
r£3 HEWLETT
....,.... PACKARD

,

A Transform Domain Approach
to Spatial Domain Image

Neri Merhav, HP Israel Science! Center*
Vasudev Bhaskaran, Computer ISystems Laboratory
HPL-94-116
December, 1994

scaling, DeT,
DCTdomain
processing

Straig tforward techniques for processing compressed image or video
data a e computationally expensive. For example, let us consider the
followi g problem: an image is compressed using a DCT based method
and it required to generate another compressed stream which when
decom ressed yields an image that is scaled down (decimated) by a
factor ()f 2 relative to the input image.

A brute-force solution to this problem would consist of decompressing
the compressed data, performing a decimation operation in the spatial
domain followed by computing a new compressed stream. In this
document, we describe an alternative approach, wherein, the
comprassed stream is processed in the compressed domain without
explieifly performing the decompression and spatial domain scaling so
that t~e resulting compressed stream yields the "scaled-down" image
after decompression. It should be noted that the main constraint in the
scaling! algorithm is that the modified transform-domain data has to
conform to the syntax of the basic computation unit for transform
coding] namely, the algorithm should produce 8 x 8 matrices of DCT
coefficients, We shall describe in detail computation schemes for scaling
factorslof 2, 3 and 4, which are all based on the same elementary idea.

The proposed method is applicable to JPEG, MPEG and H.261
compressed data and in general to any DCT based compression method.
Worst-ease estimates of the reduction in computational complexity are
37% fot a scaling factor of 2, 390AI for a factor of 3, and about 50% for a
factor ~f 4. For typical sparse DCT matrices, i.e., DCT matrices for
which only the top left 4 x 4 submatrix has non-zero elements, the
compujation savings can be as much as 80%. Furthermore, by
restricing the decimation process to the compressed domain, the signal
qualit of the decimated signal is improved by 25·30% compared with
the b te-force approach.

*Technion City, Haifa 32000, Israel
© Copyright Hewlett-Packard Compa y 1994

Internal Accession Date Only

--- .--------_.------------------~--_ .._----_._------ -------_.._-------

1. Introduction

Many video compression methods, like MPEG and H.261, use transform domain techniques,

in particular, the discrete cosine transform (DCT). Certain applications require real time

manipulation of digital video in order to implement image composition and special effects,

e.g., scaling (zooming in or out), modifying contrast and brightness, translating, filtering,

masking, rotation, motion compensation, etc. There are two major difficulties encountered

in this class of tasks: the computational complexity of image compression and decompres

sion, and the high rates of the data to be manipulated. These difficulties rule out the

possibility of running, on currently existing workstations, the traditional algorithms that

first decompress the data, then perform one of these manipulations in the decompressed

domain, and finally, compress again if necessary. For this reason there has been a great

effort in recent years to develop fast algorithms that perform these tasks directly in the

transform domain (see e.g., [2]' [3], [4] and references therein) and thereby avoid the need of

decompression, or at least its computational bottle neck - the inverse DCT (IDCT) which

requires 38.7% of the execution time on a PA-RISC workstation [1].

As an example, consider a video conferencing session of several parties, where each one

of them can see everybody else in a separate window on his screen. Every user would like to

have the flexibility to resize windows, move them from one location on the screen to another,

and so on. Since each workstation is capable of handling one video stream only, the server

must compose the streams from I parties to a single stream whose architecture depends

on the user's requests. If one us r wishes, say, to scale down by a factor of 2 a window

corresponding to another user and move it to a different place on the screen, this might affect

the entire image. The tradition and expensive approach would be that all compressed

video streams are first decompre sed at the server, then the desired change is translated

2

into a suitable arithmetic operation on the decompressed video streams with the appropriate

composition into a single stream, and finally, the composite stream is compressed again and

sent to the user. A great deal of the computational load is in the DCT and IDCT operations

and this drives us to seek fast algorithms that perform the desired modification directly in

the DCT domain.

In this work, we focus on speeding up the operations of scaling down 1 by factors of 2,3

and 4, as compared to the traditional approach. Since the scaling transformation is linear,

the overall effect in the DCT domain is linear as well and hence the basic operation can

be represented as multiplication by a fixed matrix. Fast multiplication by this matrix is

possible if it can be factorized into a product of sparse matrices whose entries are mostly 0,

1 and -1. We will demonstrate that this can be done efficiently by taking advantage of the

factorizations of the DCT and IDCT operation matrices that correspond to the fast 8-point

DCT/IDCT due to Arai, Agui, and Nakajima [5] (see also [6]).

The resulting schemes for scaling save about 37% of the computations for a scaling

factor of 2, 39% for scaling by 3, and 50% for a factor of 4. Here the term "computation"

corresponds to the basic arithmetic operation of the PA-RISC processor which is either

"shift", "add", or "shift and add" (SHIADD, SH2ADD, and SH3ADD). These are 'worst-

case' estimates in the sense that nothing is assumed on sparseness in the DCT domain.

Typically, in a considerably large percentage of the DCT blocks all the DCT coefficients

are zero except for the upper left 4 x 4 quadrant that corresponds to low frequencies in

both vertical and horizontal directions. If this fact is taken into account, then computation

reductions can reach about 80%.

Another advantage of the pr posed method is that it improves the precision of the

lIn this document, the term "scalin down by a factor x" means that if the input image resolution is
M X N pixels, then after scaling it is (Ix) x (Nix).

3

computations as compared to the traditional approach. The reason for this will become

apparent later on when we describe the method in detail. The degree of improvement in

precision varies between 1.5-3dB.

2. Preliminaries and Problem Description

The 8 x 8 2D-DCT transforms a block {x(n, m)}~,m=O in the spatial domain into a matrix

of frequency components {X(k, l)}k,1=0 according to the following equation

X(k I) c(k) c(l) ~ ~ () (2n + 1 k) (2m + 1 I), = -2--2 L..J L..J x n, m cos . 1T' cos . 1T'
n=Om=O 16 16

where c(O) = 1/V2 and c(k) = 1for k > O. The inverse transform is given by

(1)

x(n, m) = i: i: c(k) c(l) X(k, I)cos(2n+ 1 . k1T') cos(2m + 1 ·11T'). (2)
k=O 1=0 2 2 16 16

In a matrix form, let x = {x(n, m)}~,m=o and X = {X(k, l)H,I=O. Define the 8-point DCT

matrix S = {s(k,n)}k,n=o' where

c(k) 2n + 1
s(k, n) = -2- cos(16 . k1T').

Then,

X = ses'

(3)

(4)

where the superscript t denotes matrix transposition. Similarly, let the superscript -t

denote transposition of the inverse. Then,

(5)

where the second equality follows from the orthonormality of S.

Now, suppose we are given fout adjacent 8 x 8 spatial domain data blocks Xl, X2, X3, and

X4 that together form a 16 x 16 square, where Xl corresponds to northwest, X2 to northeast,

4

X3 to southwest and X4 to southeast. Scaling down (decimation) by a factor of 2 in each

dimension means that every nonoverlapping group of 4 pixels forming a small 2 x 2 block

is replaced by one pixel whose intensity is the average of the 4 original pixels. As a result,

the original blocks Xl, ... , X4 are replaced by a single 8 x 8 output block X corresponding to

the decimation of Xl, ... , X4. Our task is to calculate efficiently X, the DCT of x, directly

from the given nCT's of the original blocks Xl,X2,X3 , and X 4 •

The problems of scaling down by a factor of 3 and 4 are defined similarly, where the

number of input blocks is 9 and 16, respectively, and the blocks Xl, X2, .•• are indexed in a

raster scan order. Similarly, as in the case of a factor of 2, here every nonoverlapping group

of 3 x 3 pixels for the case of scaling by 3, and 4 x 4 pixels for the case of scaling by 4, are

replaced by their average, and the output is one nCT block that will be denoted always by

X. Note, that the case of a factor 3 is somewhat more involved because some of the 3 x 3

groups to be averaged are not entirely within the same 8 x 8 block.

3. The Basic Idea

For the sake of simplicity, let us confine attention first to the one dimensional case and

decimation by 2. The two dimensional case will be a repeated application for every row and

then for every column of each block. In this case, we are given two 8-dimensional vectors

X 1 and X 2 of DCT coefficients corresponding to adjacent time domain vectors of length 8,

Xl = 8-1X 1 and X2 = 8-1X 2 , and we wish to calculate X, the neT ofthe 8-dimensional

vector x, whose each component is the average of the two appropriate adjacent components

It is convenient to describe the decimation operation in a matrix form as follows.

(6)

5

where
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0

Ql=
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

and
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Q2=
0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

Therefore,

1
(7)X = 2"(SQlS-lXl +SQ2S-1X2).

We shall now focus on efficient factorizations of the matrices Ui = SQ1S-l and U2 =

SQ2S-1. To this end, we shall use a factorization of S that corresponds to the fastest

existing algorithm for 8-point DCT due to Arai, Agui, and Nakajima [5] (see also [6]).

According to this factorization S is represented as follows.

S = DPBIB2MAIA2A3 (8)

where D is a diagonal matrix given by

D = diag{0.3536, 0.254~, 0.2706, 0.3007, 0.3536, 0.4500, 0.6533, 1.2814}, (9)

P is a permutation matrix given by

1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0

P=
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0

6

and the remaining matrices are defined as follows:

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

B1=
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 -1 0
0 0 0 0 -1 0 0 1

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0

B2=
0 0 -1 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 -1 0 1

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0.7071 0 0 0 0 0

M= 0 0 0 1 0 0 0 0
0 0 0 0 -0.9239 0 -0.3827 0
0 0 0 0 0 0.7071 0 0
0 0 0 0 -0.3827 0 0.9239 0
0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0
1 -1 0 0 0 0 0 0
0 0 1 1 0 0 0 0

A1 = 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 -1 0 0 0 0 0

A2= 1 0 0 -1 0 0 0 0
0 0 0 0 -1 -1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

7

~ 0 0 0 0 0 0 1
d 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0

A3 =
0 0 0 1 1 0 0 0
0 0 0 1 -1 0 0 0
0 0 1 0 0 -1 0 0
a 1 0 0 0 0 -1 0
] 0 0 0 0 0 0 -1

Thus, for i = 1,2 we have

U, = SQiS-1 = DPBIB2MAIA2A3QiA31A21A11M-lB21Bllp-lD-1 (10)

The proposed decimation algorithm is based on the observation that the products

i = 1,2 (11)

are fairly sparse matrices, and most of the corresponding elements are the same, sometimes

with a different sign. This means that their sum F+ = F1 + F2 and their difference F_ =

F1 - F2 are even sparser. These matrices are given as follows.

2 0 0 0 0 0 0 0
0 0 2.8281 0 0 0 0 0
0 0 0 0 0 0 0 0

F+=
0 0 0 0 0 0 0 0
0 0 0 0 -0.7071 0 0.7071 0
0 0 0 0 0 0 0 0
0 0 0 0 0.2930 0 -0.7071 0
0 0 0 0 -0.3750 0 0.9219 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0.7617 0 1.8477 0

F_ =
0 0 0 0 -0.7617 0 1.8477 0

0.5391 0 0 0 0 0 0 0
0.7071 0 -1 0 0 0 0 0
1.2969 0 0 0 0 0 0 0
0.5000 0 0.7071 0 0 0 0 0

Finally, we use the following simple relation:

1
X = 2(U1Xl + U2 X2)

1
= 4[(U1+ U2)(Xl + X2) + (Ul - U2)(X1 - X2)]

8

1 '
= 4DPB~B2[F+B2IBllp-ID-I(XI +X2) +

F_B:;IBllp-ID-I(XI - X 2)] (12)

Let us count the number of basic arithmetic operations on the PA-RISC processor that

are needed to implement the right-most side of (12) and compare it to the spatial domain

approach. As explained in the introduction, here the term "operation" corresponds to the

elementary arithmetic computation of the PA-RISC processor which is either "shift", "add",

or "shift and add" (SH1ADD, SH2ADD, and SH3ADD). For example, the computation

z = 1.375x +1.125y is implemented as follows: First, we compute u = x +O.5x (SH1ADD),

then v = x + O.25u (SH2ADD), afterwards w = v + y (ADD), and finally, z = w + O.125y

(SH3ADD). Thus, overall 4 basicoperations are needed.

When counting the operations, we will use the fact that multiplications by D and D-I

can be ignored because these can be absorbed in the MPEG quantizer and dequantizer,

respectively. The matrices P and p-l cause only changes in the order of the components

so they can be ignored as well. Thus we are left with the following (in parentheses, we de-

tail also the number of additions/subtractions and the number of nontrivial multiplications):

Creating X I + X 2 and X I - X 2: 16 operations (16 additions).

Two multiplications by B l l : 16 operations (8 additions).

Two multiplications by B21: 16 operations (8 additions).

Multiplication by F+: 23 operati~s (5 multiplications + 5 additions).

Multiplication by F_: 28 operations (6 multiplications + 4 additions).
I

Adding the products: 8 operation (8 additions).

Multiplication by B 2 : 40peratio (4 additions).

Multiplication by B1: 4 operatio (4 additions).

9

Total: 115 operations (11 multiplications + 57 additions).

In the spatial domain approach, on the other hand, we have the following:

Two IDCT's: 114 operations (10 multiplications + 60 additions).

Decimation in time domain: 8 operations (8 additions).

DCT: 42 operations (5 multiplications + 30 additions).

Total: 164 operations (15 multiplications + 98 additions).

It turns out, as can be seen, that the proposed approach saves about 30% of the opera

tions in the one-dimensional case. We shall see later on, in the two-dimensional case, that

by using the same ideas, we obtain even greater reductions in complexity.

As a byproduct of the proposed approach, it should be noted that arithmetic precision

is gained. Since in the direct approach, we actually multiply by each one of the matrices on

right hand side of (11) one at a time, then roundoff errors, associated with finite word length

representations of the elements of these matrices, accumulate in each step. On the other

hand, in the proposed approach, we can precompute F; once and for all to any desired degree

of precision, and then round off each element of these matrices to the allowed precision. The

latter has, of course, better precision. More details will be provided in Section 5.

4. The Two-dimensional Case

Let us now return to the two dimensional case. A 2D-DCT is just 1D-DCT applied to

every column and every row of the spatial domain block. Therefore, the very same ideas

can be applied to the two dimensional case as well. In this section we describe in detail the

10

computation schemes for scaling ~own by a factor of 2, 3, and 4.

4.1 Scaling by 2

Similarly as in the one dimensional case, we have in the spatial domain

and therefore, in the frequency dornain,

I

X = ~(UIXI~f + UIX2U~ + U2X3Uf + U2X4U~)

(13)

(14)

Again, we would like to express the right-hand side of (14) in terms of U+ = UI + U2 =

end, let us define

(15)

(16)

(17)

and

(18)

Note that to create all these linear combinations, we need only 8 (and not 12) addi-

tions/subtractions per frequency component: We first compute Xl ± X2 and X3 ± X 4

rewritten as

1 (tX = 16 U+X+++U+ + U_

1
= 16DPBIB2·

[(F+BiIBllp-ID-1 X ++ +F_BiIBllp-ID-IX+__)D-tp-tBltBitF~ +

11

(19)

If we count the the number of operations associated with the implementation of the right

most side of eq. (19) (similarly as in the previous section), we find that the total is 2824.

The traditional approach, on the other hand, requires 4512 operations. This means that

37.4% of the operations are saved.

Additional savings in computations can be made by taking advantage of the fact that in

typical images most of the DCT blocks Xi have only a few nonzero coefficients, normally,

the low frequency coefficients. A reasonable possibility might be to use a mechanism that

operates in two steps. In the first step, DCT blocks are classified as being lowpass or

nonlowpass, where the former is defined as a block where, say, only the upper left 4 x 4

subblock is nonzero. The second step uses either the computation scheme described above

for nonlowpass blocks, or a faster scheme that utilizes the lowpass assumption for the

precomputation of the above matrix multiplications. It turns out that if Xl, ..., X 4 are

all lowpass blocks, then the reduction in computations is about 80%. The same idea is of

course applicable to scalings by 4 and by 3 described below.

4.2 Scaling by 4

One approach for scaling by 4, is to scale twice by 2. However, it turns out that by using

the same methods, we can develop a more efficient scheme for scaling directly by 4.

12

Scaling by 4, involves the folldwing decimation matrices:

1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0

Q3=
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0

Q4=
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Q5=
0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Q6=
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

and

1
Q~ + Q3Z2Qi + Q3Z3Q~ + Q3Z4Q~ +Z - 16 (Q3Z

!

Q4Z5Q~I+ Q4Z6Qi + Q4Z7Q~ + Q4Z8Q~ +
!

Q5Z9Q~ + Q5ZlOQi + Q5Z11Q~ + Q5Z12Q~ +

Q6Z13Q + Q6Z14Qi + Q6Z15Q~ + Q6Z16Q~) (20)

13

Next, define

and

We shall also define the following! linear combinations on the input data

where i = 1,2,3,4,

.xttr - X· +++ + x+++ + x+++ + x++++++ - . 1 2 3 4

14

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

and similar definitions for the su~erscriPts+ - -, - + -, and - - +. To create all these

combinations we need 64 additions/subtractions per frequency component. Now, similarly

as in (19):

1 Ii

X = -DPBIB2 • I
256 '

[H B-1B-1 \ -1tr:'
+++ 2 1 t .

(xtttD-tp-thItBitH~+++ Xt~~D-tp-tBItBitH~__ +

x+++tr:'p-t tr-!e:'H t + x+++tr:'p-te:'e:'H t) +-+- -'-'11 2 -+- --+ 1 2 --+

(x +- - tr'r:' h-ts:'H t + X+-- tr'p-te:'e:'H t ++++ ~1 2 +++ +-- 1 2 +--

x+--tr"p-tn:'s:'H t + X+--tr'p-ts:'s:'H t) +-+- 1 2 -+- --+ 1 2 --+

(X - +- tr'p-t b-te:'H t + X-+- tr:'p-tn:'n:'H t ++++ ~1 2 +++ +-- 1 2 +--

X-+-tr"r:' ~-ts:'H t + X-+- tr'p-ts:'n:'H t) +-+- ...,~ 2 -+- --+ 1 2 --+

(X - - +tr'p-t Jb,-tn:'H t + X--+ tr'r:'e:'s:'H t ++++ ~1 2 +++ +-- 1 2 +--

X--+ tr:'r:'BI
-
te:'u: + X--+tr"r:'n:'B-tn:)] .-+- [2 -+- --+ 1 2 --+

(37)

The number of operations in implementing this formula is 8224 as compared to 16224 in

the traditional approach.

4.3 Scaling by 3

The factor of 3 is more problematic and less elegant than the factors of 2 and 4 because
I!

some of the 3 x 3 blocks to be averaged are not entirely within one 8 x 8 DCT block. In

15

this case we have three types of 4ecimation matrices:

1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1

i 0 0 0 0 0 0 0 0
Q7=

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

Qs=
0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Qg=
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1

and

~ (t t Q Qtx = 9" Q7XI Q7 + Q7X2Q S + 7X3 9

qSX4Q~ + QSX5Q~ + QSX6Qt

qgx7Q~+ QgxsQ~ + QgxgQt)

(38)

Similarly as in the cases of a factor of 2 and 4, we now define

T I= AIA2A3Q7A3"1 A2"1AllM- I (39)

T2 = A IA2A3QsA3"1A2"1AllM- I (40)

T3 = A IA2A3QgA3"1A2"lAllM-1 (41)

16

The computation scheme is based on the fact that the matrices

(42)

(43)

and

(44)

are relatively sparse, and on the identity

If we transform eq. (38) to the ncr domain and express the fixed matrices in terms of

T, T+, and T_, using eq. (45), ~e get, after some algebraic manipulations, the following

computation formula:

where

X' =1 X s

(46)

(47)

X'2
1

= -(X42

17

(48)

X~ = X4-X~ (49)

X'
1

(50)4 = 2(X2 + X s) - x,

X~ ! [(Xl+X7 _X4)+(X3+
X

9 -X6)] -X~ (51)
222

X~
(Xl + ~7 _ X 4) _ (X3+ Xg _ X

6
) (52)

2 2

X~ = X2-~S (53)

X~ = ~(Xl -iX7 + X3 - Xg) - X~ (54)

(55)X'9 Xl - 47 - X 3 + X 9

I
The transformation from {Xl, ...~Xg} to {X~, ...,X~} can be done in 18 operations per

frequency component. The total ,umber of operations associated with the implementation
i

of eq. (46) is 5728. On the other land, the number of operations associated with the tradi-

tional spatial domain approach is 9392, that is, the reduction in the number of computations

is about 39%.

5. Arithmetic Precision

As explained in the last paragraph of Section 3, the proposed computation scheme provides

better arithmetic accuracy than the standard approach. To demonstrate this fact we have

tested both schemes for the case of scaling by 2, where each element in each of the above

defined fixed matrices is represented by 8 bits.

In the first experiment, we have the chosen the elements of Xl, ... , X4 as statistically

independent random integers uniformly distributed in the set {O, 1, ..., 255}. We first com-
I

puted X (and then X) directly fr m Xl, ... , X4 for reference. We then computed the DCT's

Xl, '00' X 4 where all DCT coeffi ents are quantized and then dequantized according to a

given quantization matrix ~. Fro Xl, ..., X 4, we have computed X using both the stan-

dard approach and the proposed proach, and compared to the reference version, where the

18

i
precision in each approach was ~asured in terms of the sum of squares of errors (MSE)

in the OCT domain (and hence also in the spatial domain). For the case where ~ was

an all-one matrix, the MSE of tht proposed approach was about 3dB better than that of

the standard approach. For the c*e where ~ was the recommended quantization matrix of

I
JPEG for luminance [6, p. 37], th~ proposed approach outperformed the standard approach

by 1.2dB. These results are reasonable because when the step sizes of the quantizer increase,

quantization errors associated wi~h the OCT coefficients tend to dominate roundoff errors

associated with inaccurate computations,

The second experiment was similar but that test data that was a real image ("Lenna")

rather than random data. Now, f«l>r the case where L\ was the all-one matrix, the standard

approach yielded SNR of 46.08dB !while the proposed approach gave 49.24dB, which is again

a 3dB improvement. For the case where ~ was the JPEG default quantizer, the figures

were 36.63dB and 36.84dB, respectively, Here the degree of improvement is less than in

the case of random data because most of the OCT coefficients are rounded to zero in both

techniques.

19

References

[1] R. B. Lee et al., "Achieving Realtime Software MPEG Decompression on a Multimedia

Enhanced PA-RISC Processo ," . Proc. Hewlett-Packard Image and Data Compression

Conference, Palo Alto, Calif nia, May 1994.

Based Images," Proc. ICASSP '93, Minneapolis, Apriling Motion-Compensated D

1993.

[2] S.-F. Chang and D. G. Mess schmitt, "A New Approach to Decoding and Composit-

[3] W. Kou and T. Fjalbrant, "1A. Direct Computation of DCT Coefficients for a Signal

Block Taken from Two Adjacent Blocks," IEEE Trans. Signal Proc., Vol. SP-39, pp.

1692-1695, July 1991.

[4] J. B. Lee and B. G. Lee, "Transform Domain Filtering Based on Pipelining Structure,"

IEEE Trans. Signal Proc., Vbl. SP-40, pp. 2061-2064, August 1992.

[5] Y. Arai, T. Agui, and M. Nakajima, "A Fast DCT-SQ Scheme for Images," Trans. of

the IEICE, E 71(11):1095, November 1988.

[6] W. B. Pennebaker and J. L. Mitchell, JPEa Still Image Data Compression Standard,

Van Nostrand Reinhold, 199$.

20

