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1. Introduction

We begin with an overview of our main result. Suppose we are allowed to
randomly sample a function f on the reals, with the sample values of f being
corrupted by additive random noise v of strength b. Let g be a sparse but
approximate interpolant of the random samples of f, sparse in the sense that it can
be compactly represented, and approximate in the sense that the interpolation error
in g with respect to the samples is at most b. Intuitively, we would expect that the
noise and the interpolation error add in their contribution to the error in g with
respect to f, i.e., IIg - til - 'lb. However, our results show that the noise and the
interpolation error tend to cancel, i.e., IIg - til - 0, with the extent of the
cancellation depending on the sparseness of g and how often f is sampled.

We consider the paradigm of probably approximately correct learning of Valiant, as
reviewed in Natarajan (1991), Anthony and Biggs (1992). Broadly speaking, the
paradigm requires an algorithm to identify an approximation to an unknown target
set or function, given random samples of the set or function. Of central interest in
the paradigm is the relationship between the complexity of the algorithm, the a
priori information available about the target set or function, and the goodness of the
approximation. When learning sets, if the target set is known to belong to a specific
target class, Blumer et al. (1991) establish that the above quantities are related via
the Vapnik-Chervonenkis dimension of the target class, and if this dimension is
finite, then learning is possible. They also show that even if the Vapnik
Chervonenkis dimension is infinite, learning may still be possible via the use of
Occam's Razor. Specifically, if it is possible to compress collections of examples for
the target set, then a learning algorithm exists. For instance, the class of sets
composed of finitely many intervals on the reals satisfy this condition and hence can
be learned. This tacitly implies that the class of Borel sets can be learned, since
each Borel set can be approximated arbitrarily closely by the union of finitely many
intervals. Kearns and Schapire (1990) extend the above results to the case of
probabilistic concepts, and offer an Occam's Razor result in that setting. For the
case of functions, Natarajan (1989) examines conditions under which learning is
possible, and shows that it is sufficient if the "graph" dimension of the target class is
finite. Haussler (1989) generalizes this result to a "robust" model of learning, and
shows that it is sufficient if the "metric" dimension of the class is finite. Learning
sets in the presence of noise was studied by Angluin and Laird (1988), Kearns and
Li (1993), and Sloan (1988) amongst others. Kearns and Li (1988) show that the
principle of Occam's Razor can be used to learn in the presence of a limited
amount of noise.

We consider the learning of functions, both with and without random sampling
noise. In the latter case, we mean that the function value obtained in the sampling
process is corrupted by additive random noise. In this setting, we show that if it is
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possible to construct sparse but approximate interpolants to collections of examples,
then a learning algorithm exists. For instance, it is possible to construct optimally
sparse but approximate piecewise linear interpolants to collections of examples of
univariate functions. As a consequence, we find that the class of all univariate Baire
functions, (see Feller (1957», can be learned in terms of the piecewise linear
functions, with the number of examples required to learn a particular Baire function
depending on the number of pieces required to approximate it as a piecewise linear
function. In the absence of noise, our results hold for all Lp metrics over the space
of functions. In the presence of noise, the results are for the L 2 and L 00 metrics.
There are two points of significance in regard to these results: (1) The noise need
not be of zero mean for the L oo metric. (2) For both metrics, the magnitude of the
noise can be made arbitrarily large and learning is still possible, although at
increased cost.

Our results are closely related to the work in signal processing, Oppenheim and
Schafer (1974), Papoulis (1965), Jazwinski (1970), and Krishnan (1984), on the
reconstruction and filtering of discretely sampled functions. However, much of that
literature is on linear systems and filters, with the results expressed in terms of the
Fourier decomposition, while relatively little is known about non-linear systems or
filters. Our results allow a unified approach to both linear and non-linear systems
and filters, and in that sense, offer a new and general technique for signal
reconstruction and filtering. This is explored in Natarajan (1993a), (1994), where
we analyze a broad class of filters that separate functions with respect to their
encoding complexity - since random noise has high complexity in any deterministic
encoding and is hard to compress, it can be separated from a function of low
complexity.

Of related interest is the literature on sparse polynomial interpolation, Berlekamp
(1970), Ben-Or and Tiwari (1988), Grigoriev et aI. (1990), and Ar et aI. (1992).
These authors study the identification of an unknown polynomial that can be
evaluated at selected points.

The results in this paper appeared in preliminary form in Natarajan (1993b). More
recently, Bartlett et aI. (1994) and Anthony and Bartlett (1994) pursue further the
implications of approximate interpolation on the learnability of real-valued functions
with and without noise.

2. Preliminaries

We consider functions f: [0,1] - [-K,K], where [0,1] and [-K,K] are intervals on the
reals R. A class of functions F is a set of such functions, and is said to be of
envelope K. In the interest of simplicity, we fix K = 1. A complexity measure 1 is a
mapping from F to the natural numbers N. An example for a function f is a pair

2



(x,f(x». Our discussion will involve metrics on several spaces. For the sake of
concreteness, we will deal only with the Lp metrics, pEN,P :> 1 and will define
these exhaustively. For two functions f and g and probability distribution P on [0,1],

Lp(J,g,P) = ({ If(x)-g(x) 1PdPr
For functionfand collection of examples S = {(XbYl), (X2,Y2),···, (xm,Ym)),

Lp(J, S) = (~ L 1f(Xi)- Yi IPr
Let I be a complexity measure on a class G, f a function not necessarily in G, L a
metric, andP a distribution on [0,1]. For e > 0, lmin(f, e.P, L) is defined by

lmin(f, e,P,L) = min {l(g) ls EG,L(f,g,P) < e],

If {l(g) lsEG, Lif, g, P) < e] is empty, then lmin(f' e, P, L) = 00.

Analogously, for a collection of examples S and metric L,

Imin(S, e, L) = min {l(g) Ig E G, L(g, S) < e],

If {l(g) Ig E G, L(g, S) < e} is empty, then lmin(S, e, L) = 00.

If f and g are of envelope 1, it is easy to show that

(1)

A learning algorithm A for target class F has at its disposal a subroutine
EXAMPLE, that at each call returns an example for an unknown target function
f EF. The example is chosen at random according to an arbitrary and unknown
probability distribution P on [0,1]. After seeing some number of such examples, the
learning algorithm identifies a function g in the hypothesis class G such that g is a
good approximation to f. Formally, we have the following. Algorithm A is a
learning algorithm for F in terms of G, with respect to metric L, if (a) A takes as
input e and 8. (b) A may call EXAMPLE. (c) For all probability distributions P
and all functions f in F, A identifies a function g EG, such that with probability at
least (1- 8), L(f, g, P) < e.
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The sample complexity of a learning algorithm for F in terms of G is the number of
examples sought by the algorithm as a function of the parameters of interest. In
noise-free learning, these parameters are E, 8 and [min(/), where f is the target
function. In the presence of random sampling noise, the properties of the noise
distribution would be additional parameters. Since we permit our learning
algorithms to be probabilistic, we will consider the expected sample complexity of a
learning algorithm, which is the expectation of the number of examples sought by
the algorithm as a function of the parameters of interest.

In light of the relationship between the various Lp metrics established in (1), we
focus on the L 1 metric and unless we explicitly state otherwise, use the term
learning algorithm to signify a learning algorithm with respect to the L 1 metric.

We denote the probability of an event A occurring by Pr{A}, and the expected
value of a random variable x by E{x}. Let r:N-N; r(m) is said to o(m) if
lim r(m)/m = O.

m .... OO

With respect to a class of functions F of envelope K, e > 0 and mEN, and metric
L: The size of the minimum e-cover of a set X = {xb X 2, ... , xm } is the cardinality of
the smallest set of functions G from X to R such that for each f EF, there exists
g E G satisfying L(f,g,Px ) < e, where Px is the distribution placing equal mass Vm
on each of the Xi in X. The covering number N (F, e, m, L) is the maximum of the
size of the minimum e-cover over all {XbX2, •••,xm }.

The following convergence theorem will be of considerable use to us.

Theorem 1: Pollard (1984) pp. 25-27. For a class of functions F with envelope K,
the probability that the observed mean over m random samples of any function in F
will deviate from its true mean by more than e is, when m :> 8Ie2, at most

8N(F e/8 m L )e - (m /128)(e/K)2, " 1 .

3. Occam Approximations

An approximation algorithm Q for hypothesis class G and metric L is an algorithm
that takes as input a collection S of examples and a tolerance e > 0, and identifies
in its output a function g E G such that L(g, S) < e, if such exists.

"Fix m, tEN and e > O. Let G be the class of all functions identified in the output
of Q when its input ranges over all collections S of m examples such that
Imin(S, E, L) < t. Q is said to be an Occam approximation, if there exists
polynomial q (a,b): N x ~- N, and r: N - N such that r(m) is o(m), and for all m, t,
e, and '> 0, 10g(N(G", m,L» < q(t, V')r(m). We say that (q, r) is the
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characteristic of Q. The above notion of an Occam approximation is a
generalization to functions of the more established notion of an Occam algorithm
for concepts, Blumer et al. (1991), and its extension to probabilistic concepts in
Kearns and Schapire (1990).

Example 1 Let G be the class of univariate polynomials. As complexity measure on
G, we choose the degree of the polynomial. Consider the following approximation
algorithm Q with respect to the L 2 metric. Given is a collection of samples
S = {(XbYl), (X2,Y2)"" (xm,Ym)), and tolerance E. We shall fit the data with a
polynomial of the form aO+alx+ ... a;xi+ ... adxd. For d = 0,1,2, ...
construct a linear system Xa = Y, where X is the matrix of m rows and d columns,
with row vectors of the form (1,Xi,Xr ... ,x1), Y is the column vector
(Yl,Y2, "·,Ym), and a is the column vector (ao, ab ... , ad)' Find the smallest value
of d for which the least squares solution of the linear system has residue at most E

in the L 2 norm. The solution vector a for this value of d determines the polynomial
g. This computation can be carried out efficiently, Golub and Van Loan (1983).

Claim 1: Algorithm Q is Occam.

Proof: Fix the number of samples m, the degree d of the polynomial, and the
tolerance E. For collection of samples S, lmin(S,E,L2) is the degree of the lowest
degree polynomial that fits the samples in S with error at most E in the L 2 metric.

/<

By construction, Q outputs only polynomials of degree d on such inputs. Thus, G is
a subset of the class of polynomials of degree d. By Claim 2,

which implies that q is Occam. 0

Claim 2: If F is the class of polynomials of degree d,

«
d 1t+lI"N(F",m,L 2 ) <: + ,

Proof: Let f(x) be a polynomial of degree d, and let x b x 2, ... , be d + 1
uniformly spaced points in [0,1], such that Xl = 0 and Xd+l = 1. Let Y; = f(x;).
We can write f in Lagrange form as

d+l x- x·
f(x) = L Il I v..

i=li=FjXj-Xi

Since IXj - Xi I > lI(d +1), it follows from the above equation that
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af (x) < (d + l)d ,
aYi

for x E [0,1]. Let Yi denote Yi rounded off to the nearest multiple of '/(d + 1)d+1.
It is clear that the polynomial

" d+1 x-x'
f(x) = ~ Il I Yi.

i=li=l=jXj - Xi

is within' of f(x) everywhere on the interval [0,1]. We have" therefore shown that
for every polynomial f of degree d, there exists a polynomial f of degree d within ,
of f in the L 2 metric, and such that f takes on values spaced '/(d + 1)d +1 apart on
the uniformly spaced points x 1,x2 ... Xd +1. Since f can be constructed by choosing
one of '/(d + 1)d+1 values at each of the d +1 points, there are at most
«d + 1)(d+1)/,)d+1 choices for j. Hence the claim. 0

Example 2: Another class with an Occam approximation algorithm with respect to
the L 2 metric is the class of trigonometric interpolants with complexity measure the
highest frequency, i.e., functions of the form

00 00

f(x) = ~Aicos(2'ITix) + L Bisin(2'ITix) .
i=O i=O

For the class of such functions, the least squares technique described in the context
of the polynomials in Example 1 can be used to construct an Occam approximation.

4. Noise-Free Learning

In this section we show that the existence of an Occam approximation is sufficient
to guarantee the efficient learnability of a class of functions in the absence of noise.
The theorem is stated for Occam approximations with respect to the L 1 metric, and
subsequently extended to other metrics.

Theorem 2: Let F be the target class and G the hypothesis class with complexity
measure 1, both of envelope 1. Let Q be an Occam approximation for G, with
respect to metric L b with characterstic (q,r). Then, there exists a learning
algorithm for F with expected sample complexity polynomial in Ve, V8, and
1min (f, e/8,P,Ld·

Proof: We claim that Algorithm A 1 below is a learning algorithm for F. Let f be
the target function. In words, the algorithm makes increasingly larger guesses for
1min (f), and based on its guesses constructs approximations for f, halting if and
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Algorithm A 1

input E, 8
begin

t = 2;
repeat forever

let m be the least integer satisfying

(
9216 )m > 7 q (t,321E) r(m);

make m calls of EXAMPLE to get collection S;

let g = Q(S, E/4);

let m 1 = 16t2/ (E28);

make m 1 calls of EXAMPLE to get collection S 1;

if L 1(g, S 1) < (3/4)E then output g and halt;
elset = t+1;

end
end

when a constructed approximation appears to be good.

We first show that the probability of the algorithm halting with a function g as
output such that L 1{f, g, P) > E is at most than 8. At each iteration, by
Chebyshev's inequality,

Pr {I L 1(g,S 1)- L 1(g, [, P) I> E/4} < 2
16

.
E m1

If the algorithm halts, then L 1(g,S 1) < (3/4)E, and hence

Pr {Ltig, t, P) > +< t~ .

Hence, the combined probability that the algorithm halts at any iteration with
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00 &
L 1(g, t, P) > e is at most ~ 2"" < e.

t=2 t

Let to = lmin(J, e/S, P, L 1) . We now show that when t > to, the algorithm halts
with probability at least 1/4. Let h E G be such that L 1(h, !, P) < e/8 and
l(h) = to. Fix t > to. By Chebyshev's inequality,

<~- 2 .
em

Hence, if m > 256/e2 with probability at least (1- 114) = 3/4,

Since L 1(h, t, P) < e/S, it follows that with probability 3/4, L 1(h, S) < e/4. In
other words, with probability 3/4, lmin(S, e/4,L 1) < l(h) = to < t.

"At each iteration of A 1, let G be the class of all functions that Q could output if
lmin(S, e/4, L 1) < t holds. Since Q is Occam, log(N(O, e/32, m)) < q(t, 321e)r(m).
Let H be the class of functions H = {h Ih (x) = I! (x) - g (x) I, g E G}, and let h 1

and h 2 be any two functions in H. Now,

Hence,

N(H, e/32,m, L 1) < N(O, e/32,m,L 1) < q(t, 321e)r(m).

If

[
9216 )m > 7 q (t, 321e) r(m) ,

m satisfies

8eq (t, 321e)r(m)e - (ml128)(e/4)2 < 114,

and then by Theorem 1, with probability at least (1- 114) = 3/4, the observed mean
of each function h EH will be within e/4 of its true mean. That is, with probability
at least 3/4, for each g E G,



Ifg is the function that is returned by Q(S,E/4), thenL 1(g, S) < E/4. Therefore, if
lmin(S, E/4,Ld < t, with probability at least 3/4, L 1(f, g, P) < E/2. Since we
showed earlier that with probability at least 3/4, lmin(S, E/4, L) < t, we get that with
probability at least 112, the function g returned by Q will be such that
L 1(J, g, P) < E/2.

We now estimate the probability that the algorithm halts when Q returns a function
g such that L 1(J, g, P) < EI2. Once again by Chebyshev's inequality,

Given that L 1(J, g, P) < EI2, and that m 1 = 16t2/ (E28), we have

Pr {L1(g,SI) > 314E} -< t~ -< V2.

Hence, we have Pr{L 1(g,S 1) < 3/4e} > 112. That is if the function g returned by
Q is such that L 1(f, g, P) < EI2 then, A 1 will halt with probability at least 112.

We have therefore shown that when when t > to, the algorithm halts with
probability at least 1/4. Hence, the probability that the algorithm does not halt
within some t > to iterations is at most (3/4i- to. Noting that the function qO is
a polynomial in its arguments, it follows that the expected sample complexity of the
algorithm is polynomial in liE, 118 and to. 0

We now discuss the extension of Theorem 2 to other metrics. The one ingredient
in the proof of Theorem 2 that does not directly generalize to the other Lp metrics
is the reliance on Theorem 1, which is in terms of the L 1 metric. This obstacle can
be overcome by using the relationship between the various L'P metrics as given by

A A 2
inequality (1), to note that N(G,~,m,L1) < N(G,~ 14,m,Lp )'

5. Learning in the Presence of Noise

We assume that the examples for the target function are corrupted by additive
random noise in that EXAMPlE returns (x,f(x) + v), where v is a random variable.
The noise variable v is distributed in an arbitrary and unknown fashion.

We can show that the existence of an Occam approximation suffices to guarantee
learnability in the presence of such noise, under some special conditions. Specifically
we assume that the strength of the noise in the metric of interest is known a priori
to the learning algorithm. Then, a learning algorithm would work as follows.
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Obtain a sufficiently large number of examples, large enough that the observed
strength of the noise is close to the true strength. Pass the observed samples
through an Occam approximation, with tolerance equal to the noise strength. The
function output by the Occam approximation is a candidate for a good
approximation to the target function. Test this function against additional samples to
check whether it is indeed close. Since these additional samples are also noisy, take
sufficiently many samples to ensure that the observed noise strength in these
samples is close to the true strength. The candidate function is good if it checks to
be roughly the noise strength away from these samples.

The essence of the above procedure is that the error allowed of the Occam
approximation is equal to the noise strength, and the noise and the error subtract
rather than add. In order for us to prove that this indeed the case, we must restrict
ourselves to linear metrics, metrics L such that in the limit as the sample size goes
to infinity, the observed distance between a function g in the hypothesis class and
the noisy target function is the sum of the strength of the noise, and the distance
between g and the noise-free target function. Two such metrics are the L oo metric,
and the square of the L 2 metric when the noise is of zero mean.

5.1 Noise of known L 2 measure

We assume that the noise is of bounded magnitude, zero mean, and of known L 2
measure. Specifically, (1) we are given b > 0 such the noise v is a random variable
in [- b,+b]; (2) the noise v has zero mean; (3) we are given the variance c of the
noise. It is easy to see that statistical access to the noise variable v is sufficient to
obtain accurate estimates of the variance c.

Theorem 3: Let F be the target class and G the hypothesis class with complexity
measure 1, where F and G are of envelope 1 and b + 1 respectively. Let Q be an
Occam approximation for G with respect to the L 2 metric, with characterstic (q,r).
Then, there exists a learning algorithm for F with expected sample complexity
polynomial in liE, 118, lmin(j,E/8,P,L~) and the noise bound b.

Proof: Let f be the target function. Algorithm A 2 below is a learning algorithm for
F in the L~ metric, i.e., on input E and 8, with probability at least 1- 8, the
algorithm will identify a function g such that L~ (j,g,P) < E.

We first show that the probability of the algorithm halting with a function g as
output such that L~(f, g, P) > E is less than 8. Now,
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Algorithm A 2

input e, 8, noise bound b, noise variance c;
begin

t = 2;
repeat forever

let m be the least integer satisfying

m". 73E~8+(256(~ + 2) )}m) + 4096<:2+1)4;

make m calis of EXAMPLE to get collection S;

letg = Q(S, Vc + e/4 );

I t - 256(b + Itt 2
.

e m1 - 8e2 '

make m 1 calls of EXAMPLE to get collection S 1;

if L~(g, S 1) < c+ (3/4)e then output g and halt;
elset = t+l;

end
end

where the summation is over the sam~les in S 1. Since E{v(g-f)} = 0 and
E{v2} = c, and E{(g-f)2} = L 2(g,f,P), it follows that
E{L~(g,S1)} = L~(g,f,P) + c.

Noting that (g- (f+v»2 < (2(b + 1»2, we can invoke Chebyshev's inequality to
write,

Pr {IL~(g,S,)- L~(g,f,P)-cl ". E/4} < 25!,:/)4

If L~(g,f,P) > e, (2) implies that

Pr{L~(g,S1) < c +3/4e} < 256(b + It
m1e2

If

(2)

256(b + 1)4t 2

Be2
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then,

8
Pr{L~(g,Sl) < c+3/4e} < 2".

t
(3)

Summing over all t > 2, we get that the probability that the algorithm halts with
L~ (g,f,P) > e is at most 8.

Let h E G be such that L~(h,f,P) < e/S and lmin(f,e/8,P,L~)= l(h) = to. As in
(2) and (3), with Chebyshev's inequality we can show that

Pr{L~(g,S) > c+1I4e} < 1024(b~1t
me

If m > 4096(b + 1)4/e2, then Pr{L~(g,S) > c+ e/4} < 114 and as a consequence

Pr{lmin(S,c+e/4,L~)< l(h) < to} > 3/4. (4)

Let Gbe the class of functions that Q could output on inputs S and Vc + e/4, when
S satisfies lmin(S,c + e/4,LD < to. Let H be the class of functions {(f- g)2 Ig E G}.
Then, for every pair h 1 and h 2 in H, there exists gland g2 in G such that

Ih 1 - h z I = I(f - gl)2 - (f - g2)2 I .

= If2+gr-2fg1-f2_g~+2fg21

= Igr-g~-2f(g1-g2)1·

= I (g1-g2)(g1+g2- 2f) I .

Since gland g 2 have envelope b + 1 and f has envelope 1, we can write

Hence,

and L 1(h bh 2,P) < 2(b + 2)L 1(g bg2,P). Invoking (1), we get

L 1(h bh2,P) < 2(b +2)L 1(gbg2,P) < 4(b +2)v'L 2(gbg2,P) .

Combining the above with the assumption that Q is Occam, it follows that
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(5)

( ( )2 ) (( )2)"t: 256(b +2)
N(H,t:/64,m,L 1) <: N G, (256(b +2) ,m,L2 <: q to, e r(m).

Invoking Theorem 1, we have that if t > to, lmin(S,c+e/4,L~) <: to, and

> 73288 (t (256(b + 2) ) 2) ( )m - 2 q , rm ,
t: t:

with probability at least 3/4 the observed mean over the m samples of S of each
h EH will be within e/S of its true mean. That is,

Noting that above inequality is conditional on (4), we can remove the conditionality
by combining it with (4) to get

Pr { ~ "L.(g_f)2- L~(g,f,P) '" <IS} > 112,

when

Now,

2 1 2 2 1L 2(g,S) = -~(g- f) + -~v(g-f) + _~v2 ,
m m m

where the summation is over the m samples of S.

Once again by Chebyshev's inequality, we can write,

Pr { ;, "L.v(g-f) + ~ "L. v2- C > <IS} '" 256~~:2j4

If

(6)

m> 512(b +2t

e2
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then

2 1 2 l
-~v(g-f) + -~v - c >- E/8) < 112.
m m

(7)

Combining (5), (6) and (7), we have

Pr {IL~(g,S)-L~(g,f,P)-cl $ Ef4} " 114,

when

>- 73288 [ [256(b + 2)] 2] ( )+ 4096(b + Itm - 2 q t, r m 2
E E E

(8)

If g is the function output by Q(S, Vc + E/4 ), then L~ (g,S) < C + E/4 and (8) can be
written as

Pr {L~ (g,f,P) :::; EI2} >- 114.

If L~ (g,f,P) < E/2, then by (2) we get

Pr{L~(g,Sl):::; 3/4E} >- 1- 256(b+/t
mlE

If m 1 is chosen as in the algorithm, then we can rewrite the above as

(9)

(10)

Combining (9 and (10), we get that when t .::: to, with probability at lease 3/16, the
function g output by Q(S, Vc + E/4) will be such that L~ (g,S 1) < 3/4E and the
algorithm will halt. Hence, the probability that the algorithm does not halt within
some t > to iterations is at most (13/16)t- to. Noting that the function q() is a
polynomial in its arguments, it follows that the expected sample complexity of the
algorithm is polynomial in lIE, V8, to and b. D

Our assumption that the noise lie in a bounded range [-b,+b] excludes natural
distributions over infinite spans such as the normal distribution. However, we can
include such distributions by a slight modification to our source of examples.
Specifically, assume that we are given a value of b such that the second moment of
the noise variable outside the range [-b, +b] is small compared to E. Noting that
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the target function f has range [-1,1] by assumption, we can screen the output of
EXAMPLE, rejecting the examples with values outside [-(b+ 1),+(b+ 1)], and
otherwise passing them onto the learning algorithm. Thus, the noise distribution
effectively seen by the learning algorithm is of bounded range [-b, +b]. We leave it
to the reader to calculate the necessary adjustments to the sampling rates of the
algorithm.

5.2 Noise of known L 00 measure

We assume that we know the L oo measure of the noise in that we are given

(1) b > 0 such that the noise v is a random variable in [-b,+b], not necessarily of
zero mean. Also, the symmetry is not essential; it suffices if b1 < b2 are given,
with v E [b 10b2 ].

(2) A function 'V(e) such that Pr{v E [b - e,bn > 'V(e), and Pr{v E[- b,
b +en > 'V(e).

It is easy to see that statistical access to the noise variable v is sufficient to obtain
an accurate estimate of 'Y. We now revisit our definition of an Occam
approximation to define the notion of a strongly Occam approximation.

For a function f, let band(f, e) denote the set of points within e of f, i.e.,
band(f, e) = {(x, y) I Iy - f (x) I < e]. For a class F, band(F, e) is the class of all
band sets for the functions in F, i.e., band(F, e) = {band(f, e) If EF}. A class of
sets F is said to shatter a set S if the set ifnSit EF} is the power set of S.
DYc(F) denotes the Vapnik-Chervonenkis dimension of F, and is the cardinality of
the largest set shattered by F. The Vapnik-Chervonenkis dimension is a
combinatorial measure that is useful in establishing the learnability of sets, Blumer
et al. (1991) or Natarajan (1991).

Let Q be an approximation algorithm with respect to the L 00 metric. Fix m, tEN
and e > O. Let G be the class of all functions identified in the output of Q when its
input ranges over all collections S of m examples such that [mineS, e, L) < t. Q is
said to be strongly Occam, if there exists function q (a,b) that is polynomial in a and
lib, and r :~ - N such that r (m )log(m) is 0 (m), such that for all m, t, e, and , > 0,
Dyc(band(G,O) < q(t, lIOr(m).

Example 2: Let F be the Baire functions, and G the class of piecewise linear
functions with complexity measure the number of pieces.

Consider the following approximation algorithm Q with respect to the L 00 metric.
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Given is a collection of samples S = {(XbY1), (X2,Y2)"" (xm,Ym)), and tolerance
E. Using the linear time algorithm of Imai and Iri (1986), Suri (1988), construct a
piecewise linear function g such that Ig(Xi)- Yi I < E for each of the samples in S,
and g consists of the fewest number of pieces over all such functions.

Claim 3: Algorithm Q is strongly Occam.

Proof: Fix the number of samples m, tolerance E and complexity bound t. For set
of examples S, lmin(S, E,L 2) is the fewest number of pieces in any piecewise linear
function g such that Loo(g,S) < E. By construction, Q outputs such a function.
Thus G is a subset of the class of all piecewise linear functions of t pieces. By

"Claim 4, for all " Dyc(band(G,'» < 7t, and the claim follows. 0

Claim 4: If F is the class of piecewise linear functions of at most t pieces, for all "
DYc(band(F, ,» < 7t.

Proof: Assume that we are given a set S of more than 7t points that is shattered by
band(F, ,). Let S = {(xbYd, (X2,Y2)"" (xm,Ym)), where the Xi are in increasing
order. We shall construct a subset S 1 of S that is not induced by any set in
band(F, '), thereby contradicting the assumption that band(F,O shatters S. Start
with S1 = {(XbY1), (X7,Y7)}. Now some three of (Xi,Yi) for i=2,3, ..,6 must lie on
the same side of the line joining (xb Y 1) and (x7, Y7). Call these points a, b, and c,
in order of their x coordinate. If b is within the quadrilateral formed by (x 1,Y 1),
(x7, Y7), a, and c, add a and c to S b else add b to S 1. Repeat this procedure with
the rest of the points in S. The resulting set S 1 is such that no function g of fewer
than m 17 pieces is such that band(g, ,) picks out S 1. A contradiction and hence the
claim. 0

We leave it to the reader to show that the following classes also possess efficient
strongly Occam approximation algorithms:

(1) The polynomials with complexity measure the highest degree, (can construct a
strongly Occam approximation via linear programming).

(2) The trigonometric interpolants with complexity measure the highest frequency,
(can construct a strongly Occam approximation via linear programming).

(3) The piecewise constant functions with complexity measure the number of pieces.
(can construct a greedy approximation algorithm that is strongly Occam.)

Claim 5 shows that every strongly Occam approximation is an Occam approximation
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as well, confirming that the strong notion is indeed stronger. In order to prove the
claim, we need the following definition and lemma.

Let F be a class of functions from a set X to a set Y. We say F shatters S C X if
there exist two functions f, g EF such that (1) For all xES, f(x) =1= g(x). (2) For
all S 1 ~ S, there exists h EF such that h agrees with f on S 1 and with g on S - S 1.

i.e., for all xES b h(x) = f(x), and for all xES - S b h(x) = g(x).

Lemma 1: Natarajan (1991), Haussler and Long (1990). Let X and Y be two finite
sets and let F be a set of total functions from X to Y. If d is the cardinality of the
largest set shattered by F, then,
2d -< IF I -< IX Id IY I2d.

Claim 5: If Q is a strongly Occam approximation for a class F, then it is also an
Occam approximation with respect to the L CXl metric.

Proof: Let Q be a strongly Occam approximation for a class G of envelope 1. Fix
m, tEN ,e > 0 and , > O. Let G be the class of all functions identified in the
output of Q when its input ranges over all collections S of m examples such that
lmin(S,e,L CXl) -< t. Let X = {Xl, X2 •••,Xm}, be a set of m points and C the minimum

"'-cover of G on X for L CXl. For each function g in C, construct the function

g(x) = (g(x)/eJ,

"and let C be the class of such functions. Since C is a minimum , cover, all the
fpnctions in C are distinct, and"there is a one to one correspondence between C and
C. Let n = rll'l. Now C is a class of functions from X to Y = {-n, 
"...' 0, 1, 2, ..., n }. By Lemma 1, there exists X 1 ~X of d points that is shattered by
C, where

d>~.
210g(3m/')

For each point x EX 1, let A (x) be the subset of Cthat agree on x, and D (x) be the
subset of C that disagree. Let A 1(x) be the functions in C that correspond to A (x)
and similarly D 1(x) for D (x). It is clear that we can find y such that for all
g EA 1(x), Iy - g (x) I -< , and for all g ED 1(x), Iy - g (x) I > ,. It follows that
the set {(x,y) Ix EX 1} is shattered by band(C, o, implying that,

10g(N(0",m,LCXl) ) -< 210g(3m/ODvc(band (C,')) -< 210g(3m/')Dvc(band (0,0) .

It follows that Q is an Occam approximation as well. 0
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Theorem 4: Let F be the target class and G the hypothesis class with complexity
measure I, where F and G are of envelope 1 and b + 1 respectively. Let Q be a
strongly Occam approximation for G, with characterstic (q,r). Then, there exists a
learning algorithm for F with expected sample complexity polynomial in lie, 118, b
and Imin(f,e/4,Pu,L 1) , where P, is the uniform distribution on [0,1].

Proof: Let f be the target function, and let (q,r) be the characteristic of the Occam
approximation Q. We claim that Algorithm A 3 is a learning algorithm for F with
respect to the L 1 metric.

Algorithm A 3

input e, 8, b;
begin

t = 2;
_ y(e/4)e.

'T} - 2(b + 2) ,
repeat torever

let m be the least integer satisfying

m :> ~q(t, lI(b + e/4))r(m )log(m);
'T} .

make m calls of EXAMPLE to get collection S;
let g = Q(S, b + e/4).

16t2
let m , = -2-;

'T} 8
make m 1 calls of EXAMPLE to get collection S 1;

if no more than a fraction (3/4)'T} of S 1

is outside band(g,b + e/4)then output g and halt;
else t = t+ 1;

end
end

For a particular function g, let J.L(g, ~) be the probability that a call of EXAMPLE
will result in an example outside band(g,b + ~). We now estimate J.L(g, e/4) when g
is such that L 1(f, g,P) > e. For such g, since F is of envelope 1 and G is of
envelope b + 1, If - g I <b +2, and

f dP > e/(2(b +2)).
If-gl >£/2

It follows that

.,.(g, E/4) = Pr {r<X)+v ~ band(g,b +€/4)}
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> Pr ~ (x)- g(x) > ,12 and v E [b,b-'/41}

+ Pr {g(X)- [(x) > ,12 and v E lob, - b+El41} .

> min (Pr {v E[b-El4, b l}. Pr {v E[-b, - b + El41}) x Pr{1[- g I> El2}

:> 'Y(e/4)e/(2(b +2)) :> 'TJ .

Let J.L 1(g, ~) denote the fraction of S 1 that is outside band(g, b + ~ ). By
Chebyshev's inequality,

Pr { I J.Ll (g, e/4) - J.L(g, e/4) I > 1/4'TJ} < 16
'TJ2m 1

Since ml = 16t2/('TJ 28), and the algorithm halts only when J.Ll(g, e/4) < (3/4)'TJ,
when the algorithm halts,

Pr {,,(g, El4) > "Il} '" t~ .

Summing over all t :> 2, we get that the probability that the algorithm halts with
J.L(g, e/4) > 'TJ is at most 8. It follows that the probability that the algorithm halts
with L 1(g,!,P) > e is at most 8. Let Pu be the uniform distribution on [0,1]. We
now show that when t:> to = 1minif, e/4, Pu» L 00) the algorithm halts with
probability at least 1/4.

"Let t :> to at a particular iteration, and let G be the class of all functions that Q
could output during that iteration. Since v E [-b, +b ], it is clear that
lmin(S, b + ~4, L oo) < to < t. Since Q is strongly Occam,
Dvc(band(G, b + e/4)) < q(t, 1/(b+e/4))r(m). By Theorem 4.3 of Natarajan
(1991), for m :> 8I'TJ, the "probability that m random samples will all fall in
band(g, b + e/4) for any g E G such that J.L(g, e/4) > 'TJ/2, is at most

d ~

2~ (~)2- 4
i=O l

Hence, if m is chosen so that the above probability is less than 1/2, then with
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probability at least 112, Q(S, b + e/4) will return a function g such that
J-L(g, e/4) <: 'Tl12. Indeed

l&.q(t, lI(b +e/4))r(m )log(m).
'Tl

suffices. Since Q is strongly Occam, r(m )log(m) is 0 (m), and such m exists. We
now estimate the probability the algorithm halts when Q returns a function g
satisfying J-L(g, e/4) <: 'Tl12. Once again by Chebyshev's inequality,

Pr { I J-Ll (g, e/4) - J-L(g, e/4) I > 'Tl/4} <: 16
'Tl 2m 1

Given that fL(g, e/4) <: 'Tl/2, and that m 1 = 16t2/('Tl28), we have

Pr {ILl (g, e/4) > 3/41]} < t~ < 112.

Hence, we have Pr{J-Ll(g, e/4) <: 3/4'Tl} > 112. That is if the function g returned by
Q is such that J-L(g, e/4) <: 'Tl12 then, A 1 will halt with probability at least 112. We
have therefore shown that when when t > to, the algorithm halts with probability at
least 1/4. Hence, the probability that the algorithm does not halt within some
t > to iterations is at most (3/4i- to, which goes to zero with increasing t. 0

5.3 Application to Filtering

An important problem in signal processing is that of filtering random noise from a
discretely sampled signal, Oppenheim and Schafer (1974). The classical approach
to this problem involves manipulating the spectrum of the noisy signal to eliminate
noise. This works well when the noise-free signal has compact spectral support, but
is not effective otherwise. However, the noise-free signal may have compact
support in some other representation, where the filtering may be carried out
effectively.

When we examine algorithm A 2, we see that the sampling rate m varies roughly as
qOr(m)/e2, or e2 -qOr(m)/m. In a sense, qOr(m) is the "support" of the
noise-free target function in the hypothesis class G. While spectral filters choose G
to be the trigonometric interpolants, we are free to choose any representation,
aiming to minimize q ( )r (m). Furthermore, the Occam approximation Q need not
manipulate its input samples in a linear fashion, as is the case with spectral filters.
In this sense, our results offer the first general technique for the construction of
non-linear filters.
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In the practical situation, our results can be interpreted thus: pass the samples of
the noisy signal through a data compression algorithm, allowing the algorithm an
approximation error equal to the noise strength. The decompressed samples
compose the filtered signal, and are closer to the noise-free signal than the noisy
signal. Implementations of this are pursued in Natarajan (1993a), (1994).

6. Conclusion

We showed that the principle of Occam's Razor is useful in the context of probably
approximate learning functions on the reals, even in the presence of arbitrarily large
additive random noise. The latter has important consequences in signal processing,
in that it offers the first general technique for the design and construction of non
linear filters.
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