in-place sort).

Implementation

#ifndef QUICKSORT_THRESHOLD
#define QUICKSORT_THRESHOLD 16
#endif

template <class Iterator, class Comparator>
static void quickSortLoop(Iterator first, Iterator last,

Comparator compare)
{

while (last - first > QUICKSORT_THRESHOLD) {
Iterator partition = unguardedPartition(first, last,

*medianOf3Select(first, last, compare), compare);
if (partition - first >= last - partition) {

quickSortLoop(partition, last, compare);
last = partition;

} else {
quickSortLoop(first, partition, compare);
first = partition;

}
}

}

template <class Iterator, class Comparator>
void quickSort(Iterator first, Iterator last, Comparator compare)
{

quickSortLoop(first, last, compare);
if (QUICKSORT_THRESHOLD > 1)

thresholdInsertionSort(first, last,
QUICKSORT_THRESHOLD, compare);

}

Implementation notes This divide-and-conquer algorithm first partitions the sequence
into two parts (working in-place) such that all of the elements in the first part are less than
or equal to all of the elements in the second part. It then repeats the partitioning in each

16



of the two parts, continuing in this way until it has achieved a sequence of small partitions
in which every element in each partition is less than or equal to all of the elements in the
next partition. Then, insertion sort is used to finish putting the elements in order. The
algorithm achieves high efficiency because the partitioning step is fast and usually breaks
its input into two parts of roughly equal size, and because insertion sort works in linear
time on the type of input that quicksort presents to it.

The algorithm is expressed using recursion, but the overhead of recursion is kept small
by recursing on only one of the two subsequences produced by a partitioning, with the other
taken care of iteratively.

The recursive calls and iterations both stop when subsequence length drops below a
threshold; thresholdInsertionSort is used to finish. The value t of QUICKSORT_THRESHOLD
controls the switch-over; t = 16 is used unless QUICKSORT_THRESHOLD is #defined as a
different value.

The final insertion sorting takes only linear time, since no element is more than t loca
tions out of place. It is correct to use thresholdInsertionSort (as opposed to the slower
insertionSort) since quicksortLoop guarantees that the minimum value for the entire
sequence occurs in the first t locations.

In the code if (partition - first >= last - partition) we choose the smaller of
the two subsequences to recurse on: since the smaller must be no more than half the length
of the current subsequence, the number of stack frames at anyone time due to recursion is
no more than log2 n.

There can be up to n - t partitionings, on sequences of length n, n -1, ... ,t + 1, if each
partitioning puts only one element on one side of the partition. This yields the order n 2

worst case time. The median-of-three method of choosing the pivot element makes a long
series of such unbalanced partitions extremely unlikely.

For partitioning, unguardedPartition is used, which exchanges elements even when
they are equal according to compare. This technique avoids unbalanced partitionings that
would otherwise occur when there are many equal elements. Such a sequence is sorted in
order n log n time.

Datasheets for two other functions used in implementing quicksort, moveBackward
and medianOf3Select, may be found in [11].

An example of a sequence iterator type

The generic algorithms discussed in the previous section can be used not only with
the builtin C++ pointer types for the iterators, but with any user-defined type that
meets all ofthe requirements of a random access iterator. In this section, we present a
simple example of such an iterator type, one that provides for traversal in the reverse
direction from that defined by a given iterator type.

17



Overview

To allow our algorithms to work with the sequence of elements in reverse order, the
Reverselterator class definition transforms a given iterator into one for which, for exam
ple, ++ has the meaning of the original iterator's --, and vice-versa. As example of the use
of this iterator type, consider sorting with a combination of quickSort, Reverselterator,
and a comparator that would ordinarily produce ascending order:

const size_t length = 100;
void mainO {

int a[length];

typedef Reverselterator<int*> Reverselnt;
Reverselnt k(a + length);
quickSort(k, k + length, Comparator<int>());

where template class Comparator is as defined earlier. Note that k refers to a[length-l]
and k + length refers to an off-the-end location (k + length - 1 refers to a [0] ). Since
the sequence is being scanned in the reverse of the normal order, the result produced is
sorted into ascending order when scanned in reverse order, and thus is in descending order
when scanned in the normal order.

Iterator datasheet

Reverse the direction of an iterator

Declaration

template <class Iterator, class T>
class Reverselterator;

Description From a given random access iterator type, Iterator, this class defines a new
random access iterator type that reverses the direction of Iterator's traversal.

Type requirements Iterator must be a regular random access iterator.

Provides Reverselterator provides a regular random access iterator type.

Time complexity All operations are constant time, provided all Iterator operations
are constant time.

Space complexity Constant.

Details If [first,last) is a range of size n defined for Iterator, a declaration of the
form

Reverselterator<Iterator> i(last);

18



sets up i to refer to last - 1 and to traverse a range whose locations are last - 1, last 
2, ... ,first in that order, followed by an off-the-end location. Computing the off-the-end
location does not require location first - 1 to be defined for Iterator.

Implementation

template <class Iterator. class T>
class Reverselterator {
protected:

Iterator current;
public:

Reverselterator(Iterator x) : current(x) {}
T& operator*() const {return *(current - 1);}
int operator==(Reverselterator<Iterator. T>& other) const

{return current == other.current;}
int operator !=(Reverselterator<Iterator. T>& other) const

{return current != other.current;}
int operator<=(Reverselterator<Iterator. T>& other) const

{return other.current <= current;}
II ... similar definitions for <. >. and >=.
Reverselterator<Iterator. T> operator++() {current--; return *this;}
Reverselterator<Iterator. T> operator--() {current++; return *this;}
Reverselterator<Iterator. T> operator++(int)

{Reverselterator<Iterator. T> tmp = *this; current--; return tmp;}
Reverselterator<Iterator. T> operator--(int)

{Reverselterator<Iterator. T> tmp = *this; current++; return tmp;}
Reverselterator<Iterator. T> operator+=(ptrdiff_t k)

{current -= k; return *this;}
Reverselterator<Iterator. T> operator-=(ptrdiff_t k)

{current += k; return *this;}
Reverselterator<Iterator. T> operator+(ptrdiff_t k) const

{Reverselterator<Iterator. T> tmp = *this; return tmp += k;}
Reverselterator<Iterator. T> operator-(ptrdiff_t k) const

{Reverselterator<Iterator. T> tmp = *this; return tmp -= k;}
ptrdiff_t operator-(Reverselterator<Iterator. T>& other) const

{return other.current - current;}
};

Implementation notes The class maintains an Iterator location in current and uses
it to compute the next new location requested. Dereferencing is applied to current - 1 so
that a reverse iterator initialized to the last location for a range [first, last) can traverse
all the locations of the range in reverse order and use first as the off-the-end location for
the new range.

19



Iterator and applicative type transformers

Reverselterator is an example of an iterator transformer, an iterator type that is
itself parameterized by an iterator. Such transformers can composed, if the functions
provided by one iterator meet all of the requirements of the next iterator in the
chain. For example, as a stringent test of both Reverselterator and our generic
algorithms-and also of a C++ compiler's ability to handle templates-we can try
composing Reverselterator with itself:

const size_t length = 100;
void mainO {

int a[length];

typedef Reverselterator<int*> Reverselnt;
Reverselnt k(a + length);
typedef Reverselterator<Reverselnt> DoubleReverselnt;
DoubleReverselnt l(k + length);
quickSort (1, 1 + length, Comparator<int>());

This results in the array being sorted in ascending order, just as though we worked
directly with the original int* iterator type.

Similarly, we can define applicative type transformers. One example would be
a comparator transformer that inverts the comparison, providing another way of
changing an ascending sort into a descending one. As another example, consider

template <class BinaryFun, class T>
class IndirectBinaryFun {

BinaryFun b;
pub.ILc :

IndirectBinaryFun() {}
operator()(T* x, T* y) {return b(*x, *y);}

};

which transforms any binary function type to one that uses a level of indirection. By
thus transforming a comparator type and combining it with quickSort, we immedi
ately obtain a version of quickSort that can work with an array of pointers to the
actual values and thus only move the pointers, not the actual values. Such a version is
of course particularly useful for sorting large records. Conventionally the source code
of such a version would have the indirection done inline and thus would it would have
to be distinct from the normal version, but with our approach the adaptation is done
by the compiler and only the one version of the source code has to be maintained.

These are but a few of the many cases in which several different useful versions
of the same algorithm are obtainable from a single generic algorithm by combining
with different iterators or comparators.

20



Concluding remarks

An algorithm-oriented approach to generic software library development has been
outlined and illustrated by a small sample of generic algorithms coded in C++. The
basic approach is similar to that of our earlier work in Ada, but is adapted to the
specific language features available in C++. We have also placed more emphasis than
in the Ada work on describing implementation design decisions in the documentation.
These design decisions arise both from known optimizations that carryover from
concrete versions of the algorithms and from constraints imposed by the need to
operate in a wide variety of contexts.

The form of the documentation used in this paper is only an approximation to
what will probably be necessary. Some potential library users may find the degree of
abstraction baffling or the amount of detail overwhelming. This problem can probably
best be solved by structuring the documentation in several layers, beyond the two
illustrated in this paper, overviews of a collection of related algorithms and data
sheets on individual algorithms. For example, another layer could be provided that
specifies a "typical" concrete instance of each algorithm; a programmer inexperienced
with the notion of algorithmic abstraction might find it useful to examine this layer
first, then progress to the more general descriptions.

While we have opted for run-time efficiency by using strictly compile time mech
anisms for instantiating parameters, one could instead emphasize run-time flexibility
and reduction of code size by defining some of the access operations as virtual func
tions [7, p. 208] that are implemented in derived classes. Such a choice fits within our
framework because it does not require any textual changes to the source code of the
algorithms, only to the container classes.

In this paper, we have concentrated on issues of development and documentation
of the individual algorithmic components, but we recognize there are other important
aspects of the development and effective use of software libraries, which we plan to
address in future papers.

Acknowledgments Meng Lee is also a designer of the present library and worked
on many of the components mentioned in the paper. We would like to thank her,
Bob Cook, Mehdi Jazayeri, and two anonymous referees for many suggestions for
improvement of the paper.

References

[1] G. Booch, Software Components with Ada, Benjamin/Cummings, 1987.

[2] G. Booch and M. Vilot, "The Design of the C++ Booch Components," Proc.
OOPSLAjECOOP '90, SIGPLAN Notices, Vol. 25, No. 10, October 1990.

21



[3] D. Lea, The GNU C++ Library, software and documentation, The Free Software
Foundation, 675 Mass Ave, Cambridge, MA, Feb 1988.

[4] D. R. Musser and A. A. Stepanov, "A Library of Generic Algorithms in Ada,"
Proc. of 1987 ACM SIGAda International Conference, Boston, December, 1987.

[5] D. R. Musser and A. A. Stepanov, "Generic Programming," invited paper, in
P. Gianni, Ed., ISSAC '88 Symbolic and Algebraic Computation Proceedings,
Lecture Notes in Computer Science 358, Springer-Verlag, 1989.

[6] D. R. Musser and A. A. Stepanov, The Ada Generic Library: Linear List Pro
cessing Packages, Springer-Verlag, 1989.

[7] M. Ellis and B. Stroustrup, The Annotated C++ Reference Manual, Addison
Wesley, New York, 1990.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms,
McGraw-Hill, New York, 1990.

[9] D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Search
ing, Addison-Wesley, Reading, Mass., 1973.

[10] R. Sedgewick, "Implementing quicksort programs," Communications of the
ACM, 21(10):847-857, 1978.

[11] D. R. Musser and A. A. Stepanov, Algorithm-Oriented Generic Libraries, Rensse
laer Polytechnic Institute Computer Science Department Technical Report 93-23,
September 1993, revised January 1994.

22




