
Fli;' HEWLETT
a:~ PACKARD

Iterative Modulo Scheduling

B. Ramakrishna Rau
Compiler and Architecture Research
HPL-94-115
November, 1995

modulo scheduling,
instruction scheduling,
software pipelining,
loop scheduling

Modulo scheduling is a framework within which
algorithms for the software pipelining of innermost
loops may be defined. The framework specifies a set
of constraints that must be met in order to achieve a
legal modulo schedule. A wide variety of algorithms
and heuristics can be defined within this framework.
Little work has been done to evaluate and compare
alternative algorithms and heuristics for modulo
scheduling from the viewpoints of schedule quality
as well as computational complexity. This, along
with a vague and unfounded perception that modulo
scheduling is computationally expensive as well as
difficult to implement, have inhibited its
incorporation into product compilers. This report
presents iterative modulo scheduling, a practical
algorithm that is capable of dealing with realistic
machine models. The report also characterizes the
algorithm in terms of the quality of the generated
schedules as well the computational expense
incurred.

Published in The International Journal ofParallel Processing, Volume 24, Number 1. February 1996. An earlier
version of this report was published in the Proceedings a/the 27th Annual International Symposium on
Microarchitecture, San Jose, California. November 1994.

© Copyright Hewlett-Packard Company 1995

Internal Accession Date Only

1 Introduction

It is well known that there is inadequate instruction-level parallelism (ILP), as a rule, between the

operations in a single basic block and that higher levels of parallelism can only result from

exploiting the ILP between successive basic blocks. Global acyclic scheduling techniques, such as

trace scheduling [30, 45] and superblock scheduling [37], do so by moving operations from their

original basic blocks to preceding or succeeding basic blocks. In the case of loops, the successive

basic blocks correspond to the successive iterations of the loop rather than to a sequence of distinct

basic blocks.

Various cyclic scheduling schemes have been developed in order to achieve higher levels of ILP by

moving operations across iteration boundaries, i.e., either backwards to previous iterations or

forwards to succeeding iterations. One approach, "unroll-before-scheduling", is to unroll the loop

some number of times and to apply a global acyc}!c scheduling algorithm to the unrolled loop body

[30, 45, 37]. This achieves overlap between the iterations in the unrolled loop body, but still

maintains a scheduling barrier at the back-edge. The resulting performance degradation can be

reduced by increasing the extent of the unrolling, but it is at the cost of increased code size and

scheduling effort.

Software pipelining [14] refers to a class of global cyclic scheduling algorithms which impose no

such scheduling barrier". One way of performing software pipelining, the "move-then-schedule"

approach, is to move instructions, one by one, across the back-edge of the loop, in either the

forward or the backward direction [22, 23, 39, 32, 51]. This is accompanied by the appropriate

replication and unification of the operation as it moves past splits and merges in the control flow

graph. For instance, if an operation is being moved down and around the backedge (i.e., to the

next iteration), a copy of the operation must be made in the basic block following the loop as the

operation moves past the split at the end of the loop body. Furthermore, since the operation is

moved along the backedge and back into the top of the loop body, it must be matched by and

unified with a copy that moves in from the basic block just before the loop. So that such an copy

exists, the first iteration of the loop should have been peeled off. If an operation is moved down

I The original use of this term by Charlesworth was to refer to a limited form of modulo scheduling. However. current usage
of the term has broadened its meaning to the one indicated here.

- 1 -

and around the backedge N times, the first N iterations of the loop should have been peeled off.

Similar rules apply if an operation is moved speculatively up and around the backedge to a

previous iteration.

Although such code motion can yield improvements in the schedule, it is not always clear which

operations should be moved around the back edge, in which direction and how many times to get

the best results. At some point, further code motion around the back-edge will cease to improve the

schedule and, in fact, will cause problems since the register pressure will increase. But it is unclear

at what point further code motion becomes unproductive. Since we do not know what the optimal

performance is, we could well be striving in vain for improvements that are just not possible, and

we might have gone past the optimal point, resulting in reduced performance due to excessive code

motion. The process is somewhat arbitrary and reminiscent of early attempts at global acyclic

scheduling by ad hoc code motion between basic blocks [71]. On the other hand, this currently

represents the only approach to software pipe lining that at least has the potential to handle loops

containing control flow in a near-optimal fashion, and which has actually been implemented [51].

How close it gets, in practice, to the optimal has-not been studied and, in fact, for this approach,

even the notion of "optimal" has not been defined.

The other approach, the "schedule-then-move" approach, is to instead focus directly on the creation

of a schedule that maximizes performance, and to subsequently ascertain the code motions that are

implicit in the schedule. Once again, there are two ways of doing this. The first, "unroll-while­

scheduling", is to simultaneously unroll and schedule the loop until one gets to a point at which the

rest of the schedule would be a repetition of an existing portion of the schedule [3]. Instead of

further unrolling and scheduling, one can terminate the process by generating a branch back to the

beginning of the repetitive portion. Recognition of this situation requires that one maintain the state

of the scheduling process, which includes at least the following information: knowledge of how

many iterations are in execution and, for each one, which operations have been scheduled, when

their results will be available, what machine resources have been committed to their execution into

the future and are, hence, unavailable, and which register has been allocated to each result. All of

this has to be identical if one is to be able to branch back to a previously generated portion of the

schedule. Computing, recording and comparing this state presents certain engineering challenges

that have not yet been addressed by a serious implementation although the Petri net approach [56,

4] and other finite-state automata approaches [52, 55, 7] constitute possible strategies for kernel

recognition. On the other hand, by focusing solely on creating a good schedule, with no

scheduling barriers and no ad hoc, a priori decisions regarding inter-block code motion, such

- 2 -

unroll-while-scheduling schemes have the potential of yielding very good schedules even on loops

containing control flow.

Another "schedule-then-move" approach is modulo scheduling [61], a framework within which

algorithms of this kind may be defined. The framework specifies a set of constraints that must be

met in order to achieve a legal modulo schedule. The objective of modulo scheduling is to engineer

a schedule for one iteration I of the loop such that when this same schedule is repeated at regular

intervals, no intra- or inter-iteration dependence is violated, and no resource usage conflict arises

between operations of either the same or distinct iterations. This constant interval between the start

of successive iterations is termed the initiation interval (II). In contrast to unrolling

approaches, the code expansion is quite limited. In fact, with the appropriate hardware support,

there need be no code expansion whatsoever [63]. Once the modulo schedule has been created, all

the implied code motions and the complete structure of the code, including the placement and the

target of the loop-closing branch, can all be determined. (This is discussed further in Section 2.3.)

Modulo scheduling an innermost loop consists of a number of steps, only one of which is the

actual modulo scheduling process.

• In general, the body of the loop is an acyclic control flow graph. With the use of either profile

information or heuristics, only those control flow paths that are expected to be frequently

executed can be selected [43] as is done with hyperblock scheduling [48,47]. This defines a

region that is to be modulo scheduled, and which, in general, has multiple back-edges and

multiple exits.

• The early exit branches may either be retained or replaced by a pair of operations: one that sets

the loop exit predicate to true, and one that sets a steering variable to a value that uniquely

corresponds to this early exit. (By the correct use of the predicated execution capability, only

those operations that should have executed, before exiting the loop, will execute.) After exiting

the loop, a case statement on the steering variable guides flow of control to the appropriate exit

target. In a similar manner, if there are multiple branches back to the loop header, they are

coalesced by redirecting them to a single loop-closing branch [48,47].

I As we shall see shortly, in certain cases it may be benefical to unroll the loop body a few times prior to modulo
scheduling, in which case, the "single iteration" that we are discussing here may correspond to multiple iterations of the
original loop. However, unrolling is not an essential part of modulo scheduling.

- 3 -

• Within this selected region, memory reference data flow analysis and optimization are

performed in order to eliminate partially redundant loads and stores as was done in the Cydra 5

compiler [59, 20] and in subsequent research investigations [13, 21]. This can improve the

schedule either if a load is on a critical path or if the memory ports are the critical (most heavily

used) resources.

• At this point, the selected region is IF-converted [5, 54, 20], with the result that all branches to

targets within the region, except for the loop-closing branch disappear. With control flow

converted to data dependences involving predicates [64, 40, 9], the region now looks either

like a single basic block (if the early exit branches are eliminated) or like a superblock [48, 47].

In the event that the target architecture has special branch support for modulo scheduling, the

loop-closing branch is replaced by either a brtop or wtop branch [64, 40, 9], depending on

whether the loop is a DO-loop or WHILE-loop.

• Anti- and output dependences are minimized by putting the computation into the dynamic single

assignment form [59]. (This is discussed further in Section 2.5.)

• If control dependences are the limiting factor in schedule performance, they may be selectively

ignored thereby enabling speculative code motion [70, 46]. In the context of IF-converted

code, this is termed predicate lifting; the predicate is replaced by a "larger" predicate, i.e., one

that is true whenever the original one is true, but which also is true sometimes when the

original one is not.

• Critical path reduction of data and control dependences may be employed to further reduce

critical path lengths [66, 20, 67].

• Next, the lower bound on the initiation interval is computed. This is termed the minimum

initiation interval (MIl).

• If the MIl is not an integer, and if the percentage degradation in rounding it up to the next larger

integer is unacceptably high, the body of the loop may be unrolled prior to scheduling. The

extent of pre-unrolling can be computed quite easily so as to get the percentage degradation

down below some acceptable threshold. For a given non-integer MIl, f, the degree of pre­

unroll, U, is determined by computing the smallest value of U such that the sub-optimality of

the effective II, If*Ul, given by the expression (If*Ul / (f*U) - 1), is less than some threshold

of tolerable degradation (for instance, 0.05).

• At this point, the actual modulo scheduling is performed.

- 4-

• The register requirements of the modulo schedule may be reduced by performing stage

scheduling [27] which moves operations by integer multiples of II so as to reduce lifetime

lengths.

• The predicates of operations whose predicates were lifted prior to scheduling are now made as

small as possible, consistent with the schedule, in order to avoid unnecessary speculation

which can result in increased register pressure. When possible the predicate is set back to its

original value.

• If rotating registers [64, 9] are absent, the kernel (i.e., the new loop body after modulo

scheduling has been performed) is unrolled to enable modulo variable expansion [42].

• The appropriate prologue and epilogue code sequences are generated depending on whether

this is a DO-loop, WHILE-loop or a loop with early exits, and on whether predicated execution

and rotating registers are present in the hardware [63]. If there are early exit branches in the

body of the loop, the corresponding epilogues must be crafted appropriately [43]. The schedule

for the kernel may be adapted for the prologu~ and epilogues. Alternatively, the prologue and

epilogues can be scheduled along with the rest of the code surrounding the loop while honoring

the constraints imposed by the schedule for the kernel.

• Rotating register allocation [62] (or traditional register allocation if modulo variable expansion

was done) is performed for the kernel. The prologue and epilogues are treated along with the

rest of the code surrounding the loop in such a way as to honor the constraints imposed by the

register allocation for the kernel.

• Finally, if the hardware has no predicated execution capability [64, 40, 9], reverse IF­

conversion [77] is employed to regenerate control flow.

Ideally, the processor provides architectural support in the form of predicated execution,

suppression of spurious exceptions due to speculative execution, rotating registers and special

branch opcodes. These and other capabilities useful for achieving high levels of ILP have been

gathered together in HPL PlayDoh, an architecture designed to facilitate research in ILP [40].

The subject of this report is the modulo scheduling algorithm itself, which is at the heart of this

entire process. This includes the computation of the lower bound on the initiation interval. The

reader is referred to the papers cited above for a discussion of the other steps that either precede or

follow the actual scheduling.

- 5 -

Although the modulo scheduling framework was formulated over a decade ago [61], at least two

product compilers have incorporated modulo scheduling algorithms [57,20], and any number of

research papers have been written on this topic [34, 42, 70, 75, 76, 36], there exists a vague and

unfounded perception that modulo scheduling is computationally expensive, too complicated to

implement, and that the resulting schedules are sub-optimal.

In large part, this is due to the fact that there has been little work done either to thoroughly evaluate

individual algorithms and heuristics for modulo scheduling, or to compare competing alternatives,

from the viewpoints of schedule quality and computational complexity. The IMPACT group at the

University of Illinois [11, 76] has compared Cydrome's approach to modulo scheduling [20] with

the GURPR* algorithm [68] and with hierarchical scheduling [42]. Allan and her co-workers [4]

have compared iterative modulo scheduling, as described in this report and previously [60], with

the Petri Net approach to the unroll-while-schedule strategy [56].

This report makes a contribution in this direction by describing a practical modulo scheduling

algorithm which is capable of dealing with realistic machine models. Also, it reports on a detailed

evaluation of the quality of the schedules generated and the computational complexity of the

scheduling process. For lack of space, this report does not attempt to provide a comparison of the

algorithm described here to other alternative approaches for software pipelining. Also, the goal of

this report is not to justify software pipelining. The benefits of this, just as with any other compiler

optimization or transformation, are highly dependent upon the workload that is of interest. Each

compiler writer must make his or her own appraisal of the value of this capability in the context of

the expected workload.

The remainder of this report is organized as follows. Section 2 provides an introduction to the

modulo scheduling framework. Section 3 discusses the algorithms used to compute the lower

bound on the initiation interval. Section 4 describes the iterative modulo scheduling algorithm in

detail. Section 5 presents experimental data on the quality of the modulo schedules and on the

computational complexity of the algorithms used. Section 6 discusses other algorithms for modulo

scheduling and Section 7 states the conclusions.

- 6 -

2 Modulo scheduling

2.1 The dependence graph

In general, each operation in the body of the loop is dependent upon one or more operations. These

dependences may either be data dependences (flow, anti- or output) or control dependences [29,

78]. The dependences can be represented as a graph, with each operation represented by a vertex in

the graph and each dependence represented by a directed edge to an operation from the operation

upon which it is dependent. There may be multiple edges, possibly with opposite directions,

between the same pair of vertices.

Table 1: Formulae for calculating the delays on data dependence edges.

Type of dependence Delay Conservative
Delay

--
Flow dependence Latency(predecessor) Latency(predecessor)

Anti-dependence 1-Latency(successor) 0

Output dependence 1+Latency(predecessor)-Latency(successor) Latency(predecessor)

Each edge possesses an attribute, which is the delay, i.e., the minimum time interval that must

exist between the start of the predecessor operation and the start of the successor operation. In

general, this is influenced by the type of the dependence edge and the execution latencies of the two

operations as specified in Table 1. For an archetypal VLIW processor with non-unit architectural

latencies, the delay for an anti-dependence or output dependence can be negative if the latency of

the successor is sufficiently large. This is because it is only necessary that the predecessor start at

the same time as or finish before, respectively, the successor finishes. A more conservative

formula for the computation of the delay, which assumes only that the latency of the successor is

not less than 1, is also shown in Table 1. This is more appropriate for superscalar processors.

A loop contains a recurrence if an operation in one iteration of the loop has a direct or indirect

dependence upon the same operation from a previous iteration. Clearly, in the chain of

dependences between the two instances of the operation, one or more dependences must be

- 7 -

between operations that are in different iterations. We shall refer to such dependences as inter­

iteration dependences I. Dependences between operations in the same iteration are termed

intra-iteration dependences. A single notation can be used to represent both types of

dependences. The distance of a dependence is the number of iterations separating the two

operations involved. A dependence with a distance of 0 connects operations in the same iteration, a

dependence from an operation in one iteration to an operation in the next one has a distance of 1,

and so on. The dependence distance is specified as a second attribute on the edge.

The existence of a recurrence manifests itself as a circuit in the dependence graph. The sum of the

distances around the circuit must be strictly positive. A strongly connected component

(SCC) of the dependence graph is a maximal set of vertices and the edges between them such that

within this sub-graph a path exists from every vertex to every other vertex. Since every operation

on a recurrence circuit is reachable from any other operation on that circuit, they must necessarily

all be part of the same sec.

2.2 The modulo scheduling framework

If we knew the exact trip count, i.e., the actual number of iterations of the loop when executed, we

could achieve close to the best possible performance by unrolling the loop completely, treating the

resulting code as a single basic block and generating the best possible schedule. This is not a

practical strategy since we do not generally know the trip count at compile-time and, even if we

did, this completely unrolled code would usually be unacceptably large-. Instead, imagine the

following conceptual strategy. First, we unroll the loop completely. Then we schedule the code

but with two constraints:

• all iterations have identical schedules, except that

• each iteration is scheduled to start some fixed number of cycles later than the previous

iteration.

Assume that a legal schedule is obtained, somehow, that meets the above two constraints. The

fixed delay between the start of successive iterations is termed the initiation interval (II). (We

1 Such dependences are often referred to as loop-carried dependences.

2 However, if the trip count is a small compile-time constant, as often is the case, for instance, in graphics applications,
complete unrolling of the loop can be a worthwhile strategy.

- 8 -

shall return to the questions of how the II and the schedule are actually determined.) Because of the

constraints above, the schedule for the unrolled code is repetitive except for a portion at the

beginning and a portion at the end.

This repetitive portion can be re-rolled to yield a new loop which is termed the kernel. The

prologue is the code that precedes the repetitive part and the epilogue is the code following the

repetitive part. By executing the prologue, then the kernel an appropriate number of times, and

finally the epilogue, one would come close to re-creating the ideal, unconstrained schedule for the

unrolled code. If this strategy is successful, a relatively small amount of code would be able to

approximate the ideal (but impractical) strategy of unrolling the loop completely and scheduling it.

This approach to scheduling loops is modulo scheduling. The objective of modulo scheduling is to

engineer a schedule for one iteration I of the loop such that when this same schedule is repeated at

intervals of II cycles, no intra- or inter-iteration dependence is violated, and no resource usage

conflict arises between operations of either the same or distinct iterations. Since instances of the

same operation from successive iterations are scheduled II cycles apart, legality of the schedule

from a resource usage viewpoint is preserved by ensuring that, within a single iteration, no

machine resource is used at two points in time that are separated by an interval which is a multiple

of the II. In other words, within the schedule for a single iteration, the same resource is never used

more than once at the same time modulo the II. We shall refer to this as the modulo constraint

and it is from this constraint that the name modulo scheduling is derived. It is also the objective of

modulo scheduling to generate a schedule having the smallest possible II, since this is the primary

determinant of performance except in the case of very short trip counts.

2.3 Deducing the implied code motion from the modulo schedule

Let us consider more carefully how exactly the repetitive schedule is re-rolled conceptually and

how the structure of the modulo scheduled code is determined. The schedule for a single iteration

of the loop can be divided into stages consisting of II cycles each. The number of stages in one

iteration is termed the stage count (SC). Likewise, the schedule for the conceptually unrolled

loop, constrained in the manner described above, can also be divided into stages of II cycles.

During each of the first SC-l stages, a new iteration of the loop begins without the first one having

I As noted previously, due to pre-unrolling, a single iteration at this point may correspond to multiple iterations of the
original loop.

- 9 -

as yet ended. From the SC-th stage on, one iteration completes for every one that starts until the

last iteration has started. This is the repetitive part of the schedule which will be re-rolled into the

kernel. Every iteration of the kernel performs one stage each (and a different one if SC > 1) from

SC consecutive iterations of the original loop.

The schedule for the kernel is obtained from that for a single iteration of the loop by superimposing

the schedules for each stage of the latter, i.e., by wrapping around the schedule for one iteration of

the loop, modulo the II. Thus, the schedule for the kernel is exactly II cycles long. In the VLIW

case, the code for the kernel will also be exactly II instructions long. Each VLIW instruction

contains all of the operations that are scheduled in a single cycle of the kernel schedule. Note that

these operations will, in general, come from different iterations of the loop.

The last cycle of the kernel coincides with the last cycle of each stage--one stage each from SC

consecutive iterations. Assuming that the loop-closing branch has an n cycle latency, the branch

must be scheduled in the n-th last cycle of the stage in which it is scheduled. This constitutes a

scheduling contraint upon the branch operation if the stage boundaries within an iteration have

already been determined. Alternatively, the branch operation may be freely scheduled and the stage

boundaries are then uniquely determined. We shall adopt the former approach. In the event that the

II is less than n, the kernel has less than n instructions and it becomes impossible to place the

branch in the n-th last instruction. In such cases, the kernel must be unrolled enough so that the

unrolled kernel has at least n instructions. In all cases, the target of the branch operation is the first

instruction of the kernel.

By looking at the modulo schedule for a single iteration, we can decide what code motion is

implicit in the schedule that we have adopted. The operations in the stage containing the branch

operation are the only ones that have not been moved around the back-edge. All operations in

earlier (later) stages have been moved backwards (forwards) around the back-edge to a previous

(subsequent) iteration. The greater the distance of a stage from the one containing the branch, the

larger is the number of times that the operations have been moved around the back-edge. The

number of stages before (after) the one with the branch is equal to the number of iterations that

were conceptually peeled off at the end (beginning) of the loop to permit these code motions across

the back-edge. With this understanding, the code for the prologue and the epilogue(s) can be

determined.

- 10-

Thus, from the modulo schedule we get not only the desired schedule for the kernel but also the

requisite amount of iteration peeling and code motion. The important point to note is that the

requisite inter-block code motions are implicit in, and are determined by, the schedule which, in

turn, is engineered so as to directly optimize a relevant figure-of-merit such as the II. This is to be

contrasted with a philosophy in which operations are moved across the back-edge using ad hoc

heuristics, in the hope that the resulting schedule will be near-optimal.

A detailed discussion of how the prologue, kernel and epilogue are structured, with and without

predicated execution, with and without rotating registers, for DO-loops as well as for WHILE­

loops and loops with early exits is discussed by Rau, et al. [63]. If there are early exit branches in

the body of the loop, there are further subtleties in how the corresponding epilogues are crafted

[43].

2.4 The minimum initiation interval (MIl)

Modulo scheduling requires that a candidate Il-be selected before scheduling is attempted. A

smaller II corresponds to a shorter execution time. The minimum initiation interval (MIl) is

a lower bound on the smallest possible value of II for which a modulo schedule exists. The

candidate II is initially set equal to the MIl and increased until a modulo schedule is obtained. The

MIl can be determined either by a critical resource that is fully utilized or a critical chain of

dependences running through the loop iterations. The MIl can be calculated by analyzing the

computation graph for the loop body. One lower bound is derived from the resource usage

requirements of the computation. This is termed the resource-constrained MIl (ResMIl).

The recurrence-constrained MIl (RecMIl) is derived from latency calculations around

elementary circuits in the dependence graph for the loop body. The MIl must be equal to or greater

than both the ResMil and the RecMII. Thus

MIl =Max (ResMII, RecMIl).

Any legal II must be equal to or greater than the MIl. As we shall see, in the face of recurrences

and/or complex patterns of resource usage, the MIl is not necessarily an achievable lower bound.

The calculation of the ResMII and RecMII bounds are detailed in Section 3.

- 11 -

2.5 Dynamic Single Assignment

Anti- and output dependences can have an extremely detrimental effect upon the RecMII. In

particular, every operation is anti-dependent, with a dependence distance of 1, upon all the

operations that are flow dependent upon it. This is so since all of these flow dependent operations

must be issued before their common source register is overwritten by the same operation from the

next iteration. Together, these flow and anti-dependences can set up recurrence circuits in the data

dependence graph which greatly increase the RecMII.

In acyclic (loop-free) code, one can eliminate anti-dependences via a program representation

known as static single assignment (SSA) [29]. Very simply, this consists of never using the

same virtual register as a destination more than once in the entire program. Since each virtual

register has a result assigned to it exactly once, the problem of overwrites and the attendent anti­

and output dependences cannot occur. A problem arises in the case of cyclic control flow graphs.

Even after putting the code into the SSA form, we cannot avoid the fact that each time flow of

control revisits a particular operation, the same virtual register is assigned a new value.

Consequently, this operation must be made anti-dependent upon all operations that use the

previous value in the destination register.

We eliminate these anti-dependences by enhancing the concept of a virtual register. An expanded

virtual register (EVR) is an infinite, linearly ordered set of virtual registers with a special

operation, remapt), defined upon it [59]. The elements of an EVR, v, can be addressed, read,

and written as v[n], where n is any integer. For convenience, v[O] may be referred to as merely v.

The effect of remap(v) is that whatever EVR element was accessible as v[n] prior to the remap

operation will be accessible as v[n+ 1] after the remap operation. Except for registers holding loop

invariants, all registers are implicitly remapped when the loop-closing branch is taken. Although

textually it might appear that register v is being assigned to repeatedly, dynamically it is still single

assignment; a different element of the EVR is assigned to on each occasion.

A program representation is in the dynamic single assignment (DSA) form [59] if the same

virtual register (EVR element) is never assigned to more than once on any dynamic execution path.

The static code may have multiple operations with the same virtual destination register as long as

these operations are in mutually exclusive basic blocks or separated by (implicit) remap operations.

In this form, a program has no anti- or output dependences due to register usage but may possess

such dependences due to loads and stores to the same, or potentially the same, memory location.

- 12 -

Of course, as with conventional virtual registers, EVRs are a fiction that cannot be translated into

hardware. The infinite number of virtual registers in each EVR, of which there are an unlimited

number, must be mapped into a finite number of physical registers. In fact, only a finite,

contiguous set of the elements of an EVR may be expected to be live at any point in time, and only

these need to be allocated physical registers. This register allocation step will re-introduce anti­

dependences, but it must be done in such a manner as to never introduce an anti-dependence that

contradicts the schedule just created.

The rotating register file [64] is one way of directly providing hardware support for the EVR

concept. The remapping is implemented by providing a circular register file with a pointer into it

that is decremented each time a new iteration is started. Addressing into the register file is relative

to this pointer. However, EVRs are of value in the intermediate representation even when there are

no rotating registers provided in the hardware. The use of EVRs makes it possible to temporarily

ignore anti- and output dependences and thereby engineer an optimal or near-optimal modulo

schedule. Thereafter, the anti- and output dependences can be honored, without compromising the

schedule by unrolling the kernel an appropriate number of times and performing modulo variable

expansion, i.e., virtual register renaming [42]. In effect, remapping is simulated by code

replication and register renaming. Register allocation for modulo scheduled loops is discussed in

greater detail by Rau, et al. [62].

Although dynamic single assignment is generally better, it is worth noting that there are situations

in which dynamic multiple assignment is preferable despite the anti-dependences that are

introduced. If DSA is rigidly adhered to, copy operations must be introduced at the site of every <1>­

function [29], one for each predecessor block at the point of a control flow merge. (Alternatively,

when there are two predecessor basic blocks, a select operation may be used, and if there are more

than two predecessor blocks, a tree of selects must be used.)

These copy operations can increase the schedule length if they are on the critical path or if they

require the use of a critical resource. The copy operations can be eliminated by renaming the virtual

registers on the input side of the o-function to be the same as the output. Often this will not

introduce anti-dependences since the multiple static assignments are mutually exclusive. In those

cases where an anti-dependence is introduced, its effect on the schedule length can either be better

or worse than the effect of the copy operations. It is currently not well understood how this choice

should be made.

- 13 -

The important point, however, is that EVRs make it possible to retain only those anti-dependences

that are desirable from the viewpoint of schedule length. In the absence of EVRs, the loop may be

unrolled and put into the static single assignment form. If the loop is unrolled adequately, the loop­

carried anti-dependences will not degrade the schedule. Unfortunately, the extent of unrolling

required is known precisely only after modulo scheduling is performed, whereas the unrolling, if

performed, must be done before modulo scheduling.

2.6 Modelling and tracking resource usage

The resource usage of a particular opcode is specified as a list of the resources used by the

operation, and the times at which each of those resources is used relative to the time of issue of the

operation. For this purpose, we shall consider resources that are at the level of a pipeline stage of a

functional unit, a bus or a field in the instruction format. Figure la is a pictorial representation of

the resource usage behavior of a highly pipelined ALU operation, with an execution latency of four

cycles, which uses the two source operand buses on the cycle of issue, uses the two pipeline

stages of the ALU on the next two cycles, respectively, and then uses the result bus on its last

cycle of execution. Likewise, Figure 1b shows the resource usage behavior of a multiply operation

on the multplier pipeline. This method of modelling resource usage is termed a reservation table

[15].

A particular operation (opcode) may be executable in multiple ways, with a different reservation

table corresponding to each one of these ways. In this case, the operation is said to have multiple

alternatives. Frequently, but not always, each alternative corresponds to the use of one of the

multiple functional units on which this operation can be executed. In general, these functional units

might not be equivalent. For instance, a floating-point multiply might be executable on two

functional units, of which only one is capable of executing divide operations.

When performing scheduling with a realistic machine model, a data structure similar to the

reservation table is employed to record that a particular resource is in use by a particular operation

at a given time. We shall refer to this as the schedule reservation table to distinguish it from

those for the individual operations. When an operation is scheduled, its resource usage is recorded

by translating, in time, its own reservation table by an amount equal to the time at which it is

scheduled, and then overlaying it on the schedule reservation table [72]. Scheduling it at that time

is legal only if the translated reservation table does not attempt to reserve any resource at a time

- 14 -

when it is already reserved in the schedule reservation table. When backtracking, an operation may

be "unscheduled" by reversing this process.

The nature of the reservation tables for the opcode repertoire of a machine determine the complexity

both of computing the ResMII and of scheduling the loop. A simple reservation table is one

which uses a single resource for a single cycle on the cycle of issue (time 0). A block

reservation table uses a single resource for multiple, consecutive cycles starting with the cycle

of issue. Any other type of reservation table is termed a complex reservation table. Block and

complex reservation tables cause increasing levels of difficulty for the scheduler. Both reservation

tables in Figure 1 are complex.

.... N
MultiplierIII III III ALU

~ ~ ~
l:C l:C l:C
(1) (1) ::: 0 0 N CO)

0 0
~

(1) (1) (1) (1) (1) (1)... ... en en en en en en
~ ~ III

S ca ca ca ca ca0 0 (1) - - - - -Time en en II: en en en en en en

0

1

2

3

4

5

(b)

.... N
III III III ALU MUltiplier
~ ~ ~
l:C l:C l:C
(1) (1) ::: 0 0 N CO)

0 0
~

(1) (1) (1) (1) (1) (1)... ... en en en en en en
~ ~ III
0 0 (1) ca ca ca ca ca ca- - - - - -Time en en II: en en en en en en

0

1

2

3

(a)

Figure 1. Reservation tables for (a) a pipe lined add, and (b) a pipe lined multiply.

From Figure 1, it is evident that an ALU operation (such as an add) and a multiply cannot be

scheduled for issue at the same time since they will collide in their usage of the source buses.

Furthermore, although a multiply may be issued any number of cycles after an add, an add may not

be issued two cycles after a multiply since this will result in a collision on the result bus. The set of

forbidden intervals, due to resource conflicts, between the initiation of two operations with the

same reservation table can be collected together into what is termed the collision vector for that

reservation table [15]. Likewise, the set of forbidden intervals, due to resource conflicts, between

- 15 -

!

the initiation of an operation with one reservation table and a second operation with another

reservation table is termed the cross-collision vector for that pair of reservation tables.

Given the set of reservation tables for a particular machine, one can compute the complete set of

collision and cross-collision vectors. In general, their are many sets of reservation tables that yield

the same set of collision and cross-collision vectors. Some of these sets are smaller and simpler

than others. It is possible to compute a synthetic set of reservations tables that are preferable to the

original set [26]. For instance, in Figure 1, if the ALU and multiplier possessed their own,

separate source and result buses and if all operations that used these two pipelines used precisely

the same reservation tables, then both reservation tables could be replaced by simple reservation

tables.

2.7 A simplistic modulo scheduling algorithm

Having eliminated all undesirable anti- and output dependences due to register usage and having

computed the MIl, the next step is to generate a-modulo schedule. In the simplest case, a minor

modification [61] of the commonly used, greedy, list scheduling! algorithm [1, 41] serves the

purpose. The only change is that an operation P may not be scheduled at a time t such that if P

were scheduled at time t±k:*II for any k ~ 0, it would have a resource conflict with a previously

scheduled operation (from the same iteration). Normally in list scheduling, only the case k =°is

considered.

An acyclic scheduler keeps track of resource usage by means of the schedule reservation table,

which may be conceptualized as a table in which each column corresponds to a particular resource,

and each row corresponds one cycle. If scheduling an operation at some particular time involves

the use of resource R at time T, then entry [T,R] of the schedule reservation table is used to record

that fact. In the case of modulo scheduling, adherence to the modulo constraint is facilitated by the

use of a special version of the schedule reservation table [61]. If scheduling an operation at some

particular time involves the use of resource R at time T, then entry [(T mod II),R] of the schedule

reservation table is used to record it. Consequently, the schedule reservation table need only be as

long as the II. Such a reservation table has been aptly dubbed a modulo reservation table

(MRT) by Lam [42].

I List scheduling refers to the class of scheduling algorithms in which all of the operations are ordered into a Jist, once and
for all, based on some priority function, and are then scheduled in the order specified by that list.

- 16 -

This minor variant of the list scheduling algorithm is, in fact, guaranteed to yield a legitimate

schedule with an II equal to MIl if the loop is such that the only recurrence circuits are trivial ones

involving a single operation and if the machine is such that every operation has simple reservation

tables. When either assumption is invalid, this scheduling algorithm can fail to find a schedule for

an II that is equal to the MIl.

2.8 Complicating factors in modulo scheduling

The existence of recurrences and complex reservation tables can, individually or jointly, result in

the non-existence of a valid schedule at the MIL Furthermore, because of these two factors, a

greedy, one-pass scheduling algorithm, such as list scheduling, cannot guarantee that it will find a

modulo schedule for a given II, even when such a schedule exists.

2.8.1 Difficulty in finding a schedule for a feasible initiation interval

The new phenomenon that recurrences introduce to the scheduling process is that of a deadline,

i.e., the requirement that an operation be scheduled no later than some particular time. When the

first operation in a see is scheduled, it imposes constraints on how late all of its predecessor

operations can finish and, therefore, on how late they can start. Since this operation is in a see,
the rest of the operations in the see are its predecessors as well as its successors. These

successors are, as yet, unscheduled (since the operation under consideration was the first one in

the see to be scheduled) and all of them now have deadlines on the latest time by which they must

be scheduled. From then on, the scheduling algorithm must be sensitive to these deadlines. If any

one of these deadlines cannot be honored, the partial schedule generated thus far represents a dead

end that cannot lead to a valid schedule.

In particular, if the first operation that is scheduled from a see is scheduled greedily, at the earliest

possible time, the deadlines may be more constraining than they need have been, and a legal

schedule may not be found. In such a case, it would have been preferable to have scheduled that

operation somewhat later than the earliest possible time. Yet, as a rule, it is preferable to schedule

operations as early as possible, in order to minimize the schedule length. This represents a dilemma

for a greedy, one-pass scheduler.

- 17 -

[1]

(a)

o 1---­

1 1--__

21--__

3
'----

Mil = RecM11 =4
(b)

o 1--__

1

2
1----

3
'----

Mil = RecMII = 4
(c)

Figure 2. An example demonstrating the problem with greedy scheduling in the presence of
recurrences. (a) The data dependence graph. (b) The resulting partial schedule when C is
scheduled greedily. B cannot be scheduled. (c) The resulting valid schedule when C is
scheduled two cycles later.

- 18 -

If list scheduling is employed and one gets into a situation wherein an operation cannot be

scheduled by its deadline, scheduling cannot proceed any further; any resulting schedule is

guaranteed to be invalid. In general, only an exhaustive, back-tracking search over the space of

possible schedules is guaranteed to yield a valid schedule for the candidate II, if one in fact exists.

Consider the loop in Figure 2a. In this and the following examples, the label next to each vertex is

its name, and the latency of each operation is indicated within the vertex. The delay on each edge is

understood to be the latency of the source vertex, and the distance of each edge is understood to be

zero unless it is explicitly shown in brackets. If list scheduling is employed on this example, the

partial schedule in Figure 2b is obtained. The operation B cannot be scheduled since the earliest

time at which it can be scheduled is 4 which is greater than the deadline imposed upon it by the fact

that its successor operation C (from the next iteration) is scheduled at time 4 (4 cycles later than the

C from the same iteration which is scheduled at time 0). Operation B must be scheduled at the latest

by cycle 2 and this is impossible since A only finishes at the end of cycle 3.

The problem in this case is that operation C was scheduled at the earliest possible time, which

generally is a good policy. In this case, if it had been scheduled 2 cycles later, at time 2, the

deadline for operation B would have been extended to time 4 which would have made it possible to

arrive at the valid schedule in Figure 2c. An exhaustive search would have yielded this schedule

sooner or later. However, the computational complexity of such a process is exponential in the

number of operations and, for all but the smallest loops, is not a practical approach.

Greedy scheduling can also lead to a dead-end as a result of the interaction of block or complex

reservation tables. The example in Figure 3a consists of a chain of operations, Al through M5, and

one independent operation, M6. AI, A3 and A4 are non-pipelined adds that take two cycles each

on the adder, M5 and M6 are non-pipelined multiply operations that take three cycles each on the

multiplier, and C2 is a copy operation that uses the bus for one cycle.

The typical list scheduling algorithm would result in A 1, M6, C2, and A3 being scheduled in that

order yielding a partial schedule and an MRT state as shown in Figure 3b. A4 cannot be scheduled

because the only free adder slots, at times 2 and 5 modulo 6, are not contiguous as required by the

block reservation table for A4. If, however, A3 had been scheduled one cycle later that the earliest

possible time, at time 4 as in Figure 3c, an acceptable schedule is obtained.

- 19 -

M6~
Adder Mult Bus Adder Mult Bus

A1
0

1
C2

2

A3
3

4

A4
5

ResMII =6 ResMII =6

(a) (b) (c)

Figure 3. An example demonstrating the problem with greedy scheduling in the presence of
block or complex reservation tables. (a) The datadependence graph. (b) The resulting partial
schedule when AI, M6, C2, and A3 are scheduled greedily. A4 cannot be scheduled.
(c) The resulting valid schedule when A3 is scheduled one cycle later.

These are problems that acyclic list scheduling does not have to cope with. As these examples

demonstrate, a simple, modulo-constrained version of greedy list scheduling is inadequate.

Although greedy scheduling is generally a good idea in order to minimize the schedule length, it

can also lead to a partial schedule which is a dead end. Some form of backtracking is required,

which yields a final schedule in which the appropriate operations have been scheduled in a non­

greedy fashion. The specific form of backtracking adopted is discussed in Section 4.

2.8.2 Infeasibility of the minimum initiation interval

In the presence of block or complex reservation tables, or due to the existence of recurrence cycles,

it can be the case that there is no valid schedule possible at the computed MIl.

Consider the example of a loop consisting of the three independent operations shown in Figure 4a

and their respective complex reservation tables. Between the three operations, each resource is

used exactly twice, yielding a ResMII of 2. Figure 4b shows the MRT for an II of 2. After Al and

M2 have been scheduled, it is impossible to schedule MA3. A little reflection shows that the three

- 20-

reservation tables are, in fact, incompatible for an II of 2, but are compatible for an II of 3 (Figure

4c).

A second example shows why a valid schedule may turn out to be impossible for II =MIl, even in

the absence of block or complex reservation tables, as a consequence of the contradictory

constraints of the recurrence dependences and the (simple) reservation tables. Consider the loop

(Figure Sa) consisting of four fully pipe lined add operations, Al through A4, each one dependent

upon the previous one with a dependence distance of 0, and with Al dependent upon A4 with a

distance of 2. Assuming that the add latency is 2, this yields a RecMII of 4. Also, assuming each

add uses each stage of the single pipelined adder for one cycle, the ResMII is equal to 4. Thus, the

MIl is 4.

A1~
Adder Mult Bus

M2~
Adder Mult Bus

MA3 ~
Adder Mult Bus

i I I I I I I I I I I I
(a)

Adder Mult Bus

MII=2
II = 2
(b)

Adder Mult Bus

MII=2
11=3
(c)

Figure 4. An example demonstrating the infeasibility of the MIl in the presence of complex
reservation tables. (a) The three operations and their reservation tables. (b) The MRT
corresponding to the dead-end partial schedule for an II of 2 after A1 and M2 have been
scheduled. (c) The MRT corresponding to a valid schedule for an II of 3.

- 21 -

However, a schedule cannot be obtained for II =MIl =4 (Figure 5b). As soon as Al is scheduled

at time 0, the latest start times for A2 through A4 are 2, 4 and 6, respectively, based on the latency

of the add operation. These are also the earliest start times for those operations and, so, based on

the dependence constraints, A2, A3 and A4 must be scheduled at cycles 2, 4 and 6, respectively.

Unfortunately, 4 and 6 are equal to °and 2, respectively, modulo the II of 4, which means that A3

and A4 have resource conflicts with Al and A2, respectively. The only schedule from a

dependence viewpoint is unacceptable from a resource usage viewpoint. No valid schedule exists

for II =4.

A1

A2

A3

A4

(a)

[2]

(b)

Mult Bus

ResMII = 4
RecM11 =4

Figure 5. An example demonstrating the infeasibility of the MIl due to the interaction between
the recurrence constraints and the resource usage constraints. (a) The data dependence graph.
(b) The MRT corresponding to the dead-end partial schedule for an II of 4 after Al and A2
have been scheduled.

In such cases, an exhaustive search will eventually reveal the absence of a valid schedule by

coming up empty-handed. However, the exponential amount of computational effort needed to

discover this fact, is unacceptable. A reasonable strategy is to give up on a candidate II after

expending a pre-allocated budget of time, and to try again at a larger value of n.

- 22-

3 Calculation of the minimum initiation interval (Mlf)

The minimum initiation interval, MIl, is the larger of the resource-constrained MIl, ResMII, and

the recurrence-constrained MIl, RecMII. In general, it will be some non-integer, f. However,

modulo scheduling requires an integer-valued II. If f is not an integer, and if the loop is not to be

unrolled, an integer-valued MIl is obtained by rounding the f up to the next larger integer.

Alternatively, if the loop is to be pre-unrolled with an unroll factor of U, as discussed in Section 1,

the corresponding MIl is if*Ul We now address the method by which the ResMII and the RecMII

are computed.

3.1 The resource-constrained MIl (ResMII)

The resource-constrained lower bound on the II, ResMII, is calculated by totaling, for each

resource, the usage requirements imposed by one iteration of the loop. The exact ResMII can be

computed by performing an optimal bin-packing of the reservation tables for all the operations, a

computation that is of exponential complexity. Complex reservation tables and multiple alternatives

make it worse yet and it is impractical, in general, to compute the ResMII exactly. Instead, an

approximation to this exact lower bound is computed.

The ResMII is computed by first sorting the operations in the loop body in increasing order of the

number of alternatives, i.e., degrees of freedom, and initializing the usage count of each resource

to zero. At each step in the algorithm, the partial ResMII is defined to be the usage count of the

most heavily used resource at that point. The operations are processed in sort order. For an

operation with multiple alternatives, each alternative is selected in turn. The number of times it uses

each resource is added to the current usage count for that resource in order to determine the partial

ResMII that would result if this alternative were actually used. For each operation, that alternative

is selected which yields the lowest partial ResMII. When all operations have been considered, the

usage count for the most heavily used resource constitutes the ResMII. It is important to note that

this selection between the alternatives is only for the purpose of computing the ResMII. During

scheduling, the scheduler has complete freedom to select the alternative that will actually be used.

The method above yields an integer-valued ResMII. In general, the ResMII is a real-valued number

and ought to be computed as such. For instance, if the floating-point adders are the most heavily

used functional units, there are three of them and there are 8 add operations, the ResMII is 8/3.

More generally, if the functional units can be partitioned into equivalence classes, such that all of

- 23 -

the functional units in a given equivalence class can perform exactly the same set of operations, and

if the operations are such that each one can be performed by precisely one equivalence class, then

the ResMil can be computed by taking ratio of the number of operations to be executed on a given

equivalence class and dividing that number by the number of functional units in that equivalence

class. The largest such ratio, across all of the equivalence classes, is the ResMII.

Unfortunately, many real machines do not possess any such structure, and there exists no good

technique for computing the real-valued ResM11. One approximate way to do so is to conceptually

unroll the loop U times, calculate the integer-valued ResMII for this unrolled loop, and then divide

that by U.

3.2 The recurrence-constrained MIl (RecMII)

The RecMII is calculated using the dependence graph discussed in Section 2.1. All undesirable

anti- and output dependences are assumed to have been eliminated, in a preceeding step, by the use

of expanded virtual registers (EVRs) and dynamic single assignment as discussed in Section 2.5.

A loop contains a recurrence if an operation in one iteration of the loop has a direct or indirect

dependence upon the same operation from a previous iteration. The existence of a recurrence

manifests itself as a circuit in the dependence graph. Assume that the sum of the delays along some

elementary circuit1 c in the graph is Delay(c) and that the sum of the distances along that circuit is

Distance(c). The existence of such a circuit imposes the constraint that the scheduled time interval

between an operation on this circuit and the same operation Distance(c) iterations later must be at

least Delay(c). However, since the schedule for each iteration is the same as that for the previous

iteration, except that it is delayed by II cycles, this time interval is Distance(c)*11. Consequently,

we have the constraint that

Delay(c) - II*Distance(c) :::; O.

This is the constraint upon the II imposed by this one recurrence circuit. The RecMII is determined

by considering the worst-case constraint across all circuits. One approach is to enumerate in an

irredundant fashion all the elementary circuits in the graph [69,49], calculate the smallest value of

1 An elementary circuit in a graph is a path through the graph which starts and ends at the same vertex (operation) and
which does not visit any vertex on the circuit more than once.

- 24-

II that satisfies the above inequality for each individual circuit, and to use the largest such value

across all circuits. Thus,

RecMII = Max (Delay(c)).
C E c Distance(c)

Along with a few additional optimizations, this is the approach used in Cydrome's compiler for the

Cydra 5 [20].

A second approach is to pose the task of computing the RecMII as a linear programming problem

[16, 17] where the objective function to be minimized is the II and the constraints are that for each

pair of operations, P and S, that are connected by an edge from P to S, the following inequality be

satisfied:

T(S) + II*Distance(P,S) - T(P) 2:: Delay(P,S)

where T(») is the time at which the operation is scheduled.

The third approach, the one used in this study, is to pose the problem as a minimal cost-to-time

ratio cycle problem [44] as proposed by Huff [36]. A version of this algorithm, which can be used

to compute the RecMII, as well as for other purposes, is shown in Figure 6.

The algorithm ComputeMinDist computes, for a given II, the MinDist matrix whose [i,j] entry

specifies the minimum permissible interval between the time at which operation i is scheduled and

the time at which operation j,from the same iteration, is scheduled. If there is no path from i to j in

the dependence graph, the value of the entry is -00. If MinDist[i,i] is positive for any i, it means

that i must be scheduled later than itself, which is clearly impossible. This indicates that the II is

too small and must be increased until no diagonal entry is positive. On the other hand, if all the

diagonal entries are negative, it indicates that there is slack around every recurrence circuit and that

the II is larger than it need be. Since we are interested in finding the minimum legal II, at least one

of the diagonal entries should be equal to O. The smallest value of II, for which no diagonal entry

is positive and at least one is zero, is the RecMII. In general, the RecMII computed in this way will

not be an integer. If this is the case, and if only an integer-valued RecMII is of interest, the next

larger integer is selected at the RecMII. In this case" no entry along the diagonal of the MinDist

matrix will be O.

- 25 -

function ComputeMinDist (II: integer; NumberOfOperations: integer): boolean;

Compute the longest path between every pair of vertices.

Return TRUE if there is a positive cycle.

This function is repeatedly invoked to compute the RecMII
as part of a binary search for the smallest value of II
for which there is no positive cycle.

label
1;

var
i, j, k: integer;
dist: integer;
positiveCycle: boolean;

begin

Initialize the distance matrix with the adjusted delay }
between pairs of operations that have an arc between them.}
for i := 1 to NumberOfOperations do

for j := 1 to NumberOfOperations do
MinDist[i, j] := -~;

for each edge e that goes from i to j do
MinDist[i, j] := Max(MinDist[i, j], (Delay[e] - II * Distance[e]));

positiveCycle := false;
for k := 1 to NumberOfOperations do
{ Now consider all paths via vertex k as well }

for i := 1 to NumberOfOperations do
for j := 1 to NumberOfOperations do

dist := MinDist[i, k] + MinDist[k, j];
if dist > MinDist[i, j] then

MinDist[i, j] := dist;
if (i = j) and (dist > 0) then

PositiveCycle .- true;
goto 1;

1:
ComputeMinDist := PositiveCycle;

end; { ComputeMinDist }

Figure 6. ComputeMinDist: an algorithm for computing the minimum permissible time interval
between every pair of operations.

ComputeMinDist begins by initializing MinDist[i,j] with the minimum permissible time interval

between i and j considering only the edges from i to j. If there is no such edge, MinDist[i,j] is

initialized to -00. If e is an edge from i to j and if Distance(e) is zero, then edge e specifies that

MinDist[i,j] be at least Distance(e). If, however, Distance(e) =d > 0, then the interval between the

- 26-

operation i from one iteration and the operation j from d iterations later must be at least Distance(e).

Since the operation j from the same iteration as i is scheduled d*Il cycles earlier, MinDist[i,j] must

be at least as large as Distance(e) - d*II. Once MinDist has been initialized, the minimal cost-to­

time ratio cycle algorithm is used to compute MinDist for that candidate II. If MinDist has a

positive entry along the diagonal, the candidate II is smaller than the RecMIl. If all diagonal entries

are greater than zero, the candidate II is greater than the RecMII. Thus, by repeatedly invoking

ComputeMinDist, we can determine the RecMIl.

Since the algorithm ComputeMinDist is O(N3) and expensive for large values of N, the number of

operations in the loop, it is desirable that it be invoked as few times as possible. If one is interested

only in the MIl, and not the RecMII, the initial trial value of II is the ResMII. If this yields no

positive diagonal entry in the MinDist matrix, then it is the MIL Otherwise, the candidate MIl is

incremented until there are no positive entries on the diagonal. The value of the increment, which is

initially 1, is doubled each time the MIl is incremented. The candidate MIl at this point is greater

than or equal to the RecMIL A binary search is performed between this last, successful candidate

MIl and the previous unsuccessful value untilthe RecMIl is found to the desired degree of

floating-point precision. If only the integer MIl is required, we start with the integer Res MIl and

only examine integer values for MIl during the above binary search. (To compute the RecMIl, the

only difference is that the first candidate value tested is 1 and the last unsuccessful value tested is

0.) The number of times ComputeMinDist must be invoked for this strategy can be shown to be

{

I ,

2 * lIogil+RecMII-ResMll)1 + F,

if RecMIl s ResMIl,

otherwise.

.'

where F is the number of bits offractional precision desired.

The statistics presented in Section 5 on the number of operations in a loop show that N can be quite

large and, so, O(N3) complexity is a matter of some concern. This problem can be addressed by

considering small subsets of the overall dependence graph when computing the RecMII. Since

every operation on a recurrence circuit is reachable from any other operation on that circuit, they

must all be part of the same SCc. The important observation is that the RecMll can be computed as

the largest of the RecMII values for each individual SCC in the graph. As the statistics in Section 5

demonstrate, there are very few SCCs that are large, and O(N3) is quite a bit more tolerable for the

small values of N encountered when N is the number of operations in a single SCC.

- 27-

The same algorithm, eomputeMinDist can be used. The only difference is that it is fed the

dependence graph for one see at a time rather than that for the entire loop. Each time

ComputeMinDist is invoked with a new see, the initial starting value of the candidate MIl is the

resulting MIl as computed with the previous Sec. For the first see, the initial value of MIl is the

ResMII.

4 Iterative modulo scheduling

Since a one-pass scheduling algorithm will often not yield a valid schedule, and since an

exhaustive search is generally unacceptable, the only option is to use some form of non-exhaustive

search through the space of schedules. Each state in this search space corresponds either to a

complete schedule, in which every operation has been scheduled, or a partial schedule, in which

only some of the operations have been scheduled. Starting from a state in which no operation is

scheduled, the goal is to find a complete schedule that is either optimal or near-optimal.

Search strategies can be categorized by whether or not they are deterministic, goal-directed

searches. Examples of algorithms, that search through the search space in a semi-random fashion,

are simulated annealing, the Boltzmann machine algorithm and genetic algorithms [65] and these

have been applied to the modulo scheduling problem [38, 8, 19]. Such algorithms do not run the

risk of getting trapped in a local minimum but, in the context of a production compiler, take an

unacceptably long time to find a near-optimal solution. In contrast, goal-directed search algorithms

are guided by heuristics in a deterministic fashion through the search space towards, what one

hopes, is a global optimum. Although good heuristics improve the probability that the optimum

found is the global optimum, the possibility exists, nevertheless, that the optimum may well be

only a local one.

One approach, guaranteed to find an optimal solution, is to pose the task of finding a modulo

schedule as an integer linear programming problem [28, 6, 25]. Although linear programming has

exponential complexity in the worst-case, this is generally not the case in practice. Even so, the

execution time of integer linear programming algorithms is far too great for them to be seriously

considered for use in production compilers. On the other hand, this approach is useful for

evaluating the quality of heuristics-based scheduling algorithms.

In the case of modulo scheduling, the problem of finding a local optimum is not an important one.

To a first order, any legal schedule that is found for the desired II, is as good as any other. The

- 28 -

bigger problem is that of finding oneself in a state, corresponding to a partial schedule, from which

no forward progress is possible, i.e., no additional operation can be scheduled without violating

some dependence or resource constraint. Goal-directed searches must have a strategy to deal with

this situation.

One option is to backtrack some distance along the path in the search space that was taken to this

dead-end and to then move forward again, branching off along a different path this time. Unless an

exhaustive search is being performed, additional heuristics must be employed to determine how far

to backtrack and which (different) path to take this time around. The task of selecting a better path

to take from a given state on a subsequent attempt differs from the corresponding task on the first

attempt in that one has knowledge of some number of failed attempts. Somehow, some

information gathered from these failed attempts must guide the heuristic that selects a different

path. Unfortunately, there are no known heuristics that are successful at exploiting such

information. Indeed, it is not even understood what information is relevant to a better decision on a

subsequent attempt.

Another option is to use a second heuristic to jump from the dead-end state corresponding to one

partial schedule to some other state corresponding to another partial schedule. Thereafter, the first

heuristic takes over once again in the search for a complete, feasible schedule. The hope is that a

valid schedule will be found at the candidate II after searching only a small fraction of the entire

space of schedules. Such a scheduling algorithm, if successful, would be more attractive than

either a one-pass or an exhaustive-search algorithm. Of course, there is the possibility that such an

algorithm, lacking the systematic search of the exhaustive algorithm, could either get locked into a

repetitive orbit, circling around aimlessly through the space of partial schedules, never finding a

valid one even though it has expended more effort than the exhaustive-search algorithm. It is

crucial that good heuristics be employed to control both the search for a valid schedule and the

choice of a next state when the search arrives at a dead-end. The iterative modulo scheduling

algorithm, described in this report, is of this type.

It employs a deterministic, goal-directed search for a legal schedule at the candidate II. This bears a

strong resemblance to the well-known list scheduling algorithm using height-based priorities. A

second heuristic is used to jump from the dead-end state corresponding to one partial schedule to

some other state correponding to another partial schedule. When the scheduler finds that there is no

available slot for scheduling the currently selected operation, it displaces one or more previously

scheduled, conflicting operations. These are then, in turn, re-scheduled when the deterministic,

- 29-

goal-directed search for a legal schedule continues. This behavior, of repeatedly scheduling and re­

scheduling operations, in search of a "fixed-point" solution which simultaneously satisfies all of

the scheduling constraints, is why this algorithm for modulo scheduling is termed iterative.

If the search fails to yield a valid schedule even after a large number of steps, it is reasonable to

assume that no feasible schedule exists at this II. The only option is to increase the candidate II by

some amount and try again, in the belief that a schedule will be easier to find for a larger II. This

seems reasonable from two viewpoints. First, a larger II results in a later deadline for every

recurrence operation and, hence, more time slots in which that operation can be scheduled. In the

extreme, once the II is equal to the schedule length of the (non-modulo) list schedule, even the one­

pass list scheduling algorithm should work. Second, a larger II provides more usage time slots for

every resource on the modulo reservation table, making it simpler to find a non-overlapping

placement of the reservation tables for each operation.

4.1 An intuitive motivation for iterative modulo scheduling

Although a number of iterative algorithms and priority functions were investigated, a simple

extension of the acyclic list scheduling algorithm and of the commonly used height-based priority

function proved to be near-best in schedule quality and near-best in computational complexity.

To understand the intuition behind the algorithm, we resort to the view that we are, conceptually,

scheduling the loop as we unroll it, with an eye to kernel recognition. What is different is that we

shall be proactive in causing the repeating pattern, the kernel, to appear. We shall do so by

enforcing two constraints upon the schedule that we create for the loop as we simultaneously unroll

it.

• First, we shall insist that each iteration1 begin exactly II cycles after the previous one.

• Second, each time we schedule an operation in one iteration, we shall tentatively schedule the

same operation for subsequent iterations at intervals of II, even if it entails the unscheduling of

other tentatively scheduled operations from subsequent iterations due to resource or

dependence conflicts. However, when possible, each operation is scheduled so as to not

unschedule any operation that was tentatively scheduled previously.

I Note that an iteration at this point might correspond to multiple original iterations if the loop was pre-unrolled as
discussed in Section I. In terms of the original iterations, this constraint states that there is a periodic sequence of
initiation intervals such that the length of one period is II.

- 30-

Starting iterations at fixed intervals of II is similar to limiting the "span" [3] and the use of the

pacemaker function [56] which ensure that, in the steady state, the average rate of starting iterations

is equal to the average rate at which they finish so that a repeating pattern will form. One difference

is that this constraint imposes the steady state rate right from the outset, thereby expediting the

formation of the kernel. A further difference is that, although we enforce a regular rate of starting

iterations, and one that is equal to the rate at which they complete, we place no constraints upon the

number of iterations that might be executing simultaneously. As a result, it permits the necessary

amount of "slip" to develop between operations. For instance, if operation B is scheduled more

than 3*II cycles later than operation A in the same iteration, then operation A is scheduled three

times before B is scheduled for the first time.

The tentative scheduling of operations from subsequent iterations is the key difference with respect

to other kernel recognition schemes. It provides guidance to the scheduler, when scheduling one

iteration, as to what is desirable from the viewpoint of subsequent iterations in order to quickly

achieve a repeating kernel. However, since it is only a tentative schedule, it does not block the

forward progress of the scheduler in the eventthat the current operation cannot be scheduled

because it conflicts with one or more operations from a subsequent iteration.

The result is that a repeating pattern, with a period of II, is enforced for the remainder of the

schedule even at the expense of having only a partial schedule. If at any point, all operations from

one iteration have been scheduled (without having to displace any tentatively scheduled operations

from subsequent operations), then all operations from all subsequent iterations have, by

construction, also been scheduled, and with a repetitive pattern. Thus, it is not necessary to

explicitly check whether we have reached a previously visited state, i.e., kernel recognition

becomes unnecessary. Retroactively, one can also reschedule operations from all previous

iterations to conform to the schedule of the kernel. Now, because every iteration has the same

schedule, staggered in time by II cycles, the repeating portion of the scheduled unrolled loop can

be rolled up into a kernel with a loop around it, preceded by a prologue and followed by an

epilogue.

Of course, in practice there is no need to actually unroll, schedule and then re-roll. The multiple

iterations that unrolling algorithms schedule, are simulated in the case of modulo scheduling by

repeatedly re-scheduling one II's worth of instructions on the MRT. One can view the iterative

modulo scheduling process as consisting of sliding an Il-long window down the code as it is

unrolled and scheduled. In unroll-and-schedule terms, the MRT can be viewed as consisting the

- 31 -

last instruction of the schedule thus far (the current instruction) plus the next II-I instructions that

solely consist of tentatively scheduled operations. The rest of the schedule is tentatively the same as

these last II instructions. The use of an MRT enforces both the constraint that a new iteration begin

every II cycles and the constraint that all subsequent instances of an operation be scheduled at

regular intervals of II. The iterative aspect of this modulo scheduling algorithm refers to the

willingness, when necessary, to schedule an operation even at the expense of unscheduling a

previously scheduled operation.

4.2 The core algorithm for iterative modulo scheduling

The iterative modulo scheduling algorithm is shown in Figures 7, 8, 10 and 11. It assumes that

two pseudo-operations, START and STOP, are added to the dependence graph. START and

STOP are made to be the predecessor and successor, respectively, of all the other operations in the

graph. Procedure ModuloSchedule (Figure 7) calls IterativeSchedule (Figure 8) with successively

larger values of II, starting with an initial value equal to the MIl, until the loop has been scheduled.

IterativeSchedule looks very much like the conventional acyclic list scheduling algorithm [1, 41].

The points of difference are as follows.

• Acyclic list schedulers, typically, employ instruction scheduling. Although this is not

necessary, it is more natural for various reasons. In view of the fact that with iterative modulo

scheduling an operation can be unscheduled and then rescheduled, operation scheduling, rather

than instruction scheduling, is employed I. Also, the acyclic instruction scheduling notion that

an operation becomes "ready" and may be scheduled only after its predecessors have been

scheduled, has little value in iterative modulo scheduling since it is possible for a predecessor

operation to be unscheduled after its successor has been scheduled.

• The function HighestPriorityOperation, which returns the unscheduled operation that has the

highest priority in accordance with the priority scheme in use, may return the same operation

multiple times if that operation has been unscheduled in the interim. This does not occur in

acyclic list scheduling. The priority scheme used, HeightR, is discussed in Section 4.3.

I Instruction scheduling operates by picking a current time and scheduling as many operations as possible at that time
before moving on to the next time slot. In contrast, operation scheduling picks an operation and schedules it at whatever
time slot is both legal and most desirable. Either style of scheduling can be used in iterative modulo scheduling, but the
latter seems more natural.

- 32 -

procedure ModuloSchedule (BudgetRatio: real);

{ BudgetRatio is the ratio of the maximum number of operation scheduling steps
{ attempted (before giving up and trying a larger initiation interval) to the
{ number of operations in the loop.

begin

Initialize the value of II to the Minimum Initiation Interval }

II := MII();

Perform iterative scheduling, first for II = MIl and then for successively
larger values of II, until all operations have been scheduled

while (not IterativeSchedule(II, BudgetRatio*NumberOfOperations» do
II := II + 1;

end; {ModuloSchedule}

Figure 7. The procedure ModuloSchedule.

• Estart is the earliest start time for an operation as constrained by its dependences on its

predecessors. MinTime is the earliest time considered for scheduling the current operation. In

general, MinTime is greater than or equal to Estart. However, just as with acyclic scheduling,

we shall always set MinTime equal to Estart. The calculation of Estart is affected by the fact

that operations can be unscheduled. When an operation is picked to be scheduled next, it is

possible that one or more of its predecessors is no longer scheduled. Moreover, when

scheduling the first operation in a sec, it must necessarily be the case that at least one of its

predecessors has not yet been scheduled. The formula for calculating Estart is discussed in

Section 4.4.

• Adherence to the modulo constraint is facilitated by the use of a special version of the schedule

reservation table [61] known as a modulo reservation table (MRT).

• Since resource reservations are made on a MRT, a conflict at time T implies conflicts at all

times T ± k*II. So, it is sufficient to consider a contiguous set of candidate times that span an

interval of II time slots. Therefore, MaxTime, which is the largest time slot that will be

considered, is set to MinTime + II-I, whereas in acyclic list scheduling it is implicitly set to

infinity. This is discussed in Section 4.5.

• FindTimeSlot picks the time slot at which the currently selected operation will be scheduled. If

MaxTime is infinite (and if a traditional, linear schedule reservation table is employed), as it

- 33 -

will be for acyclic scheduling, the functioning of FindTime Slot is just as it would be for list

scheduling; the while-loop always exits having found a legal, conflict-free time slot. Since a

MRT is used with modulo scheduling, MaxTime is at most (MinTime + II - 1). It is possible

for the while-loop to terminate without having found a conflict-free time slot. At this point, it is

clear that it is not possible to schedule the current operation without unscheduling one or more

operations. The method for selecting which operations to unschedule is discussed in Section

4.6.

4.3 Computation of the scheduling priority

As with acyclic list scheduling, there is a limitless number of priority functions that can be devised

for modulo scheduling. Most of the ones used have been such as to give priority, one way or

other, to operations that are on a recurrence circuit over those that are not [34, 42, 20]. This, to

reflect that fact that it is more difficult to schedule such operations since all but the first one

scheduled in a see are subject to a deadline. Instead, we shall use a priority function that is a

direct extension of the height-based priority [35, 58] that is popular in acyclic list scheduling [1].

For acyclic list scheduling, the height-based priority of an operation P, Height(P), is defined as

Height(P) = r'
\

Max (Height(Q) + Delay(P,Q)),

QE Succ(P)

if P is the STOP pseudo-op,

otherwise.

This priority function has two important properties. First, since it computes the longest path from

P to the end of the graph (the STOP pseudo-operation), the larger Height(P) is, the smaller is the

amount of slack available to schedule operation P. This means that the operation is more critical in

that it can afford to experience less delay in scheduling if the schedule length is not to be increased.

It is well known that giving priority to operations on the critical path is important to achieving a

good schedule, and the height-based priority function does so.

- 34-

function IterativeSchedule(II, Budget: integer): boolean;

Budget is the maximum number of operations scheduled before glvlng up and trying
a larger initiation interval. II is the current value of the initiation interval
for which modulo scheduling is being attempted.

var
Operation, Estart, MinTime, MaxTime, TimeSlot: integer;

begin
{ compute height-based priorities }

HeightR;

Mark all operations as having never been scheduled }
for each Operation do

NeverScheduled[Operation] := true;

schedule START operation at time 0 }
schedule (START, 0);
Budget := Budget - 1;

Insert all operations into the list of unscheduled operations;

Continue iterative scheduling until either all operations }
have been scheduled, or the budget is exhausted. }
while (the list of unscheduled operations is not empty) and (Budget> 0) do

begin
{ Pick the highest priority operation from the prioritized list }

Operation := HighestPriorityOperation();

Estart is the earliest start time for Operation
as constrained by currently scheduled predecessors
Estart := CalculateEarlyStart(Operation);

MinTime .- Estart;
MaxTime . - MinTime + II - 1;

Select time at which Operation is to be scheduled }
TimeSlot := FindTimeSlot(Operation, MinTime, MaxTime);

The procedure Schedule schedules Operation at time TimeSlot. In so doing,
it displaces all previously scheduled operations that conflict with it
either due to resource conflicts or dependence constraints. It also
sets NeverScheduled[Operation] equal to false.

Schedule (Operation, TimeSlot);
Budget := Budget - 1;

end; { while }

IterativeSchedule := (the list of unscheduled operations is empty);

end; { IterativeSchedule }

Figure 8. The function IterativeSchedule.

- 35 -

If minimizing schedule length were the only objective then we could emphasize the critical path

more directly by first scheduling all operations on the critical path, i.e., with zero slack, then

operations with a slack of one, and so on. This would result in certain operations being scheduled

before all of their predecessors have been scheduled. When the time comes to schedule the

predecessors, it might be impossible to do so without rescheduling some successors so as to make

place in the schedule for them. Whereas this might result in a good schedule, it would be more

expensive computationally since certain operations will be scheduled multiple times.

From the viewpoint of efficiency, it is preferable to schedule operations in some topological sort

order so that each operation is scheduled before any of its successors. The second nice property of

the height-based priority function is that it defines a topological sort; a predecessor operation will

have a larger height-based priority than everyone of its successors I. If we perform acyclic list

scheduling by scheduling operations in decreasing order of their height-based priority, we get a

scheduler which is efficient and critical path sensitive at one and the same time.

procedure Height (opn);

begin
if priority[opn] = -= then

if opn has no children then
priority [opn] := 0

else
for each child do

priority [opn] := max (priori ty[opn] , Height [child] + Delay[opn,child]);
end; { Height }

Figure 9: Algorithm for computing Height

Figure 9 displays the algorithm for recursively computing the height-based priorities of all the

operations in an acyclic dependence graph. The priority for each operation is initialized to -00. Then

Height is invoked with the START operation as the argument. This results in the recursive

computation of the priority of each of the successors of the START operation, after which the

priority of the START operation is computed in accordance with the above equation. The result of

I This is strictly true only if we ignore anti- and output dependences or if we utilize the conservative formulae for computing
the delay. Since we assume that the computation is in the dynamic single assignment form, there are no anti- or output
dependences to cause problems.

- 36 -

this function call is the length of the critical path through the computation. In the process, the

dependence graph is traversed via a depth-first search (DFS) tree rooted in the START vertex. The

priority of every operation is computed in a post-order manner, ensuring that the priorities of all

children have already been computed. If an operation (and its DFS sub-tree) have already been

visited, the priority of the operation will no longer be -00 and Height will not be called recursively

on that operation.

Extending the height-based priority function for use in iterative modulo scheduling requires that we

take into account inter-iteration dependences. Consider a successor Q of operation P with a

dependence edge from P to Q having a distance of D. Assume that the operation Q that is in the

same iteration as P (the current iteration) has a height-based priority of H. Since, P'S successor Q

is actually D iterations later, its height-based priority, relative to the current iteration, is effectively

H-II*D. Once again, let

EffDelay(Q,P) =Delay(Q,P) - II*Distance(Q,P).

Then, the priority function used for iterative modulo scheduling, HeightR, is given by

f
0,

HeightR(P) =

\

Max (HeightR(Q) + EffDelaY(P,Q)),

Q E Succ(P)

if P is the STOP pseudo-op,

otherwise.

If the MinDist matrix for the entire dependence graph has been computed, HeightR(P) is directly

available as MinDist[P, STOP]. A less costly approach is to solve the above implicit set of

equations for HeightR, by seeking the smallest fixed-point solution, using a procedure similar to

the one in Figure 9 above for computing Height. However, the direct application of this recursive

algorithm would fail--due to the recurrence cycles in the dependence graph, this algorithm would

go into infinite recursion. On the other hand, if each SCC is viewed as a super-vertex, the resulting

graph is acyclic, and the height of each vertex can be computed during a depth-first walk of the

graph. For normal vertices, the height is computed, as before, in a post-order fashion. For the

super-vertices, the situation is a bit more complex.

The height of a vertex that is part of a SCC cannot be computed in the normal post-order fashion

because, in general, at this point the rest of the vertices in the SCC will not yet have been visited,

- 37 -

and nor will all of its successors outside the Sec. Since in an see, every vertex is a successor of

every other vertex, we cannot calculate the height of any vertex in the see until all of the

successors of the see have been visited and had their heights computed.

In the course of the depth-first search, the first vertex of an see to be encountered constitutes the

root of the smallest DFS sub-tree containing the entire Sec. We shall refer to this vertex as the

root of the Sec. The DFS sub-tree rooted in this vertex must, necessarily, also contain all of the

successors of the Sec. Consequently, the final, post-order visit to the root of the see is the

earliest point in time at which the correct heights for all of of the vertices in the see can be

computed. The correct heights for all of the successors of the see (including other sees, by

using recursive reasoning) will have been computed at this point. The heights for the vertices of

this see are computed by repeatedly computing them for each vertex in accordance with the above

formula, until the smallest fixed-point solution is found.

The efficiency of this iterative, fixed-point solution process is improved by traversing the vertices

of the see, repeatedly, in the order defined by the post-order traversal of the DFS tree. To

facilitate this, the vertices of an see are collected on a stack during the DFS traversal of the

dependence graph by pushing such vertices on to a stack in post-order fashion. At the time of the

post-order visit to the root of an see, all of the vertices of the see will be on the stack,

contiguous, and at the very top of the stack. When solving for the heights of these vertices

iteratively, the preferred order of evaluation is specified by the stack. Note that the first iteration of

the fixed-point process actually occurs during the DFS traversal, concurrent with the accumulation

of the see vertices on the stack. Once the fixed-point solution has been obtained, the entire see

is popped off the stack, and the DFS traversal of the dependence graph continues.

The algorithm for computing HeightR is shown in Figure 10. For each vertex, v, priority[v] is

initialized to -00 and New[v] is initialized to true. New[v] indicates that this vertex has not as yet

been encountered during the DFS traversal. The procedure HeightR is invoked with the START

operation as the argument. This procedure functions much like procedure Height except in two

respects. First, on encountering a vertex, v, for the first time, it sets New[v] to false to ensure that

this DFS sub-tree is not traversed for a second time from some other parent of v. Second, it treats

vertices that are part of an see differently by pushing them on to the stack in post-order fashion.

Furthermore, if this is the root of the see, then the procedure Finalize'X'Cheights is invoked to

obtain the fixed-point solution for the heights of all of the vertices in the see, and then the entire

see is popped of the stack.

- 38 -

procedure FinalizeSeeheights;

begin
First .- the deepest operation in the stack which is in the same see

as the operation on the top of the stack;

repeat until
for opn = First to TopOfStack do

for each child of opn do
priority [opnJ := Max(priority[opn], priority[child] +

Delay [opn, child] - Dist[opn,child] * II);
no operation's priority changed on the most recent iteration;

end; { FinalizeSeeheights }

procedure HeightR (opn: integer);

begin
New[opn] := false;

if opn has no children then
priority [opn] := 0

else
for each child of opn do

if New[child] then
HeightR (child) ;

priority [opn] := Max(priority[opn], priority[child] +
Delay [opn, child] - Dist [opn, child] * II);

if opn is part of an see then
Push (opn) i

if opn is the DFS root of an see then
FinalizeSeeheights;
while (the operation on the top of the stack is in the same see as opn) do

Pop;

end; { HeightR

Figure 10: Algorithm for computing HeightR

The underlying depth-first search is O(N+E) complexity where N is the number of vertices and E

is the number of edges. For the types of graphs under consideration, E is O(N). The complexity of

each call to FinalizeSCCheights is O(r(n+e)), where n is the number of vertices in the SCC, e is the

number of edges, and r is the number of iterations over the vertices. In the worst case, r is O(n). In

practice, a couple of iterations over the vertices yields a fixed-point solution. Thus, in practice, the

computation of HeightR has a complexity that is linear in the number of vertices in the dependence

graph (see the empirical measurements in Section 5.4).

- 39 -

HeightR has a couple of good properties. As we shall see in Section 5, a large fraction of the loops

are quite simple in their structure. For such loops there is a very good chance of scheduling them in

one pass, but only if the operations are scheduled in topological sort order. HeightR ensures this.

Second, HeightR gives higher priority to operations in those SCCs which have less slack.

Therefore, HeightR is also an effective heuristic in loops which have multiple, non-trivial SCCs.

4.4 Calculation of earliest and latest times for scheduling

When performing acyclic list scheduling, the operations are scheduled in topological sort order,

each operation is scheduled only after its predecessors have been scheduled, and the earliest time at

which an operation P can be scheduled is given by

Estart(P) = Max (SchedTime(Q) + Delay(Q,P))
QE Pred(P)

where Pred(P) is the set of immediate predecessors of P, SchedTime(Q) is the time at which Q has

been scheduled, and Delay(Q,P) is the minimum allowable time interval between the start of

operation Q and the start of operation P.

In the context of recurrences and iterative modulo scheduling, it is impossible to guarantee that all

of an operation's predecessors have been scheduled, and have remained scheduled, when the time

comes to schedule the operation in question. That being the case, Estart can be calculated in one of

two ways: either considering only the scheduled immediate predecessors of the operation, or by

considering all scheduled predecessors. We shall refer to these two definitions of Estart as the

immediate Estart and the transitive Estart, respectively. Let

EffDelay(Q,P) =Delay(Q,P) - II*Distance(Q,P).

Then, the immediate early start time for each unscheduled operation P is given by

({

0, if Q is unscheduled)
Estart(P) = Max

Q E Pred(p) Max(O, SchedTime(Q) + EffDelay(Q,P)), otherwise

where Estart(START) =SchedTime(START) =0. The calculation of the immediate Estart is simple

and inexpensive.

- 40-

For the transitive early start time, we again have that Estart(START) =SchedTime(START) =0.

For every unscheduled operation, P, the transitive Estart is defined by

({

Max(O, Estart(Q) + EffDelay(Q,P»),
Estart(P) = Max

Q E Pred(p) Max(O, SchedTime(Q) + EffDelay(Q,P»),

if Q is unscheduled)

otherwise

This set of equations may be iteratively solved by initializing Estart for all unscheduled operations

to°and then repeatedly computing Estart for each of them, using the above formula, until a fixed

point is reached. Statistically, this requires approximately 2.5 iterations over all the unscheduled

operations. Although the transitive Estart would appear to be a more precise definition of early start

time than is the immediate Estart, it is also far more expensive computationally. Each time an

operation is scheduled, the above formula must be evaluated approximately 2.5N times, where N

is the number of operations in the loop.

Alternatively, the transitive Estart may be computed using the MinDist matrix that was discussed in

Section 3.2. (ComputeMinDist should have been given the entire dependence graph to operate on,

not just the individual SCCs.) Once MinDist has been computed, the latter definition of Estart(P)

can be computed as

Estart(P) = Max (SchedTime(Q) + MinDist(Q,P»),
Q E SchedOp

where SchedOp is the set of operations that are currently scheduled. Although this approach

reduces the cost of computing the transitive Estart, it does require that the MinDist matrix be

computed for the loop as a whole, which is expensive both in time and space. Regardless of which

approach is used to calculate the transitive Estart, the delivered benefits of using the transitive

Estart instead of the immediate Estart need to be large to justify the computational complexity. In

this study, only the immediate Estart was employed.

In acyclic list scheduling, it is never the case that a successor, of the operation that is being

scheduled, has already been scheduled. As a result, there is no constraint on how late the operation

can be scheduled. For iterative modulo scheduling, it is indeed possible that one or more

successors have already been scheduled when a given operation is (re)scheduled, and a constraint

exists on how late the operation may be scheduled without violating the dependence constraints

between the operation and its successors. Once again, one can define two versions of Lstart: the

- 41 -

immediate Lstart and the transitive Lstart. Since the equations and procedures for calculating them

are quite analogous to those for Estart, we do not bother to state them here.

4.5 Calculation of the range of candidate time slots

The MRT enforces correct schedules from a resource usage viewpoint. Correctness, from the

viewpoint of dependence constraints imposed by predecessors, is taken care of by computing and

using Estart, the earliest time that the operation in question may be scheduled while honoring its

dependences on its predecessors. In the context of recurrences and iterative modulo scheduling, it

is impossible to guarantee that all of an operation's predecessors have been scheduled, and have

remained scheduled, when the time comes to schedule the operation in question. Consequently,

Estart must be calculated, as described in Section 4.4, just prior to scheduling an operation. The

version of Estart that is used is the immediate Estart.

Dependences with predecessor operations are honored by not scheduling an operation before its

Estart. In other words, MinTime is set equal to Estart (Figure 8). Symmetry might argue that no

operation be scheduled later than its Lstart, the latest time at which an operation can be scheduled

without violating a dependence with a scheduled successor, the motivation being to minimize the

number of successor operations that will have to be rescheduled. However, this policy will, in

general, lead to dead-end states in which no further operation can be scheduled. Some explicit

scheme for backtracking must then be employed.

Instead, backtracking is built into iterative modulo scheduling by ignoring the dependence

constraints of successor operations. In effect, the Lstart for the operation being scheduled is

assumed to be infinite, just as with acyclic scheduling. Dependences with successors operations

are honored by virtue of the fact that when an operation is scheduled, all operations that conflict

with it, either because of resource usage or due to dependence conflicts, are unscheduled. This

constitutes the backtracking action. When these operations are scheduled subsequently, and Estart

is computed for them, the dependence constraints are observed at that point. At any point in time,

the partial schedule for the currently scheduled operations fully honors all constraints between the

operations that have been scheduled.

In any event, it is pointless and redundant to consider more than II contiguous time slots starting

with Estart. By definition, all time slots between Estart and Lstart (which in our case is viewed as

being infinite) are legal from the point of view of dependence constraints. If the operation cannot

- 42-

be scheduled at any time slot between Estart and Lstart, it must be because of resource constraints.

Since we are using a MRT, if a legal time slot is not found in the range from Estart to (Estart + II ­

1) because of resource conflicts, it will not be found outside this range either. In general, MaxTime

is set equal to the smaller of Lstart and (Estart + II - 1) and only time slots in the range from

MinTime (= Estart) to MaxTime are considered. If Lstart is viewed as infinite, as is the case in

IterativeSchedule, MaxTime is equal to (Estart + II - 1).

4.6 Selection of operations to be unscheduled

Assume that a time slot is found between MinTime and MaxTime such that, for at least one of the

alternatives for the current operation, there is no resource conflict with any currently scheduled

operation. If so, the current operation is scheduled at this time. The only operations that will need

to be unscheduled are those scheduled immediate successors with whom there is a dependence

conflict because the current operation has been scheduled too late to honor the delay on the edge

between it and its immediate successor.

On the other hand, if every time slot from MinTime to MaxTime results in a resource conflict then

we must make two decisions. First, we must choose a time slot in which to schedule the current

operation and, second, we must choose which currently scheduled operations to displace from the

schedule because of resource conflicts. The first decision is made with an eye to ensuring forward

progress (Figure 11); in the event that the current operation was previously scheduled, it will not

be rescheduled at the same time. This avoids a situation where two operations keep displacing each

other endlessly from the schedule. If Estart is less than the previous schedule time, the operation is

scheduled at Estart. If not, it is scheduled one cycle later than it was scheduled previously.

In this latter case, regardless of in which time slot we choose to schedule the operation, one or

more operations will have to be unscheduled because of resource conflicts. In the event that there

are multiple alternatives for scheduling the operation, the alternative selected determines which

operations have a resource conflict and must, therefore, be unscheduled. Ideally, we would like to

select that alternative which displaces the lowest priority operations. Instead of attempting to make

this determination directly, all those operations are unscheduled which would conflict with the

current operation if it were scheduled at the selected time, using any of the alternatives. In addition,

all immediate successors with a dependence conflict must be unscheduled. The current operation is

then scheduled using one of the alternatives.

- 43 -

In all cases, the displaced operations will subsequently be rescheduled, many of them perhaps even

at the very same time, in the order specified by the priority function.

function FindTimeSlot(Operation, MinTime, MaxTime: integer): integer;

var
CurrTime, SchedSlot: integer;

begin
CurrTime := MinTime;
SchedSlot := null;
while (SchedSlot = null) and (CurrTime <= MaxTime) do

if ResourceConflict(Operation, CurrTime) then
{ There is a resource conflict at CurrTime. Try the next time slot. }

CurrTime .- CurrTime + 1
else

There is no resource conflict at CurrTime. Select this time slot.
Note that dependence conflicts with successor operations are ignored.
Dependence constraints due to predecessor operations were honored in
the computation of MinTime.
SchedSlot := CurrTime;

{ If a legal slot was not found, then pick (in decreasing order of priority) }
{ the first available option from the following : }
{ }

{ - MinTime, either if this is the first time that Operation is being }
{ scheduled, or if MinTime is greater than PrevScheduleTime[Operation] , }
{ (where PrevScheduleTime[Operation] is the time at which Operation was }
(last scheduled) }
{ - PrevScheduleTime[Operation] + 1 }

if SchedSlot = null then
if (NeverScheduled[Operation]) or (MinTime> PrevScheduleTime[Operation]) then

SchedSlot .- MinTime
else

SchedSlot .- PrevScheduleTime[Operation] + 1;

FindTimeSlot := SchedSlot;

end; { FindTimeSlot }

Figure 11. The function FindTimeSlot.

- 44-

5 Experimental results

5.1 The experimental setup

The experimental input to the research scheduler was obtained from the Perfect Club benchmark

suite [10], the Spec benchmarks [73] and the Livermore Fortran Kernels (LFK) [50] using the

Fortran77 compiler for the Cydra 5. The Cydra 5 compiler examines every innermost loop as a

potential candidate for modulo scheduling. Candidate loops are rejected if they are not DO-loops, if

they can exit early, if they contain procedure calls, or if they contain more than 30 basic blocks

prior to IF-conversion [20]. For those loops that would have been modulo scheduled by the Cydra

5 compiler, the intermediate representation, just prior to modulo scheduling but after load-store

elimination, recurrence back-substitution and IF-conversion, was written out to a file that was then

read in by the research scheduler. Furthermore, profile statistics were gathered for the execution

frequency of each basic block with the prescribed data input. These statistics are used below in

estimating the effect of the various heuristics upon execution time. The input set to the research

scheduler consisted of 1327 loops (1002 from the Perfect Club, 298 from Spec, and 27 from the

LFK) of which 597 are actually executed when the actual benchmarks are run with the prescribed

data input.

The statistics presented in Section 5.3 show that a very large fraction of the loops are simple

enough that they can be scheduled at the Mil and without any operation needing to be rescheduled.

Consequently, they are of little value in discriminating between better and worse heuristics. These

easy loops were filtered out to yield a more taxing benchmark consisting of those loops which

either could not be scheduled at the MIl or which required at least one operation to be rescheduled.

It consists of 168 loops of which 73 are actually executed when the original benchmarks are

executed with the prescribed data input. We shall refer to this benchmark as the "Difficult"

benchmark and the one consisting of 1327 loops as the "Complete" benchmark.

In the Cydra 5, 64-bit precision arithmetic was implemented on its 32-bit data paths by using each

stage of the pipelines for two consecutive cycles. This results in a large number of block and

complex reservation tables which, while they amplify the need for iterative scheduling, are

unrepresentative of future microprocessors with 64-bit datapaths. A compiler switch was used to

force all computation into 32-bit precision so that, from the scheduler's point of view, the

computation and the reservation tables better reflect a machine with 64-bit datapaths. The

scheduling experiments were performed using the detailed, precise reservation tables for the Cydra

- 45-

!

5 as well as the actual latencies (Table 2). The one exception is the load latency which was

assumed to be 20 cycles rather than the 26 cycles that the Cydra 5 compiler uses for modulo

scheduled loops.

Table 2. Relevant details of the machine model used by the scheduler in these experiments.

Functional Unit Number Operations Latency

Memory port 2 Load 20
Store 1
Predicate set/reset 2

Address ALU 2 Address add / subtract 3

Adder 1 IntegerlFLP add/subtract 4

Multiplier 1 IntegerlFLP multiply 5
IntegerlFLP divide 22
FLP square-root 26

Instruction pipeline 1 Branch 3

5.2 Program statistics

Presented in Table 3 are various statistics on the nature of the loops in the Complete benchmark.

Table 4 presents the same statisitics for the Difficult benchmark. In each case, the first column lists

the measurement that was made on each loop, the second column lists the minimum value that the

measurement could possibly yield, and the remaining columns provide various aspects of the

distribution statistics for the quantity measured. The third column lists the fraction of loops for

which the minimum possible value was encountered, the fourth and the fifth columns specify the

median and the mean of the distribution, respectively, and the last column indicates the maximum

value that was observed for that measurement.

- 46-

Table 3. Distribution statistics for various measurements on the Complete benchmark.

Measurement Minimum Frequency of Median Mean Maximum
Possible Minimum Value

Value Possible
Value

Number of operations 4 0.004 12 19.54 163

MIl 1 0.286 3 11.41 163

Minimum Modulo Schedule Length 4 0.045 31 35.79 211

max(O, RecMII - ResMII) 0 0.840 0 4.54 115

Number of non-trivial SCCs 0 0.773 0 0.32 6

Number of vertices per SCC 1 0.930 1 1.30 42

Table 4. Distribution statistics for various measurements on the Difficult benchmark.

Measurement Minimum Frequency of Median Mean Maximum
Possible Minimum Value

Value Possible
Value

Number of operations 4 0.000 30 37.29 141

MIl 1 0.000 30 29.18 163

Minimum Modulo Schedule Length 4 0.000 50 62.68 211

max(O, RecMII - ResMII) 0 0.464 7 13.36 115

Number of non-trivial SCCs 0 0.220 1 1.13 6

Number of vertices per SCC 1 0.855 1 1.72 42

- 47 -

As can be seen from Table 3, the number of operations per loop is generally quite small but there is

at least one loop which has 163 operations. The fact that the median is less than the mean, and that

the median and mean are both much closer to the minimum possible value than to the maximum

value, indicates a distribution that is heavily skewed towards small values and has a long tail. The

MIl behaves in much the same way I, as does the lower bound on the length of the modulo

schedule for a single iteration of the loop. The lower bound on the modulo schedule length for a

given II is the larger of MinDist[START, STOP] and the actual schedule length achieved by acyclic

list scheduling. The large number of small loops appears to be due to the presence in the

benchmarks of many initialization loops.

Examining the distribution statistics in Table 3 for the quantity Max(O, RecMIl-ResMIl) we find an

even more pronounced skew towards small values. What is noteworthy is that for 84% of all loops

this value is 0, for 90% it is less than or equal to 20, and for 95% it is less than or equal to 28.

This has implications for the average computational complexity of the MIl calculation; 84% of the

time the RecMIl is equal to or less than the ResMII and ComputeMinDist need only be invoked

once per SCC in the loop.

A non-trivial SCC is one containing more than one operation. From a scheduling perspective, an

operation from a trivial SCC need be treated no differently than one which is not in an SCC as long

as the II is greater than or equal to the RecMII implied by the reflexive dependence edge. A loop

can be more difficult to schedule if the number of non-trivial SCCs in it is large. Statistically, there

tend to be very few SCCs per loop. In fact, 77% of the loops, the vectorizable ones, have no non­

trivial SCCs. These statistics affect the average complexity of computing the MIl.

The number of operations per SCC plays a role in determining the average computational

complexity of computing the RecMIl and the MIl. The distribution is heavily skewed towards

small values. 93% of all SCCs consist of a single operation (typically, the add that increments the

value of an address into an array), 95% have 2 operations or less and 99% consist of 8 operations

or less. These statistics, along with those for the distribution of the difference between RecMII and

ResMIl, suggest that the complexity of calculating the RecMIl may be expected to be small even

though ComputeMinDist is O(N3) in complexity. The analysis in Section 5.4 bears this out.

I The fact that the largest loop has 163 operations in it is unrelated to the fact that the largest MIl is also 163. The loop
with the most operations is not the same one as the loop with the largest MIL

- 48-

As is to be expected, Table 4 shows that the distribution for each statistic for the Difficult

benchmark is skewed towards a larger value than is the corresponding distribution for the

Complete benchmark.

5.3 Characterization of iterative modulo scheduling

The total time spent executing a given loop (possibly over multiple visits to the loop) is given by

EntryFreq*SL + (LoopFreq-EntryFreq)*1I

where EntryFreq is the number of times the loop is entered, LoopFreq is the number of times the

loop body is traversed, and SL is the schedule length for one iteration. The first two quantities are

obtained by profiling the benchmark programs. This formula for execution time assumes that no

time is spent in processor stalls due to cache faults or other causes. Except in the case of loops with

very small trip counts, the coefficient of II is far larger than that of SL, and the execution time is

determined primarily by the value of II. Consequently, II is the primary metric of schedule quality

and SL is the secondary metric.

Table 5 presents statistics on how well iterative modulo scheduling performs. The nature of the

columns is the same as for Tables 3 and 4. The first row of statistics is for the quantity Deltall, the

difference between the achieved II and the MIl. The remaining statistics are for the ratio of a

particular measurement on a loop to the smallest value that that measurement could possibly take.

For instance, the second row of statistics is for the ratio of the achieved II for a loop to the MIl for

that loop.

The statistics for Deltall show that for 96% of all loops the lower bound of MIl is achieved. Of the

1327 loops scheduled, 32 had a Deltall of 1, 8 had a Deltall of 2, and 11 had a Deltall that was

greater than 2. Of these, all but two had a Deltall of 6 or less, and those two had a Deltall of 20.

Iterative modulo scheduling is quite successful in achieving optimal values of II. (It is worth noting

that MIl is not necessarily an achievable lower bound on II. The difference of the achieved II from

the true, but unknown, minimum possible II may be even less than that indicated by these

statistics.) These statistics also have implications for the average computational complexity of

iterative modulo scheduling since the number of candidate II values considered is equal to

Deltall+ 1.

- 49-

Table 5. Distribution statistics for various measures of algorithmic merit with a BudgetRatio of 6
for the Complete benchmark.

Measurement Minimum Frequency of Median Mean Maximum
Possible Minimum Value

Value Possible
Value

DeltaII 0 0.960 0.00 0.10 20.00

II (ratio) I 0.960 1.00 1.01 1.50

Schedule Length (ratio) I 0.484 1.02 1.07 2.03

Execution Time (ratio) 1 0.539 1.00 1.05 1.50

Number of operations scheduled for 1 0.900 1.00 1.03 4.33
the final, successful II attempted
(ratio)

Number of operations scheduled, 1 0.873 1.00 1.64 121.52
cumulative across all II attempts
(ratio)

These statistics also suggest that it is not beneficial to evaluate HeightR symbolically, as a function

of II, as suggested by Lam for computing Estart [42]. In either case, symbolic computation is more

expensive than a numerical computation. The advantage of the symbolic computation is that the re­

evaluation of HeightR, when the II is increased, is less expensive than recalculating it numerically.

However, the statistics on Deltall show that this benefit would be derived for only 4% of the

loops, whereas the higher cost of symbolic evaluation would be incurred on all the loops.

A somewhat more meaningful measure of schedule quality is the ratio of the achieved II to MIl,

i.e., the relative non-optimality of the II over the lower bound. The distribution statistics for this

metric are shown in the second row of statistics in Table 5. Again, 96% of the loops have no

degradation, 99% have a ratio of 1.1 or less, and the maximum ratio is 1.5.

The secondary measure of schedule quality is the length of the schedule for one iteration. The

distribution statistics for the ratio of the achieved schedule length to the lower bound described

- 50-

earlier are shown in the third row of statistics. For all but 5 loops, this ratio is no more than 1.5.

(Note that this lower bound, too, is not necessarily achievable.)

In the final analysis, the best measure of schedule quality is the no-stall execution time which is

computed by using the above formula. A lower bound on the execution time is obtained by using

the lower bounds for SL and II in that formula. Only 597 of the 1327 loops end up being executed

for the input data sets used to profile the benchmark programs. Only these loops were considered

when gathering execution time statistics. The distribution statistics for the ratio of the actual

execution time to the lower bound are shown in Table 5. 54% of the loops achieved the lower

bound on execution time and no loop had an execution time ratio of more than 1.5. All the loops

together would only take 2.8% longer to execute than the lower bound. (Again, it is worth noting

that we are comparing the actual no-stall execution time to a lower bound that is not necessarily

achievable.)

Code quality must be balanced against the computational effort involved in generating a modulo

schedule. It is reasonable to view the computational complexity of acyclic list scheduling as a lower

bound on that for modulo scheduling, and it was a goal, when selecting the scheduling heuristics,

to approach this lower bound in terms of the number of operation scheduling steps required and the

computational cost of each step. In particular, since each operation is scheduled precisely once in

acyclic list scheduling, this is the goal for modulo scheduling as well. And yet, the modulo

scheduling algorithm must be capable of coping with the complications caused by the presence of

recurrences as well as block and complex reservation tables. Consequently, this goal might not

quite be achievable.

The last two rows in Table 5 provide statistics on the scheduling inefficiency, i.e., the number of

times an operation is scheduled as a ratio of the number of operations in the loop. The second last

row reports on the scheduling inefficiency given that the II corresponds to the smallest value for

which a schedule was found. Under these circumstances, iterative modulo scheduling is quite

efficient. For 90% of the loops, each operation is scheduled only once, the average value of the

ratio is 1.03 and the largest value is 4.33. These statistics speak to the efficiency of the function

IterativeSchedule once the II has been selected correctly.

When considering the efficiency of the procedure ModuloSchedule, one must also take into

account the scheduling effort expended for the unsuccessful values of II. The last row of Table 5

lists statistics on the scheduling inefficiency measured over all of the II values attempted. The most

- 51 -

significant difference is that the maximum scheduling inefficiency goes from a ratio of 4.33 to a

ratio of 121.52. This latter measure of scheduling inefficiency is sensitive to the parameter

BudgetRatio, in procedure ModuloSchedule, which determines how hard IterativeSchedule tries to

find a schedule for a candidate II before giving up. (BudgetRatio multiplied by the number of

operations in the loop is the value of the parameter Budget in IterativeSchedule, and Budget is the

limit on the number of operation scheduling steps performed before giving up on that candidate II.)

In collecting the statistics reported above, BudgetRatio was set at 6, well above the largest value

actually needed by any loop, which was 4.33 (as can be seen from the second last row of Table 5).

This was done in order to understand how well modulo scheduling can perform, in the best case,

in terms of schedule quality. However, this large a BudgetRatio might not be the best choice.

Generally, in order to find a schedule for a smaller value of II one must use a larger BudgetRatio.

Too small a BudgetRatio results in having to try successively larger values of II until a schedule is

found at a larger II than necessary. Not only does this yield a poorer schedule, but it also increases

the computational complexity since a larger number of candidate values of II are attempted, and

IterativeSchedule, on all but the last, successful invocation, expends its entire budget each time.

On the other hand, once the BudgetRatio has been increased enough that the minimum achievable

II has been reached, further increasing BudgetRatio cannot be beneficial in terms of schedule

quality. However, it will increase the computational complexity if the minimum achievable II is

larger than the MIl. In this case, a certain number of unsuccessful values of II must necessarily be

attempted. Increasing BudgetRatio only means that more compile time is spent on attempts that are

destined to be unsuccessful. This suggests the possibility that there is some optimum value of

BudgetRatio for which the execution time is near-optimal and the computational complexity is also

near its minimal value.

Figure 12 shows the dilation in the aggregate execution time over all the loops (as a fraction of the

lower bound) and the aggregate scheduling inefficiency, both as functions of the BudgetRatio. The

aggregate scheduling inefficiency is the ratio of the total number of operation scheduling steps

performed in IterativeSchedule, across the entire set of loops, to the total number of operations in

all the loops. Ideally, the scheduling inefficiency would be 1 and the execution time dilation would

be O. For each loop, a feasible II was found by performing a sequential search starting with II

equal to MIl. As surmised, execution time dilation decreases monotonically with BudgetRatio from

5.2%, down to 2.8% at a BudgetRatio of 2, and eventually levelling off at 2.78%. The scheduling

- 52 -

inefficiency, however, first decreases from 2.56 down to 1.50 at a BudgetRatio of 1.75 and then

begins to increase slowly.

-~--+2

3.50 4.00

I

--0- Sc~eduling InefficiencyJ

r 3

-------r 2.5

-11
~~~~~~-+-I 0.5

+--------+---1--1 0
2.50 3.00

BudgetRatio

2.00

o--;:]--o--o--Cl---o--o--=~;==-=a-~--;- 1.5

0.05

i

i ~~~e~~~_i~n Tim:_Di~~tion

0.06 i
I

0.04 +--,,--~---------
I

I ~~~~>---C..........~:::::::===0.03 t----""---------
i
!

0.021f------

I

0.01 1-

o t------f
1.00 1.50

Figure 12. Variation of execution time and scheduling cost vs. the parameter BudgetRatio for the
Complete benchmark.

At a BudgetRatio of around 2, both the execution time dilation (2.8%) and the scheduling

inefficiency (1.53) are down very close to their respective minimum values. If the set of

benchmark loops used is viewed as representative of the actual workload, a BudgetRatio of 2

would be the optimum value to use when performing modulo scheduling for a processor with the

machine model used in this study. (For the Perfect, Spec and LFK benchmarks individually, the

optimum values for BudgetRatio are 2, 1.75 and 1.5, respectively, but using a BudgetRatio of 2

for the latter two would still yield near-optimality.) If either the workload or the machine model are

substantially different, a similar experiment would need to be conducted to ascertain the optimum

value for BudgetRatio.:

- 53 -



A BudgetRatio of 1 yields an execution time dilation of 5.2% and a scheduling inefficiency of

2.65. Whereas the 2.3% performance improvement gained by iterative modulo scheduling (with a

BudgetRatio of 2) may not provide adequate motivation for the use of iterative modulo scheduling

over some non-iterative form of modulo scheduling, the 42% reduction in scheduling inefficiency

is more significant. The 10% of loops that cannot be scheduled at a scheduling inefficiency of I

(even when the II is achievable) require that the II be increased beyond the minimum necessary,

thereby contributing to the 42% difference in aggregate scheduling inefficiency. (The difference in

sensitivity of scheduling inefficiency and execution time dilation to the BudgetRatio may be due to

the fact that only 45% of the loops scheduled are actually executed. The two statistics are for

different samples.)

Table 6. Distribution statistics for various measures of algorithmic merit with a BudgetRatio of 2
for the Complete benchmark.

Measurement Minimum Frequency of Median Mean Maximum
Possible Minimum Value

Value Possible
Value

DeltaII 0 0.956 0.00 0.11 20.00

II (ratio) 1 0.956 1.00 1.01 1.50

Schedule Length (ratio) 1 0.485 1.02 1.07 1.88

Execution Time (ratio) 1 0.539 1.00 1.05 1.50

Number of operations scheduled for 1 0.901 1.00 1.02 1.97
the final, successful II attempt
(ratio)

Number of operations scheduled, I 0.873 1.00 1.25 41.52
cumulative across all II attempts
(ratio)

Table 6 presents the same statistics as in Table 5, but for a BudgetRatio of 2 instead of 6. With the

exception of the scheduling inefficiency, the statistics are barely perturbed by reducing the

BudgetRatio from 6 down to 2. However, the last two rows of statistics are appreciably smaller,

especially with respect to the mean and the maximum value.

- 54-



The best BudgetRatio for the Difficult benchmark, too, is 2. As BudgetRatio is increased from 1,

the execution time dilation decreases monotonically from 11.5%, down to 5.63% at a BudgetRatio

of 2, eventually levelling off at 5.55%. The scheduling inefficiency first decreases from 7.46 down

to 3.07 at a BudgetRatio of 1.75 and then begins to increase once again. When the BudgetRatio is

2, the scheduling inefficiency is 3.21. For the Difficult benchmark, using acyclic list scheduling

(BudgetRatio of 1) rather than iterative modulo scheduling with a BudgetRatio of 2, would result

in a 5.9% increase in execution time and a 132% increase in scheduling inefficiency. Table 7

presents statistics similar to those in Table 6, but for the Difficult benchmark with a BudgetRatio of

2. As might be expected, all the distributions are skewed towards larger values.

Table 7. Distribution statistics for various measures of algorithmic merit with a BudgetRatio of 2
for the Difficult benchmark.

Measurement Minimum Frequency of Median Mean Maximum
Possible .. Minimum Value

Value Possible
Value

DeltaII 0 0.649 0.00 0.89 20.00

IT (ratio) 1 0.649 1.00 1.04 1.50

Schedule Length (ratio) 1 0.316 1.05 1.11 1.88

Execution Time (ratio) 1 0.192 1.04 1.07 1.48

Number of operations scheduled for 1 0.214 1.08 1.16 1.97
the final, successful IT attempt
(ratio)

Number of operations scheduled, 1 0.000 1.20 2.96 41.52
cumulative across all IT attempts
(ratio)

From Figure 12 we see that we have come reasonably close to our goal of getting near-optimal

performance at the same expense as acyclic list scheduling. For the Complete benchmark, and

using a BudgetRatio of 2, we schedule on the average 1.53 operations per operation in the loop

body. This means that, on the average, 0.53 operations are unscheduled for every operation in the

loop. Although the cost of unscheduling an operation is less than the cost of scheduling it, we can,

conservatively, assume that they are equal. So, the cost of iterative modulo scheduling is 2.06

- 55 -



(i.e., 1.53 + 0.53) times that of acyclic list scheduling, since the latter schedules each operation

precisely once, and no operations are ever unscheduled. Even for the Difficult benchmark, iterative

modulo scheduling with a BudgetRatio of 2 is only 5.42 times as expensive as acylic list

scheduling.

This data enables an interesting comparison with "unroll-before-scheduling" schemes which rely

on unrolling the body of the original loop prior to scheduling [30, 45, 37] and the "unroll-while­

scheduling" schemes which unroll concurrently with scheduling [31,12,3,56]. Iterative modulo

scheduling gets to within 2.8% of the lower bound (for modulo scheduling) on execution time at

an average cost equivalent to scheduling 2.06 operations per operation in the original loop. Some

of these other approaches to software pipelining do have the potential to do better than modulo

scheduling because each iteration is not constrained to have the same schedule, and because a

different software pipeline can be used for each control flow path through the loop body.

However, the improvement in code quality will need to be significant enough to warrant the extra

scheduling cost. Typically, "unroll-before-scheduling" schemes unroll the loop body many tens of

times [45], leading to a computational comple-xity far greater than that of iterative modulo

scheduling. One might expect the "unroll-while-scheduling" algorithms to unroll to about the same

extent. Furthermore, the "unroll-while-scheduling" algorithms have the task of looking for a

repeated scheduling state at every step. In the context of non-unit latencies and non-trivial

reservation tables, this can be expensive. Unfortunately, the performance and complexity of such

approaches have never been characterized sufficiently, making a direct comparison with iterative

modulo scheduling impossible.

5.4 Computational complexity of iterative modulo scheduling

We now examine the statistical computational complexity of iterative modulo scheduling as a

function of the number of operations, N, in the loop. Iterative modulo scheduling involves a

number of steps, the complexity of each of which is listed in Table 8. First, the SCCs must be

identified. This can be done in O(N+E) time, where E is the number of edges in the dependence

graph [2]. Although, in general, E can be as much as O(N2), for the dependence graphs under

consideration here, one might expect that the in-degree of each vertex is not a function of Nand

that E is O(N). One can use linear regression to perform a least mean square error fit to the data

with a polynomial in N. The best fit polynomial for E is given by 3.0036 N. On the average there

are about three edges in the graph per operation. This is higher than what one might expect because

of the additional predicate input that each operation possesses as well as certain additional

- 56 -



precedence edges between operations which do not correspond to the flow dependences caused by

the use of virtual registers. Since E is O(N), so is the complexity of identifying the SCCs.

Table 8. Computational complexity of various sub-activities involved in iterative modulo
scheduling.

Activity Worst-case computational Empirical computational
complexity complexity

SCC identification O(N+E) O(N)

ResMIl calculation O(N) O(N)

MIl calculation - O(N)

HeightR calculation O(NE) O(N)

Iterative scheduling NP-complete O(N2)

The ResMII calculation first sorts the operations in increasing order of the number of alternatives,

and then inspects the reservation table for each alternative for each operation exactly once. The

complexity of the first step is O(N) using radix sort and so is that of the second step, since the

number of alternatives per operation is not a function of N.

The computational complexity of the RecMII calculation is a function of the number of non-trivial

SCCs in the loop, the number of operations in each SCC and the extent by which the RecMII is

larger than the ResMII. It is difficult to characterize the worst-case complexity of this computation

as a function of N since one might expect many of the above factors to be uncorrelated with N.

This is borne out by the measured data. The empirical complexity obtained via a curve-fit is given

by

11.9133 N + 3.0474.

This is the expected number of times the innermost loop of ComputeMinDist is executed for a loop

with N operations. However, the standard deviation of the residual error is 1842.7 which is larger

than the predicted value over the measured range of N. In other words, the computational

- 57 -



complexity is a variable that is largely uncorrelated with N. To the extent that it is correlated, the

empirical computational complexity of the MIlcalculation is linear in N.

The worst-case complexity of the algorithm for computing HeightR is O(NE). The LMS curve-fit

to the data shows that the expected number of times that the innermost loop of this algorithm is

executed is given by 6.1474 N. Empirically, the complexity of computing the scheduling priority

is O(N).

The iterative modulo scheduling, itself, spends its time in two innermost loops. First, for each

operation scheduled, all its immediate predecessors must be examined to calculate Estart. The

expected number of times that this loop is executed, as a function of N, is 3.3321 N. Second, for

each operation scheduled, the loop in FindTimeSlot examines at most II time slots. The expected

number of times this loop is executed is given by

0.0327 N2 + 6.2799 N.

Although the worst-case complexity of iterative scheduling is exponential in N, the empirical

computational complexity of iterative scheduling is O(N2). From Table 8 we conclude that the

statistical complexity of iterative modulo scheduling is O(N2) since no sub-activity is worse than

O(N2).

6 Related work

There exists very little literature that discusses the modulo scheduling algorithm, itself, in the

context of finite, realistic machine models. Previous modulo schedulers have tended to focus on

the difficulty, due to the existence of deadlines, of scheduling operations that are on a recurrence

circuit. This has been reflected in various schemes that schedule the SCCs first. In the prototype

scheduler developed by the author at Cydrome, as well as in Cydrome's production compiler, all

of the SCCs are iterative modulo scheduled together during a first phase. Then, during the second

phase, the rest of the operations are added to the pool of operations to be scheduled and iterative

modulo scheduling is continued [20]. The heuristics employed were different from those outlined

in this report, were more expensive computationally, and often resulted in worse schedules.

Hsu first schedules the SCCs, using some form of exhaustive search through the space of

schedules, and then performs stretch scheduling to schedule the remaining operations [34]. Stretch

- 58 -



scheduling relies on the fact that once an see has been successfully scheduled, it may thereafter be

rescheduled as a unit, delayed in time by some multiple of II. This does not alter the state of the

MRT, nor does it alter the relative scheduled times of the operations in the scc. Once the SCCs

have been scheduled successfully, they may be treated as atomic macro-operations, with complex

reservation tables, embedded in the rest of the dependence graph. This dependence graph now

appears to have no cycles in it (since all cycles are buried within one of the atomic units). The

simple modulo scheduling, described in Section 2.7, may now be employed with the constraint

that the time at which an see may be scheduled, modulo II, is fixed. If the operations' reservation

tables are not simple, there is no guarantee that a schedule will be found. The schedules selected

for the sces may be such that collectively they provide a given non-See operation with no legal

schedule slot from a resource usage viewpoint. Stretch scheduling cannot alter this situation, and

the II will have to be increased.

Lam's algorithm, too, utilizes the see structure but list schedules each see separately, ignoring

the inter-iteration dependences [42]. Thereafter, just as Hsu does, each see is treated as a single

macro-operation and the resulting acyclic dependence graph is scheduled using the simple modulo

scheduling described in Section 2.7. With an initial value equal to the MIl, the II is iteratively

increased until a legal modulo schedule is obtained. By determining and fixing the schedule of each

SCC in isolation, Lam's algorithm can result in a larger RecMII. The problem is that the

independently generated schedules for the sees determine the II for the loop rather than vice

versa. Also, because of the complex reservation tables of the macro-operations that represent the

sees, it is more often impossible to schedule at the computation at the minimum achievable II.

On the other hand, the application of hierarchical reduction enables Lam's algorithm to cope with

loop bodies containing structured control flow graphs without any special hardware support such

as predicated execution. Just as with the SCCs, structured constructs such as IF-THEN-ELSE are

list scheduled and treated as atomic objects. Each leg of the IF-THEN-ELSE is list scheduled

separately and the union of the resource usages represents that of the reduced IF-THEN-ELSE

construct. This permits loops with structured flow of control to be modulo scheduled. After

modulo scheduling, the hierarchically reduced IF-THEN-ELSE pseudo-operations must be

expanded. Each portion ofthe schedule in which m IF-THEN-ELSE pseudo-operations are active

must be expanded into 2m control flow paths with the appropriate branching and merging between

the paths.

- 59 -



Since Lam takes the union of the resource usages in a conditional construct while predicated

modulo scheduling takes the sum of the usages, the former approach should yield the smaller MIl.

However, since Lam separately list schedules each leg of the conditional creating pseudo­

operations with complex reservation tables, the II that she actually achieves should deviate from the

MIl to a greater extent. Warter, et al., have implemented both techniques and have observed that,

on the average, Lam's approach does result in smaller MIl's but larger II's [75]. This effect

increases for processors with higher issue rates.

Warter, et al., go on to combine the best of both approaches in their enhanced modulo scheduling

algorithm. They derive the modulo schedule as if predicated execution were available, except that

two operations from the same iteration are allowed to be scheduled on the same resource at the

same time if their predicates are mutually exclusive, i.e., they cannot both be true. This is

equivalent to taking the union of the resource usages. Furthermore, it is applicable to arbitrary,

possibly unstructured, acyclic flow graphs in the loop body. After modulo scheduling, the control

flow graph is re-generated using reverse IF-conversion [77]. Enhanced modulo scheduling results

in MIl's that are as small as for hierarchical reduction, but as with iterative modulo scheduling

using predicates, the achieved II is rarely more than the MIl.

One approach, guaranteed to find an optimal solution, is to pose the task of finding a modulo

schedule as an integer linear programming problem [28, 6]. In fact, this strategy permits one to

find a schedule that simultaneously minimizes the II and the number of registers required [33, 25].

Unfortunately, the execution time for solving integer linear programs is far too great for this

approach to be seriously considered for use in production compilers. Various people have

proposed the use of linear programming to find optimal schedules assuming unbounded resources

[53, 16-18]. Since the resources are unbounded, what this approach computes, in reality, are

quantities such as the RecMIl, the earliest start times for all the operations, and a lower bound on

the number of registers needed.

Huff [36] modified the Cydrome compiler to experiment with different priority schemes and

demonstrated a scheduling heuristic that reduces register pressure relative to the greedy scheduler

used in the Cydrome compiler. Wang, et al., too, have proposed heuristics-based algorithms for

generating modulo schedules in a register-pressure sensitive manner [74]. Eichenberger has

articulated algorithms, both optimal [24] and heuristics-based [27], for re-scheduling a loop after

iterative modulo scheduling has generated an initial schedule in order to minimize the number of

- 60-



registers needed. In both cases, the constraint is that operations are re-scheduled by a multiple of

the II so that the MRT is unaltered.

7 Conclusion

In this report we have presented an algorithm for modulo scheduling: iterative modulo scheduling.

We have also presented a relatively simple priority function, HeightR, for use by the modulo

scheduler. Our experimental findings are that iterative modulo scheduling, using the HeightR

scheduling priority function, and when assigned a BudgetRatio of 2

• requires the scheduling of only 53% more operations than does acyclic list scheduling,

• generates schedules that are optimal in II for 96% of the loops, and

• results in a near-optimal aggregate execution time for all the loops combined that is only 2.8%

larger than the lower bound.

Iterative modulo scheduling generates near-optimal schedules. Furthermore, despite the iterative

nature of this algorithm, it is quite economical in the amount of effort expended to achieve these

near-optimal schedules. In particular, it is far more efficient than any cyclic or acyclic scheduling

algorithm for loop scheduling which makes use of unrolling or code replication. If such algorithms

replicate the loop body by more than 106% (which is just more than one single copy of the loop

body) they will be more expensive computationally.

Modulo scheduling is a style of software pipelining which can provide very good cyclic schedules

for innermost loops while keeping down the size of the resulting code. Along with IF-conversion,

profile-based hyperblock selection, reverse IF-conversion, speculative code motion and modulo

variable expansion, modulo scheduling can generate extremely good code for a wide class of loops

(DO-loops, WHILE-loops and loops with early exits, with loop bodies that are arbitrary, acyclic

control flow graphs, and dependences that result in the presence of data and control recurrences)

for machines with or without predicates and with or without rotating registers.

Currently, the major drawback to modulo scheduling using predicates is that in the case of loops

containing multiple control flow paths through the loop body, the RecMII is computed based on

the worst case recurrence circuit along all control flow paths, and the ResMII is computed taking

the sum of the resource usage for each path. Counterbalancing this is the relatively compact code

size of modulo schedules that use predicates.

- 61 -



Acknowledgements

This report, and the underlying research, have benefited from the ongoing discussions with and

suggestions from Vinod Kathail, Mike Schlansker, Sadun Anik and Shail Aditya. Vinod added to

the Cydra 5 compiler the capability to write out the intermediate representation of software

pipelineable loops for use as input to the research scheduler. Balas Natarajan provided insight that

was helpful in designing the algorithm for computing HeightR.

References

1. T. L. Adam, K. M. Chandy and J. R. Dickson. A comparison of list schedules for parallel
processing systems. Communications of the ACM 17, 12 (December 1974),685-690.

2. A. V. Aho, J. E. Hopcroft and J. D. Ullman. The Design and Analysis of Computer
Algorithms. (Addison-Wesley, Reading, Massachusetts, 1974).

3. A. Aiken and A. Nicolau. A realistic resource-constrained software pipelining algorithm, in
Advances in Languages and Compilers for Parallel Processing, A. Nicolau, D. Gelernter, T.
Gross and D. Padua (Editor). (Pitmanffhe MIT Press, London, 1991),274-290.

4. V. H. Allan, U. R. Shah and K. M. Reddy. Petri Net versus modulo scheduling for
software pipelining. Proc. 28th Annual International Symposium on Microarchitecture (Ann
Arbor, Michigan, November 1995).

5. J. R. Allen, K. Kennedy, C. Porterfield and J. Warren. Conversion of control dependence to
data dependence. Proc. Tenth Annual ACM Symposium on Principles of Programming
Languages (January 1983), 177-189.

6. E. R. Altman, R. Govindrajan and G. R. Gao. Scheduling and mapping: software pipelining
in the presence of hazards. Proc. ACM SIGPLAN '95 Conference on Programming
Language Design and Implementation (La Jolla, California, June 1995), 139-150.

7. V. Bala and N. Rubin. Efficient instruction scheduling using finite state automata. Proc. 28th
Annual International Symposium on Microarchitecture (Ann Arbor, Michigan, November
1995).

8. S. Beaty. Genetic algorithms and instruction scheduling. Proc. 24th Annual International
Symposium on Microarchitecture (Albuquerque, New Mexico, 1991),206-211.

9. G. R. Beck, D. W. L. Yen and T. L. Anderson. The Cydra 5 mini-supercomputer:
architecture and implementation. The Journal of Supercomputing 7, 1/2 (May 1993), 143­
180.

10. M. Berry, et al. The Perfect Club Benchmarks: Effective Performance Evaluation of
Supercomputers. The International Journal of Supercomputer Applications 3, 3 (Fall 1989),
5-40.

- 62 -



.'

11. 1. W. Bockhaus. An Implementation of GURPR*: A Software Pipelining Algorithm. M.S.
Thesis. University of Illinois at Urbana-Champaign, 1992.

12. F. Bodin and F. Charot. Loop optimization for horizontal microcoded machines. Proc. 1990
International Conference on Supercomputing (Amsterdam, 1990), 164-176.

13. D. Callahan, S. Carr and K. Kennedy. Improving Register Allocation for Subscripted
Variables. Proc. ACM SIGPLAN '90 Conference on Programming Language Design and
Implementation (June 1990), 53-65.

14. A. E. Charlesworth. An approach to scientific array processing: the architectural design of
the AP-120B/FPS-164 Family. Computer 14,9 (1981), 18-27.

15. E. S. Davidson, L. E. Shar, A. T. Thomas and J. H. Patel. Effective control for pipelined
computers. Proc. COMPCON '90 (San Francisco, February 1975), 181-184.

16. B. D. de Dinechin. An introduction to simplex scheduling. Proc. IFIP WG 10.3 Working
Conference on Parallel Architectures and Compilation Techniques. PACT '94 (Montreal,
Canada, August 1994), 327-330.

17. B. D. de Dinechin. Simplex scheduling: more than lifetime-sensitive instruction scheduling.
Technical Report 1994.22. PRISM, July 1994.

18. B. D. de Dinechin. Fast modulo scheduling under the simplex scheduling framework.
Technical Report 1995.001. 1995.

19. A. De Gloria, P. Faraboschi and M. Olivieri. A non-deterministic scheduler for a software
pipelining compiler. Proc. 25th Annual International Symposium on Microarchitecture
(Portland, Oregon, 1992),41-44.

20. J. C. Dehnert and R. A. Towle. Compiling for the Cydra 5. The Journal of Supercomputing
7, 1/2 (May 1993), 181-228.

21. E. Duesterwald, R. Gupta and M. L. Soffa. A practical dataflow framework for array
reference analysis and its use in optimizations. Proc. SIGPLAN '93 Conference on
Programming Language Design and Implementation (Albuquerque, New Mexico, June
1993), 68-77.

22. K. Ebcioglu. A compilation technique for software pipelining of loops with conditional
jumps. Proc. 20th Annual Workshop on Microprogramming (Colorado Springs, Colorado,
December 1987),69-79.

23. K. Ebcioglu and T. Nakatani. A new compilation technique for parallelizing loops with
unpredictable branches on a VLIW architecture, in Languages and Compilers for Parallel
Computing, D. Gelernter, A. Nicolau and D. Padua (Editor). (Pitmanffhe MIT Press,
London, 1989), 213-229.

24. A. Eichenberger, E. S. Davidson and S. G. Abraham. Minimum register requirements for a
modulo schedule. Proc. 27th Annual International Symposium on Microarchitecture (San
Jose, California, November 1994), 75-84.

25. A. Eichenberger, E. S. Davidson and S. G. Abraham. Optimum modulo schedules for
minimum register requirements. Proc. 1995 International Conference on Supercomputing
(Barcelona, Spain, November 1995) .

- 63 -



26. A. E. Eichenberger and E. S. Davidson. A Reduced Multipipeline Machine Description that
Preserves Scheduling Constraints. Technical Report CSE-TR-266-95. University of
Michigan, 1995.

27. A. E. Eichenberger and E. S. Davidson. Stage scheduling: a technique to reduce the register
requirements of a modulo schedule. Proc. 28th Annual International Symposium on
Microarchitecture (Ann Arbor, Michigan, November 1995).

28. P. Feautrier. Fine-grain scheduling under resource constraints. Proc. 7th Annual Workshop
on Languages and Compilers for Parallel Computing, LNCS (Ithaca, New York, August
1994).

29. J. Ferrante, K. 1. Ottenstein and J. D. Warren. The program dependence graph and its use in
optimization. ACM Transactions on Programming Languages and Systems 9,3 (July 1987),
319-349.

30. J. A. Fisher. Trace scheduling: a technique for global microcode compaction. IEEE
Transactions on Computers C-30, 7 (July 1981),478-490.

31. J. A. Fisher, D. Landskov and B. D. Shriver. Microcode compaction: looking backward and
looking forward. Proc. 1981 National Computer Conference (1981), 95-102.

32. F. Gasperoni and U. Schwiegelshohn. Scheduling loops on parallel processors: a simple
algorithm with close to optimum performance. Proc. International Conference CONPAR '92
(1992), 625-636.

33. R. Govindrajan, E. R. Altman and G. R. Gao. Minimizing register requirements under
resource-constrained rate-optimal software pipelining. Proc. 27th Annual International
Symposium on Microarchitecture (San Jose, California, November 1994), 85-94.

34. P. Y. T. Hsu. Highly Concurrent Scalar Processing. Ph.D. Thesis. University of Illinois,
Urbana-Champaign, 1986.

35. T. C. Hu. Parallel sequencing and assembly line problems. Operations Research 9,6 (1961),
841-848.

36. R. A. Huff. Lifetime-sensitive modulo scheduling. Proc. SIGPLAN '93 Conference on
Programming Language Design and Implementation (Albuquerque, New Mexico, June
1993), 258-267.

37. W. W. Hwu, et al. The superblock: an effective technique for VLIW and superscalar
compilation. The Journal of Supercomputing 7, 1/2 (May 1993),229-248.

38. D. Jacobs, P. Siegel and K. Wilson. Monte Carlo techniques in code optimization. Proc.
15th Annual International Symposium on Microprogramming (1982).

39. S. Jain. Circular scheduling: a new technique to perform software pipelining. Proc. ACM
SIGPLAN '91 Conference on Programming Language Design and Implementation (June
1991),219-228.

40. V. Kathail, M. Schlansker and B. R. Rau. HPL PlayDoh Architecture Specification: Version
LQ. Technical Report HPL-93-80. Hewlett-Packard Laboratories, February 1993.

- 64-



41. W. H. Kohler. A preliminary evaluation of the critical path method for scheduling tasks on
multiprocessor systems. IEEE Transactions on Computers C-24, 12 (December 1975),
1235-1238.

42. M. Lam. Software pipelining: an effective scheduling technique for VLIW machines. Proc.
ACM SIGPLAN '88 Conference on Programming Language Design and Implementation
(June 1988),318-327.

43. D. M. Lavery and W. W. Hwu. Unrolling-based optimizations for software pipelining.
Proc. 28th Annual International Symposium on Microarchitecture (Ann Arbor, Michigan,
November 1995).

44. E. L. Lawler. Combinatorial Optimization: Networks and Matroids. (Holt, Rinehart and
Winston, 1976).

45. P. G. Lowney, et al. The Multiflow trace scheduling compiler. The Journal of
Supercomputing 7, 1/2 (May 1993),51-142.

46. S. A. Mahlke, et al. Sentinel scheduling: a model for compiler-controlled speculative
execution. ACM Transactions on Computer Systems 11,4 (November 1993), 376-408.

47. S. A. Mahlke, et al. Characterizing the impact of predicated execution on branch prediction.
Proc. 27th International Symposium on Microarchitecture (San Jose, California, November
1994),217-227.

48. S. A. Mahlke, et al. Effective compiler support for predicated execution using the
hyperblock. Proc. 25th Annual International Symposium on Microarchitecture (1992), 45­
54.

49. P. Mateti and N. Deo. On algorithms for enumerating all circuits of a graph. SIAM Journal
of Computing 5, 1 (1976),90-99.

50. F. H. McMahon. The Livermore Fortran kernels: a computer test of the numerical
performance range. Technical Report UCRL-53745. Lawrence Livermore National
Laboratory. Livermore, California, 1986.

51. S.-M. Moon and K. Ebcioglu. An efficient resource-constrained global scheduling
technique for superscalar and VLIW processors. Proc. 25th Annual International Symposium
on Microarchitecture (Portland, Oregon, December 1992).

52. T. Muller. Employing finite automata for resource scheduling. Proc. 26th International
Symposium on Microarchitecture (Austin, Texas, December 1993), 12-20.

53. Q. Ning and G. R. Gao. A novel framework of register allocation for software pipelining.
Proc. 20th ACM Symposium on Principles of Programming Languages (Charleston, South
Carolina, January 1993),29-42.

54. 1. C. H. Park and M. S. Schlansker. On predicated execution. Technical Report HPL-91-58.
Hewlett Packard Laboratories, May 1991.

55. T. A. Proebsting and C. W. Fraser. Detecting pipeline hazards quickly. Proc. 21st Annual
ACM Symposium on Principles of Programming Languages (Portland, Oregon, January
1994), 280-286.

- 65 -



56. M. Rajagopalan and V. H. Allan. Efficient scheduling of fine-grain parallelism in loops.
Proc. 26th International Symposium on Microarchitecture (Austin, Texas, December 1993),
2-11.

57. S. Ramakrishnan. Software pipelining in PA-RISC compilers. Hewlett-Packard Journal
(July 1992), 39-45.

58. C. V. Ramamoorthy, K. M. Chandy and M. J. Gonzalez. Optimal scheduling strategies in a
multiprocessor system. IEEE Transactions on Computers C-21, 2 (February 1972), 137­
146.

59. B. R. Rau. Data flow and dependence analysis for instruction level parallelism, in Fourth
International Workshop on Languages and Compilers for Parallel Computing, U. Banerjee,
D. Gelernter, A. Nicolau and D. Padua (Editor). (Springer-Verlag, 1992),236-250.

60. B. R. Rau. Iterative modulo scheduling: an algorithm for software pipelining loops. Proc.
27th Annual International Symposium on Microarchitecture (San Jose, California, November
1994), 63-74.

61. B. R. Rau and C. D. Glaeser. Some scheduling techniques and an easily schedulable
horizontal architecture for high performance scientific computing. Proc. Fourteenth Annual
Workshop on Microprogramming (October 1981), 183-198.

62. B. R. Rau, M. Lee, P. Tirumalai and M.S. Schlansker. Register allocation for software
pipelined loops. Proc. SIGPLAN'92 Conference on Programming Language Design and
Implementation (San Francisco, June 17-19 1992).

63. B. R. Rau, M. S. Schlansker and P. P. Tirumalai. Code generation schemas for modulo
scheduled loops. Proc. 25th Annual International Symposium on Microarchitecture
(Portland, Oregon, December 1992), 158-169.

64. B. R. Rau, D. W. L. Yen, W. Yen and R. A. Towle. The Cydra 5 departmental
supercomputer: design philosophies, decisions and trade-offs. Computer 22, 1 (January
1989), 12-35.

65. C. R. Reeves. Modern Heuristic Techniques for Combinatorial Problems. (Halsted Press: an
imprint of John Wiley & Sons, Inc., New York, New York, 1993).

66. M. Schlansker and V. Kathail. Acceleration of first and higher order recurrences on
processors with instruction level parallelism. Proc. Sixth Annual Workshop on Languages
and Compilers for Parallel Computing (Portland, Oregon, August 1993).

67. M. S. Schlansker, V. Kathail and S. Anik. Height reduction of control recurrences for ILP
processors. Proc. 27th Annual International Symposium on Microarchitecture (San Jose,
California, November 1994),32-39.

68. B. Su and J. Wang. GURPR*: a new global software pipelining algorithm. Proc. 24th
Annual International Symposium on Microarchitecture (Albuquerque, New Mexico,
November 1991),212-216.

69. J. C. Tiernan. An efficient search algorithm to find the elementary circuits of a graph.
Communications of the ACM 13 (1970), 722-726.

- 66 -



70. P. Tirumalai, M. Lee and M. S. Schlansker. Parallelization of loops with exits on pipelined
architectures. Proc. Supercomputing '90 (November 1990),200-212.

71. M. Tokoro, T. Takizuka, E. Tamura and I. Yamaura. A technique of global optimization of
microprograms. Proc. 11th Annual Workshop on Microprogramming (Asilomar, California,
November 1978),41-50.

72. M. Tokoro, E. Tamura, K. Takase and K. Tamaru. An approach to microprogram
optimization considering resource occupancy and instruction formats. Proc. 10th Annual
Workshop on Microprogramming (Niagara Falls, New York, November 1977), 92-108.

73. J. Uniejewski. SPEC Benchmark Suite: Designed for Today's Advanced Systems. SPEC
Newsletter 1, 1 (Fall 1989).

74. J. Wang, A. Krall, M. A. Ertl and C. Eisenbeis. Software pipelining with register allocation
and spill. Proc. 27th International Symposium on Microarchitecture (San Jose, California,
November 1994),95-99.

75. N. J. Warter, J. W. Bockhaus, G. E. Haab and K. Subramanian. Enhanced modulo
scheduling for loops with conditional branches. Proc. The 25th Annual International
Symposium on Microarchitecture (Portland, Oregon, December 1992), 170-179.

76. N. J. Warter, D. M. Lavery and W. W. Hwu. The benefit of predicated execution for
software pipelining. Proc. 26th Annual Hawaii International Conference on System Sciences
(Hawaii, 1993).

77. N. J. Warter, S. A. Mahlke, W. W. Hwu and B. R. Rau. Reverse if-conversion. Proc.
SIGPLAN '93 Conference on Programming Language Design and Implementation
(Albuquerque, New Mexico, June 1993),290-299.

78. H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers. (Addison­
Wesley, Reading, Massachussetts, 1990).

- 67-




