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ABSTRACT

Higham's iterative computation of the matrix polar decomposition uses
an acceleration parameter derived from economical approximations of
the £2 norm and nearly optimum for that norm. It is shown here
that the iteration based on a parameter optimum for the Frobenius
norm converges as fast as the £2 iteration and lends itself to more
efficient implementation and easier iteration control. The description
of a practical algorithm is included for illustration.

1 Introduction

In [3], Higham describes a simple and effective algorithm for the computa­
tion of the orthogonal factor of the matrix polar decomposition. Although
not as efficient in general as the approach based on the singular-value decom­
position [2], this algorithm is useful in the not uncommon cases where the
matrix of the problem is not far from orthogonality. It is based on a matrix
version of Newton's iteration with acceleration that minimizes the largest
singular value of a matrix and maps it into the largest singular value of its
iterate. The convergence of this "£2 iteration" is monotonic, a property es­
pecially desirable in the context of software development. Unfortunately, the
determination of the optimum acceleration parameter requires evaluations
of matrix £2 norms, which is not a simple problem. A few ways to approx­
imate these norms prove to be adequate in practice, but without guarantee
of monotonicity.

In [5], Kenney and Laub report satisfactory results from experiments
with a rough approximation to the £2 acceleration parameter obtained by
substituting Frobenius norms for £2 norms. It is shown here that there are
good reasons for these results to be satisfactory, namely that this Frobenius
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iteration (1) is optimum in its own right, (2) is monotonic for the associated
norm, and (3) converges as fast as the £2 iteration. Since the Frobenius norm
is easily computed, monotonicity can be exploited for software implementa­
tion. The material is organized as follows. Section 2 summarizes previous
work and basic properties of Newton's iteration with acceleration. Section
3 provides an analysis of the Frobenius iteration, including a proof that it
converges as fast as its £2 counterpart. Finally, an efficient algorithm for
software development is discussed in Section 4.

The numerical experiments for this paper were conducted on a Hewlett­
Packard Vectra VL2 personal computer with MATLAB (Student Version)
and APLi386 from Iverson Software Inc.

2 Background

The iterative computation of the orthogonal polar factor of a nonsingular
matrix A E nnxn by Newton's iteration [3] is defined by

X(O) = A, (2.1)

(2.2)

X(k) converges to the unique orthogonal matrix X such that

A = X M, X
T = x-I, M = M T

, w T Mw > 0 Vw =I- O.

The iteration transforms the singular values of X(k) according to

(k+I) = ~ ( (k) + _1_)
a) 2 a) (k)' i = 1, ... ,n,

aj

and leaves the singular vectors invariant. From equation (2.2), it is easy to
show that convergence of the singular values to unity is quadratic, mono­
tonic, and with preservation of order for k ~ 1:

Vj k '? 1,

(HI) _ 1 __1_ ( (k) _ 1)2
a) - (k) a) ,

2a·
)

a}k) ~ ay) ::} a}kH) ~ a)HI).

Iteration (2.2) is the arithmetic-harmonic-mean algorithm applied to recip­
rocal initial values [1]. The distance between two successive matrix iterates
is directly related to departure from orthogonality:

X(k) _ X(k+I) = ~ (X(k) _ X(k)-T) .
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Factoring the right-hand side to extract X(k) and taking norms, we get

II X(k) X(k+1) II 1- < _II I - (X(k)T X(k»)-l II.
II X(k) II - 2

Kenney and Laub [5] show that

where X is the limit of X(k). This inequality allows for the computation of
bounds on the distance of the iterate to the solution.

To accelerate convergence, scaling can be used at each iteration,

,k > 0,

i = 1, ... ,no

and the equation for the singular values becomes:

0'(k+1) = ~ ( (k)O'(k) + 1 )
) 2') (k) (k) ,

, O'j

The salient properties of this modified iteration are summarized below.
The singular values converge to unity from above after the first iteration,

O'Jk) ~ 1 'V k ~ 1,

and those satisfying the inequality

O'(k) > _1_ > 1
) - V,(k) -

enjoy accelerated convergence:

1 (k) (k)_)2 _1_( (k)_ )2
k (k) , O'j 1 ~ (k) 0') 1.

2...,,( )0'. 20'·
I ) )

(2.3)

Finally, the order of a pair of singular values {oy) ,O'y)} is preserved by the
iteration under the following condition:

(k) (k) 1
«: O'j ~ ,(k)2

Using this property for

1\

O'(k) = II X(k)-T 11-1m,n 2 ,
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we get the condition for the iteration to map the largest singular value of
X(k) into that of X(k+l):

1
(k) (k)

(1max (1min

,(k) ~ -r==;===:===

From inequality (2.3), such a value of ,(k) also produces accelerated conver­

gence for the singular values not smaller than 4 (1~lx (1~]n' In particular,
the choice

1
(k) (k)'

(1max (1min

(2.4)

which minimizes the £2 bound

results in monotonic quadratic convergence for the £2 norm of the iterate.
This "£2 iteration" confiates the smallest and largest singular values of X(k)

into the largest singular value of X(k+l) ,

(

(k)
(k+l) _ ~ (1max +

(1max - 2 (k)
(1min

(1~ln )
(k) ,

(1max
(2.5)

It follows that the limit, which is characterized by the equality of all the
singular values, is reached in at most n iterations [5]. For large matrices,
this bound is grossly pessimistic, as shown by a finer analysis of convergence
[5] and experiments with simple estimates of the optimum (2.4). It is easy to
show from equation (2.5) that the £2 iteration is monotonic for the associated
norm:

(1(k+l) < (1(k)
max - max'

The implementation in [3], which uses the approximation

-(k) _ 4 II X(k)-T lit II X(k)-I 11=
'2 - II X(k) III II X(k) 11= (2.6)

to ,~k), delivers an IEEE double-precision solution in about ten or fewer
iterations. One can explain this behavior by using a bound in [5] on the
distance of the £2 iterate to the limit for invertible matrices with maximum
condition number.

The condition

(2.7)
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terminates the computation, where {j > 0 is a constant of the order of ma­
chine precision. In the following, we refer to this iteration as the "quasi-z-,"
iteration.

In practice, little speed of convergence is lost by using an approximate
form of the £2 iteration. What is lost is the important property of mono­
tonicity, which is very useful for iteration control. Unfortunately, a true £2
implementation of the iteration is not practical at all, and the design of a
quasi-£2 iteration preserving monotonicity seems far from trivial. No such
impediment exists for the Frobenius iteration analyzed in the next section.

3 Iteration in the Frobenius norm

In [5], Kenney and Laub report good results with a Frobenius approximation

of the £2 optimum value of the acceleration parameter ,~k). It is shown in
this section that this approximation is actually an optimal choice for the
Frobenius norm, and that the corresponding iteration converges as fast as
the £2 iteration.

By squaring equation (2.2),

U(k+1)2 = !. (2 + (k)2 U(k)2 + 1 )
J 4 'J (k)2 (k)2 '

, Uj

and summing with respect to i, we get

II X(k+t) II} = l (2n + ,(k)2 II X(k) II}+ ,(~)2 II X(k)-T II}) .

Hence, the Frobenius norm of the iterate is minimized by the choice

II X(k)-T IIF
II X(k) IIF

(3.1)

for the acceleration parameter ,(k), which is the value used in [5] as an

approximation to ,~k). The associated norm of the iterate is given by

II X(k+1) II} = ~ (n + II X(k) IIF II X(k)-T IIF) . (3.2)

We shall refer to this iteration as the "Frobenius iteration." Before getting
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any further in its analysis, we derive the following useful inequalities:

ylnO"~]n ~ II X(k) IIF ~ ylnO"~lx,

yin (k)-T yin
(k) s IIX IIF ~ (k)'
O"max O"min

(k)
n ~ II X(k)-T IIF II X(k) IIF ~ n O"~)x ,

O"min

V k ~ 1.

Using these inequalities and equation (3.2), we establish monotonic conver­
gence:

n~ II X(k+ 1
) II} ~ ~ (n + II X(k) II}) ~ II X(k) II}·

Numerical experiments comparing the Frobenius and £2 iterations in­
dicate that the rates of convergence are practically identical. The analysis
below, which explains such observations, shows that the two algorithms have
essentially the same properties and differ only by details of metrics with little
impact on practical computations. For example, the £2 iteration minimizes
the maximum singular value of its iterate, while the Frobenius iteration min­
imizes the "mean singular value" derived from the associated norm (3.2):

II X(k+ 1) IIF 1 ( II X(k) IIF II X(k)-T IIF) 1/2

yin = -.j2 1 + '-'-V[---::(==--'n)=- V[n) (3.3)

There is also much similarity to be found in the formulas expressing the
norms of both types of iterates. In the following, we show that the mean
singular value of the Frobenius iterate converges "as fast" as the largest
singular value of the £2 iterate, as defined in the following theorem.

Theorem 3.1 The mean singular value (3.3) of the Frobenius iterate of a
matrix is bounded above by the maximum singular value of the £2 iterate of
the same matrix.

Proof Let Y E nnxn be a given matrix with singular values 0"1 ~ 0"2 ~

... ~ O"n ~ 1, to which the Frobenius and £2 iterations are applied. From
equations (3.2) and (2.5), the theorem is expressed by the inequality

1 En 1 En 2 1 (0"1 O"n)2
- - 0"'<- -+-2 2 J -
n i=l O"i j=l 4 O"n 0"1
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We first derive an upper bound for the left-hand side of this inequality. For
the reciprocal of the Frobenius acceleration parameter

A= IIYIIF
lI y - T IIF'

we note that the replacement of any singular value smaller than A with
a lower value increases the left-hand side of inequality (3.4), and that the
replacement of any singular value greater than A with a larger value has
a similar effect. Based on this property, we obtain our upper bound by
substituting Un for the m singular values less than A and U1 for the others",
which yields a sufficient condition for inequality (3.4):

~ (~ + n -2m
) [mu~ +(n _ m)ui] < ! (U1+Un)2

n Un U 1 - 4 Un U1

A little algebra reduces this condition to

( 2 2)2 2 U 1 Un2(n - 2m) ~ (n - 2m) - + -
u2 u2

n 1

2 2
which is always verified since u; + u~ 2:: 2. •

un U1
In sum, the Frobenius and '-2 norms converge equally fast under the

Frobenius and '-2 iterations, and both iterations are optimum for their own
metrics. In practice, the substantial advantage of the Frobenius iteration
is found in the low-cost computability of the associated norm, which allows
properties such as monotonicity to be used for efficient and precise iteration
control.

4 Implementation

Without loss of generality, we assume that A E R n x n is nonsingular-a
singularity could be handled as suggested in [4]. Using the same notation
as in the previous sections, we describe the implementation of the Frobenius
iteration as follows, where c designates machine precision:

Algorithm 4.1 Frobenius iteration (k » 1)

Step 1: QR decomposition X(k) = Q(k) R(k)

Step 2: if II R(k) IIF 2:: II R(k-1) IIF or

lThese substitutions change ,\ but not m, which is the variable pertinent to the proof.
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if II R(k) IIF ~ (1 + c)vn,

otherwise, proceed to Step 3

end the computation

Step 3: I};) = II R(k)-T IIF
II R(k) IIF '

X(k+ 1) = ~ (,(k) X(k) +Q(k) _l_R (k)- T )
2 F (k)

IF
return to Step 1.

In Step 2, the computation is ended when the norm of the iterate no longer
decreases, thereby guaranteeing termination independently of machine arith­
metic, and precisely when no further improvement should be expected. The
iteration is also terminated when the norm of the iterate is sufficiently close
to the limit, which usually saves one iteration. These tests are bypassed for
the first iteration (k = 1) unless the singular values of A are known to be
greater than unity.

To reduce computational overhead, all Frobenius norms are evaluated as
norms of triangular matrices since

Q(k), which results from Householder triangularization, is not actually com­
puted, but is represented by the (n - 1) vectors that define the associated
elementary reflectors.

Numerical experiments were performed to compare the Frobenius and
quasi-Z, algorithms for a wide variety of matrices with assigned singular
values, including those cited in [3] and [5]. They show that the former is
in general more economical by one iteration because the distance between
successive iterates in test (2.7) substantially overestimates the distance to the
limit. For 8 = ne , both methods deliver results accurate to about machine
precision, as measured by II I - XT X II and II XT A - ATXliII XT All-I.

Finally, the Frobenius iteration was found preferable from a viewpoint
of memory management because its convergence test does not require access
to two successive matrix iterates.

5 Conclusion

The Frobenius iteration presented here is a much preferable substitute for
quasi-i2 iterations, for reasons both aesthetic and practical: it converges as
fast as a true '-2 iteration and enjoys the same properties of monotonicity
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without the computational complexity. Its use of monotonicity rather than
negligibility as a criterion for iteration control is intellectally more pleasing,
easier to implement in software applications, and more effective.

Although the implementation recommended in Section 4 does not sub­
stantially change the order of the operation count of current practice, it still
reduces computational complexity and overhead, simplifies program devel­
opment and usage, and restricts the number of iterations to the necessary
minimum. In addition, it easily lends itself to the type of modification for
rank-deficient matrices discussed in [4].
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