
Sequential Prediction and Ranking
in Universal Context Modeling
and Data Compression

Marcelo J. Weinberger, Gadiel Seroussi
Computer Systems Laboratory

HPL·94·111 (R.1)
January, 1997

Internal Accession Date Only







:::::z:
Q -a
c..r-
~c:e
:i" .p-ee _

C» -
::s c..c'?5
Q,) -Q,) ••

n~
Q,Cl
3 c:
"C CD

a :a
~ iii"
is" ::;;
::s ...

CD
c..
c=r-is"
::s
C»
::s
c..
~
Q,)
::s
~

:i"
ee
:i"
c:::
::s
:C'
CD...
en
e!-
n
Q
::sCD
><-



Fli1l- HEWLETT
~~ PACKARD

Sequential Prediction and Ranking
in Universal Context Modeling and
Data Compression

Marcelo J. Weinberger, Gadiel Seroussi
Computer Systems Laboratory
HPL-94-111 (R.l)
January, 1997

universal coding,
Context algorithm,
prediction, ranking,. .
Image compression

Prediction is one of the oldest and most successful tools in
practical data compression. It is particularly useful in
applications like image compression, where the data samples
represent a continuously varying physical process. The usual
explanation for the beneficial effect of prediction is that it
decorrelates the data, allowing the use of simple encoders for
the sequence of prediction errors. It has been noted, though,
both in theory and in practice, that prediction alone cannot
achieve total decorrelation in general, even in the case of
universal prediction. In fact, most state-of-the-art image
compression schemes use prediction followed by some form of
context modeling. This, however, might seem redundant at
first, as the context information used for prediction is also
available for building the compression model, and a universal
modeler will eventually learn the "predictive" patterns of the
source. Thus, the following questions arise: Why use two
different modeling tools based on the same contextual
information, and how do these tools interact?
In this paper, we provide answers to these questions, and we
investigate the use of prediction as a means of reducing the
model cost in universallossless data compression. We provide
a formal justification to the combination of this tool with a
universal code based on context modeling, by showing that a
combined scheme may result in faster convergence rate to the
source entropy. In deriving the main result, we develop the
concept of sequential ranking, which can be seen as a
generalization of sequential prediction, and we study its
combinatorial and probabilistic properties.
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1 Introduction

Prediction is one of the oldest and most successful tools in the data compression practitioner's toolbox. It
is particularly useful in situations where the data (e.g., a digital image) originates from a natural physical
process (e.g., sensed light), and the data samples (e.g., real numbers) represent a continuously varying
physical magnitude (e.g., brightness). In these cases, the value of the next sample can often be accurately
predicted using a simple function (e.g., a linear combination) of previously observed neighboring samples [IJ.
The usual interpretation of the beneficial effect of prediction is that it decorrelates the data samples, thus
allowing the use of simple encoders for the sequence of prediction errors, from which the original data set
can be reconstructed. In fact, in the case of natural photographic images, very simple DPCM schemes based
on low order linear prediction followed by a zero-order Huffman code go a long stretch of the way towards
the best practical compression ratios.

It has been noted, though, both in theory [2, 3J and in practice (starting with [4]), that prediction alone
cannot achieve total decorrelation in general, even in the case of universal prediction [5, 6, 7,2, 8]. In fact,
most state-of-the-art lossless image compression schemes (e.g., [9, 10, 11, 12]) use prediction followed by
some form of context modeling (i.e., encoding based on higher order conditional probability models), with
the latter stage exploiting dependencies left in the data after the prediction stage. In particular, prediction
can be followed by a universal encoder for a broad class of context models [13, 14, 15, 16, 10J. In this
case, however, the "decorrelation" benefit of prediction, which is obvious when followed by a zero-order
coder, becomes less clear, since the same contextual information that is used to predict is also available for
building the compression model, and the latter will eventually learn the "predictive" patterns of the data.
Yet, practical experience clearly indicates that prediction is still beneficial when used in conjunction with
higher order context models (as many practitioners who have attempted to use one of the various universal
schemes directly on image data and got disappointed will attest). Thus, the following questions arise, and
provide the motivation for this work: Why use two different modeling tools based on the same contextual
information, and how do these tools interact?

In this paper, we address these questions, and we study the interaction between universal prediction and
universal coding, bridging what we perceive as a gap in the formal treatment of this successful combination,
each of whose components has been thoroughly studied. We formalize and quantify the effect of prediction
in the framework of finite-memory (or tree) sources over finite alphabets [13, 14, 15J. A tree source consists
of an underlying o-ary context tree structure, where a is the size of the source alphabet, and a set of
conditional probability distributions on the alphabet, one associated with each leaf of the tree. 1 These
sources provide a reduced parametrization of Markov models (achieved through merging sibling states with
identical conditional probability distributions), and can be modeled by efficient algorithms [15, 16]. In our
main result, we show that prediction can provide an algorithmic way to reduce the model cost (i.e., the
intrinsic penalty in code length due to the number of free parameters modeled) incurred by a universal
modeler, thus allowing for a faster convergence to the model entropy as per Rissanen's lower bound [17,
Theorem IJ. Notice that model size reduction is an appropriate refinement of the notion of decorrelation,
with total decorrelation corresponding to the extreme case where the model is reduced to one node (i.e., a
memoryless source).

Our starting point is the observation that the effect of prediction is often that of merging probability
distributions that are similar but centered at different values. This is typical, for example, of gray-scale
images, where sample values often obey a Laplacian-like (double sided exponential) probability distribution
whose center is context-dependent [18, 1]. By predicting a deterministic, context-dependent value x for the
"next symbol" x, and considering the (context-)conditional probability distribution of the prediction error

1All technical terms and concepts discussed informally in this introduction will be precisely defined in subsequent sections.
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e = x - X rather than that of x itself, we allow for similar probability distributions on e, which may now be
all centered at zero, to merge in situations when the original distributions on x would not do so. In the case
where x is drawn from a finite alphabet of cardinality Q (e.g., the set of numbers {a, 1, ... , Q -I}), and given
a prediction value x from the same alphabet, the prediction error e can take on only Q different values, and
one can assume without affecting the losslessness of the prediction stage that e is computed over the integers
modulo Q. Thus, prediction effects the alphabet permutation- x ......... (x - x) mod Q. In our framework,
we will consider arbitrary permutations of the alphabet, thus freeing the analysis from any assumption of
"smoothness" or even a metric on the input samples. The notion of two probability distributions that can
be made similar by "centering" is replaced by that of two distributions that can be made similar by an
arbitrary permutation of the alphabet. In this framework, the analog of a "predicted value" x that centers
the distribution is a permutation that ranks the alphabet symbols in decreasing probability order (with
appropriate provisions for ties). Thus, instead of just predicting what the most likely next symbol is, we
will predict also what the second most likely symbol is, what the third most likely symbol is, and so on. 3

A permutation-minimal tree is defined as a tree source representation in which we have merged, to the
maximum extent possible, complete sets of sibling leaves that have the same sorted probability vector (i.e.,
the same conditional probability distribution up to a permutation of the symbol "labels"). The permutation
minimal tree representation of a source may be smaller than its conventional minimal tree representation,
thus allowing for potential savings in model cost and faster convergence to the source entropy.

To obtain the ranking permutations that allow for the construction of a permutation-minimal tree, we
will define universal sequential ranking as a generalization of universal sequential prediction, to be used in
conjunction with the universal coder. Universal ranking, however, also requires a model structure with an
associated model cost (as does universal prediction), which should be weighted against the potential savings
in compression model cost. An indication that this trade-off might be favorable is given by a comparison
between the compressibility bound in [17] and the predictability bound in [8], which shows that the model
cost for prediction - O(l/n) - is negligible with respect to that associated with compression - O(logn/n).

Thus, the use of prediction is predicated on a "prior belief" that the source we are dealing with does
indeed contain states that are permutation-equivalent (as would be the case, say, with "smooth" gray-scale
images). In this case, we are willing to invest the price of modeling a predictor for the source. If our belief
is correct, the permutation-minimal representation will be strictly smaller than the conventional minimal
representation, and we will get the pay-off of a reduction in compression model cost and faster convergence
to the entropy. If our belief is incorrect, then the permutation-minimal tree will not be smaller than the
minimal tree, the compression model cost will remain the same, and we will have paid an unnecessary
prediction model cost (albeit a third-order term penalty). Notice that in no case there is a penalty in the
second-order term (the dominant redundancy term).

To formalize these ideas, we present a theorem which in simplified form states that for every ergodic
tree source T (which includes the underlying graph and the associated conditional probabilities) a universal
scheme combining sequential ranking and context modeling yields a total expected code length ETL(xn )

satisfying

!..ETL(xn) ~ Hn(T) + k'(Q - 1) logn + O(n-1) (1)
n 2n

where Hn(T) denotes the per-symbol binary entropy of n-vectors emitted by T and k' denotes the number
of leaves in the permutation-minimal tree T' of T. Hence, the combined scheme attains Rissanen's lower

20ther mappings of the error value into a set of Q different values are possible, and may have compression advantages in
certain applications [19]. These alternate mappings amount to more elaborate permutations determined by the predicted value
X.

3In the case of binary sources, the concepts of ranking and prediction coincide, as binary prediction is equivalent to guessing
what the most likely binary value is for the next symbol, which amounts to ranking the binary alphabet.
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bound in an extended source hierarchy that includes permutation-minimal trees. If T' has indeed fewer
leaves than T, the combined algorithm converges faster than an optimal algorithm modeling T in the class
of general tree sources. The notion of a hierarchy of sources here is borrowed from [20]: At the top of the
hierarchy are all Markov models of order, say, m, e.g., in the binary case, tree sources with 2m leaves and
all possible parametrizations. Each sub-tree with 2m -1 leaves defines a sub-class, consisting of all the tree
sources whose parametrizations can be reduced, thru merging of two leaves, to the given sub-tree. This
process is continued for all possible sub-trees of smaller sizes. Thus, the "place" of a given source in the
hierarchy is determined by the underlying tree of its minimal parametrization. The universal algorithms
considered here attain Rissanen's lower bound for the smallest sub-class to which a source belongs.'

The combined universal scheme is presented in the form of an algorithm named P-Context. This algorithm
is based on Algorithm Context [13, 22, 15], which provides a practical means to estimate tree sources.
However, our emphasis is on providing a formal framework for the "success story" of prediction in conjunction
with context modeling, rather than on the specific algorithm described, which is presented as an example of
how the gains available through prediction can be realized. In fact, similar results could be derived for other
universal modeling algorithms for tree sources (e.g., context-tree weighting [16], or the algorithm in [14]). In
particular, [16] provides an elegant scheme which recursively computes a mixture of all possible models in the
class of tree sources (of any size), without explicit enumeration of the models. This "mixing" approach (as
opposed to the "plug-in" or "state-estimation" approach of [15] and [14]) provides asymptotic optimality also
in a non-probabilistic framework [23]. In order to maintain this property in the extended source hierarchy,
it would be necessary to include additional models in the mixture. For example, consider the binary case
and assume that the Markov order of the models is at most one. Optimality in the extended hierarchy
would require that, besides a two-parameter model given by a Markov source of order one, and a one
parameter memoryless model, the mixture include an additional one-parameter model, in which probabilities
are computed under the assumption that p(OIO) = p(111). For larger alphabets and trees, one should
include all possible permutations of the alphabet at every node. Although this approach is possible in
principle, an implementation of the mixture in a way analogous to [16] is an open research problem. Such
an implementation would provide a "mixing equivalent" of the practical prediction-based algorithms, which
seem to follow an inherently plug-in approach. Using ranking in conjunction with the context-tree weighting
method is also possible and would lead to results similar to those presented in this paper. However, for this
hybrid (plug-in and mixing) approach, the pointwise (non-probabilistic) optimality of [16] may no longer
hold.

Algorithm P-Context builds two models on a common data structure: an over-estimated prediction
model (i.e., a non-minimal tree) where at each (over-estimated) state we use a universal ranker based on
frequency counts, and a compression model which is in turn used to encode rank indices. Notice that in
the compression model built, the conditioning contexts are still determined by the original symbols, but the
assigned conditional probabilities correspond to the rank indices. As explained in our discussion on "prior
belief," for the sources of interest, the cost of using an over-estimated prediction model will be offset by
the savings resulting from a smaller compression model. P-Context was conceived with a theoretical goal
in mind, and in fact it may be too complex for some practical applications. However, some of the best
published lossless image compression schemes [10, 11, 12] can be seen as simplifications of the basic concepts
embodied in P-Context, including the basic paradigm of using a large model for adaptive prediction which in
turn allows for a smaller model for compression, and the use of contexts determined by original symbols to
encode prediction errors. Moreover, symbol ranking has been proposed in recent lossless image compression
algorithms [12, 24J and in other practical applications [25], without a formal convergence proof.

The rest of the paper is organized as follows: In Section 2 we review finite-memory sources and tree

4This is sometimes referred to as a twice universal algorithm [21].
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models, and we formally define the sub-hierarchy of permutation-minimal tree sources. In Section 3 we
define sequential ranking of non-binary sources, and we study its combinatorial and probabilistic properties.
Here, we generalize some results on universal prediction from [8] to non-binary alphabets. Finally, in Section 4
we describe the P-Context algorithm and present our main theorem.

2 Tree Models

In a finite-memory source, the conditional probability of the next emitted symbol, given all the past, depends
only on a finite number of contiguous past observations. In many instances of practical interest, however,
fitting a plain Markov model to the data is not the most efficient way to estimate a finite-memory source,
since there exist equivalent states that yield identical conditional probabilities. Thus, the number of states,
which grows exponentially with the order m in a Markov model, can be dramatically reduced by removing
redundant parameters after lumping together equivalent states. The reduced models [13, 14] have been
termed tree sources [15], since they can be represented with a simple tree structure, and are reviewed next.

Consider a sequence xn = XlX2 ... Xn of length n over a finite alphabet A of a symbols. Any suffix of x n is
called a context in which the "next" symbol Xn+l occurs. A probabilistic model P, defined on An for all n ~ 0,

has the finite-memory property if the conditional probability function p(xn+l = alxn) ~ P(xna)jP(xn)

satisfies
(2)

where Ii denotes the reverse of a string y, and s(xn) = xn · · ·Xn-Hl for some f, 0 ~ f ~ m, not necessarily
the same for all strings (the sequence of indices is decreasing, except for the case f = 0 which is interpreted
as defining the empty string >.; thus, we write the past symbols in reverse order). Such a string s(xn) is
called a state. In a minimal representation of the model, s(xn) is the shortest context satisfying (2). Now,
consider a complete o-ary tree, where the branches are labeled by symbols of the alphabet. Each context
defines a node in the tree, reached by taking the path starting at the root with the branch Xn, followed
by the branch Xn-l, and so on. The set S of states is such that it defines a complete subtree T, with S
as the set of leaves. Incurring a slight abuse of notation, we will write p(als), a E A, s E S, to denote
the conditional probability p(Xn+l = alus(xn)), which is independent of u E A*. Using the tree T and the
associated conditional distributions {p(als) : a E A, s E S}, we can express the probability P(xn) as

n-l

P(xn) = II p(xt+lls(xt))

t=O

(3)

for any string (a detailed description of how this is done for the very first symbols in the string, for which a
leaf in the tree may not be defined, is given in [15]). For the sake of simplicity, in the sequel, T will denote
the whole model, i.e., both the tree and its associated conditional probabilities.

A tree T is called minimal [14, 15] if for every node w in T such that all its successors wb are leaves, there
exist a, b, c E A satisfying p(aJwb) =I- p(alwc). Clearly, if for some such node w the distributions p(·lwb) are
equal for all b, we could lump the successors into wand have a smaller complete tree representing the same
process. Thus, a minimal tree guarantees that the children of such a node ware not all equivalent to it,
and hence they cannot be replaced by the parent node. Notice that even in a minimal tree, there may still
be sets of equivalent leaves, not necessarily siblings, having the same associated conditional probabilities.
These equivalent nodes could, in principle, be lumped together thus reducing the number of parameters in
the model. However, such a reduced parameterization may no longer admit a simple tree implementation
nor a practical construction.
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(4)

Algorithm Context, introduced in [13], improved in [22], and further analyzed in [15], provides a practical
means to estimate tree sources. The algorithm has two interleaved stages, the first for growing the tree and
the second for selecting a distinguished context to define the state s(r) for each t > O. There are several
variants of the rule for the "optimal" context selection, all of which are based on a stochastic complexity
argument; that is, the context which would have assigned the largest probability for its symbol occurrences
in the past string should be selected for encoding. The probability of occurrence of a symbol a E A in a
context s may suitably be taken as [26]

na(xt[s]) + 1/2
p(als) = LbEA nb(xt[s]) + a/2

where nb(x t [s]) denotes the number of occurrences of b E A at context s in r. It is shown in [15], for a
particular context-selection rule, that the total probability (3) induced from (4) attains Rissanen's lower
bound.

Although the parameter reduction achieved by tree models over Markov models can be significant, it
does not fully exploit some structural symmetries in the data, which, in practice, are often handled through
prediction, as discussed in Section 1. The intuitive ideas there can be formalized by modifying our definition
of a minimal tree as follows. Let ji( s) = [P(ail Is)p(ai21 s) ... p(ai", Is)] denote the conditional probability vector
associated with a state s of a tree source, where the symbols Uij E A, 1 $ j $ a, have been permuted so that
P(aills) ~ P(ai2Is) ~ ... ~ p(ai",Is). A tree T is called permutation-minimal if for every node w in T such
that all its successors wb, bE A, are leaves, there exist b, c E A such that ji(wb) =I ji(wc). In the binary case,
this means that p(OlwO) -I p(Olwl) and p(OlwO) -I p(llwl). Thus, a tree that is not permutation-minimal
can be reduced by lumping the redundant successors wb, b = 0,1, into w whenever the distributions at the
siblings wb are either identical or symmetric. The common conditional probability vector is also assigned
to the resulting leaf w. For example, consider the binary tree T defined by the set of leaves {O, 10, 11},
where the probabilities of 0 conditioned on the leaves are p, (1- p), and p, respectively, and assume p > 1/2.
Clearly, T is minimal in the traditional sense, but it can be reduced to the root T' = {oX} in the new sense,
with conditional probability vector [p,1 - p] given oX.

3 Sequential Ranking for Non-Binary Tree Sources

Imagine a situation where data is observed sequentially and at each time instant t the alphabet symbols
are ranked according to their frequency of occurrence in aI. Then, after having observed Xt+l, we note its
rank, and we keep a count of the number of times symbols with that rank occurred. For the highest rank,
this would be the number of correct guesses of a sequential predictor based on counts of past occurrences.
However, in our case, we are also interested in the number of times the second highest ranked symbol, the
third one, and so forth, occurred. We compare these numbers with the number of times the symbol that
ends being ranked first, second, and so on after observing the entire sequence occurred. Hence, in the latter
case we keep track of regular symbol counts and we sort them to obtain a "final ranking," while in the
former case we keep track of counts by index, incrementing the count corresponding to index i if Xi; happens
to be the symbol ranked i-th in the ranking obtained after observing x t - 1 . In the binary case this process
amounts to comparing the number of (sequential) correct predictions with the number of occurrences of the
most frequent symbol in the whole sequence. This combinatorial problem on binary sequences is considered
in [8, Lemma 1], where it is shown that these quantities differ by at most the number of times the sequence
is balanced, i.e., contains as many zeros as ones. Note that at this point we do not distinguish between the
different contexts in which the symbols occur. As the problem is essentially combinatorial, all the results
still hold when occurrences are conditioned on a given context.
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Table 1: Symbol counts, ranking and index counts
Example: x lO = ccabbbcaac

Sorted Index
Symbol counts Ranking symbol counts of Index counts

t Xt n~(xt), e=a, b, c Ai(xt), i=l, 2, 3 Ni(xt), i=l, 2, 3 Xt in x t- 1 Mi(xt), i=l, 2, 3

° - 0,0,0 a,b,c 0,0,0 - 0,0,0
1 c 0,0,1 c,a,b 1,0,0 3 0,0,1
2 c 0,0,2 c,a,b 2,0,0 1 1,0,1
3 a 1,0,2 c,a,b 2,1,0 2 1,1,1
4 b 1,1,2 c,a, b 2,1,1 3 1,1,2
5 b 1,2,2 b,c,a 2,2,1 3 1,1,3
6 b 1,3,2 b,c,a 3,2,1 1 2,1,3
7 c 1,3,3 b,c,a 3,3,1 2 2,2,3
8 a 2,3,3 b,c,a 3,3,2 3 2,2,4
9 a 3,3,3 a,b,c 3,3,3 3 2,2,5

10 c 3,3,4 c,a, b 4,3,3 3 2,2,6

In order to generalize the result of [8] to any a ~ 2, we introduce some definitions and notation. Let
Ai(xt) denote the i-th most numerous symbol in xt, °::; t ::; n, 1 ::; i ::; a (it is assumed that there is an
order defined on A and that ties are broken alphabetically; consequently, ~(>') is the i-th symbol in the
alphabetical order). We define

(5)

and
Mi(xt) ~ I{f : Xl = Ai(Xl- 1

) , 1::; f ::; t}l, M i(>' ) ~ 0, 1::; i <a, (6)

i.e., Ni(xt) and Mi(xt) are, respectively, the number of occurrences of the i-th most numerous symbol after
observing the entire sequence ;t, and the number of occurrences of the i-th index. This is exemplified in
Table 1 for the sequence x lO = ccabbbcaac over A = {a, b, c}. Our goal is to bound the difference between
N, (z") and M, (xn ) . Later on, we consider probabilistic properties of this difference. As these properties
will depend on whether the probabilities of the symbols with the i-th and i + 1-st largest probabilities are
equal, it will prove helpful to partition the alphabet into subsets of symbols with identical probabilities. This
probability-induced partition provides the motivation for the following discussion, where we consider more
general partitions. Specifically, consider integers °= jo < jl < ... < i« = a, where d is a positive integer not
larger than a. These integers induce a partition of the integers between °and a into d contiguous subsets
of the form {j : jr-l < j ::; jr}, °< r ::; d. This, in turn, defines a partition of A by

Ar(xt) = {Aj(xt) : i-:» < j ::; jr}, 0< r ::; d. (7)

Thus, each subset Ar(xt ) of A contains symbols that are contiguous in the final ranking for x", The subsets
Ar(xt ) , °< r ::; d, will be called super-symbols. The partitions and the induced super-symbols are depicted
in Figure 1. Notice that while the partition of the integers is fixed, the partition of the alphabet may vary
with t, according to the ranking. For typical sequences xt , this ranking will correspond to the order of the
probability values, and the partition of {I, 2, ... , a} will be defined so that super-symbols consist of symbols
of equal probability, as intended. The super-symbols define new occurrence counts

ji

.N;(xt) ~ L Nj(xt) = I{f : Xl E A(xt), 1::; e ::; t}l, 0< i ::; d,
j=ji-l+ 1

6
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Fixed
partition of

integers
jo = 0

1

jl
jl+l

j2

jd-l +1

i« =a

Dynamic
partition

of A

A1(xt)

A1l(x
t )

A1l+1(xt
)

Ah(xt )

Ajd_l+1(xt)

A jd(x t )

Super
symbols

} A,(x')

} A,(x')

} .A.«x')

Associated
counts

N1(xt)

N1l(x
t )

N j1+1(Xt
)

Nh(xt )

N jd_ 1+1(X
t)

NjAxt )

} N.(x')

} N,(x')

Figure 1: Partition of {I, 2, ... , a}, induced partition of A, and associated counts

and
s.

Mi(Xt
) ~ L Mj(xt

) = IV' : Xi E A(xi-1), 1 ~ t ~ t}l, 0 < i s d.
j=j;_1+1

(9)

Finally, let n;(xt ) denote the number of times in xt that, after having observed xi-I, 1 ~ e~ t, there is a tie
in the rankings of Xi, of the first symbol of super-symbol Ar+1(xi-1), and of the last symbol of super-symbol
Ar(Xi-1), and Xi comes after the latter in the alphabetical order (the notation n; follows [8, Lemma 1],
where n* denotes the number of times a binary sequence contains as many zeros as ones). Specifically, n;(xt )

is defined by

n;)(xt) = nd(xt) = 0
n;(A) = 0

{

I if Njr(xt
) = Njr+1(xt

) = ... = Njr+I(Xt
)

n;(xt+1) = n;(xt) + and Xt+1 = Ajr+I(Xt) for some l ~ 1,
o otherwise

Notice that in the case a = d = 2, n;(xt+1) is independent of Xt+1.

Lemma 1 For every r, 1 s r ~ d,

for every sequence r
O<r<d

t ~ 0,0 < r < d.

(10)

(11)

Notice that with a = d = 2 the inequalities for r = 1 and r = 2 coincide, as N1(x t) + N2(x
t) =

M1(x t) + M2(Xt) = t. Thus, the lemma reduces to

(12)

7



In this case M 1(z") is, clearly, the number of correct guesses with a sequential predictor based on previous
occurrence counts and alphabetical tie-breaking (in fact, (11) is valid for any tie-breaking policy). Thus,
(12) is essentially equivalent to [8, Lemma 1], where expectations have been taken due to a randomized tie
breaking policy. Notice also that taking d = D:, Lemma 1 bounds the differences Mi(xt) - Ni(xt), 1 ::; i ::; D:.

Proof of Lemma 1. The proof is by induction on t, with the case t = 0, for which (11) holds trivially,
serving as basis. Assume that (11) holds for every £', °~ £, ~ t. Next, we prove it for £, = t + 1. We
distinguish between the cases XH1 E Ar(xt) and XH1 f/. Ar(xt).

In the first case, by definition (9), we have M r(x t+1) = Mr(xt) + 1. If r = 1 or N jr_1 (z") > Njr_1 +1 (z"),
then also Nr(xt+l) = Nr(xt) + 1. Otherwise, r > 1 and, since Njr_1 (z") 2:: Njr_l+1(xt), we must have
Njr_1 (x t) = Njr_1 +l (z"), in which case either n;_1 (x t+1) = n;_1 (x t )+1 (if Xt+l is also tied with A jr_1 +1 (x t))

or N r(xt+1) = Nr(xt) +1 (if Xt+1 has a lower ranking than Ajr_1 +l(xt) despite being in Ar(xt)). In addition,
for any fixed infinite sequence x having xt as a prefix, both Nr (.) and n;_1 (.) are non-decreasing functions
of t. Hence, in both cases, the left-hand side of (11) holds. The right-hand side follows from the increment
in M r(xt+1) and from the trivial relations N r(XH 1) ::; Nr(xt) + 1 and n;(xH 1) 2:: n;(xt).

In the case where Xt+1 f/. Ar(xt), we have Mr(xt+l) = Mr(xt). Thus, the left-hand side of (11) holds, as
N r(·) and n;_1 (-) are non-decreasing functions oft. Moreover, if N r(xt+1) = Nr(xt) then also the right-hand
side holds. Otherwise, we have N;.(xt+l) = Nr(xt) + 1, which means that there was an increment in the
number of occurrences of the r-th ranked super-symbol even though the r-th ranked super-symbol itself did
not occur (as Xt+1 f/. Ar(xt)). This may happen only if symbols in Ar(xt), r < d, were tied with symbols
in A r+1(Xt) and, possibly, subsequent super-symbols (containing symbols oflower alphabetical precedence),
and one of the latter symbols occurred; namely, if

Njr(xt) = Njr+1(xt) = ... = Njr+I(Xt) and Xt+1 = Ajr+l(xt), l 2:: 1.

Hence, by definition (10), we have n;(xt+1) = n;(xt) + 1, implying

N r(xt+1) - n;(xt+1) = Nr(xt) - n;(xt) ~ Mr(xt) = M r(XH 1) ,

which completes the proof.

(13)

(14)

D

Hereafter, we assume that xn is emitted by an ergodic tree source T with a set of states (leaf contexts) S.
For the sake of simplicity, we further assume that z" is preceded by as many zeros (or any arbitrary, fixed
symbol) as needed to have a state defined also for the first symbols in xn , for which the past string does not
determine a leaf of T. For a state S E S and any time instant t, 1 ::; t ::; n, let xt[s] denote the sub-sequence
of x t formed by the symbols emitted when the source is at state s. The probabilities conditioned on s are
used to determine the super-alphabet of Lemma 1 for xt[s], by defining the partition given by the integers
{jr} as follows. First, we sort the conditional probabilities p(als), a E A, so that

(15)

Next, we denote Pj(s) ~ p(aijls) (the j-th conditional probability value at state s in decreasing order), so
that the conditional probability vector associated with state s is p(s) = [P1(S), P2(S),'" ,Pa(S)]. We define

d(s) ~ I{Pj (Sn j =1I, jo ~ 0, and for 0::; r < d(s),

jr+l = max{j : Ps(j) = Ps(jr + In· (16)

Hence, the partition is such that Pjr(s) > Pjr+l(S) and Pj(s) is constant for j E [jr + 1, jr+l]' The symbol
aij' whose probability is Pj(s), is denoted bj(s).

Lemma 2 below, in conjunction with Lemma 1, shows that with very high probability the difference
between N;.(xt[s]) and Mr(xt[s]) is small for the partition (16).
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Lemma 2 For every s E S, every r, 0 ~ r ~ d(s), every positive integer u, and every t > u,

Prob{n; (x t [s]) 2: u} ~ K 1pu
,

where K 1 and p are positive constants that depend on T and s, and p < 1.

(17)

The proof of Lemma 2 uses the concept of properly ordered sequence. A sequence :If[s] is said to be
properly ordered iffor every a, bE A, p(als) > p(bls) implies na(xt[s]) > nb(xt[s]) (we remind that na(xt[s])
denotes the number of occurrences of a E A at state s in z", i.e., the number of occurrences of a in xt[s]). The
sequence xt is said to be properly ordered with respect to T if :If[s] is properly ordered for every s E S. The
following combinatorial lemma on the relation between the partition (16) and properly ordered sequences is
used in the proof of Lemma 2.

Lemma 3 If Njr(xt[s]) = Njr+1(x
t[s]) for some s E S and some r, 0 < r < d(s), then xt is not properly

ordered.

Proof. Given s E Sand r, 0 < r < d(s), we introduce the simplified notation Y ~ xt[s] and we define

r

B ~ UAI(Y),
1=1

i.e., B is the set of symbols ranked 1,2,··· .i- after having observed y. We further define

d(s)

B~A-B= U AI(Y)·
l=r+1

(18)

(19)

First, we notice that if, for some sand r, bj(s) E B for some j > i-, then we must have bj'(s) E B for
some j' ~ jr. By (16), this implies that Pj(s) < Pj'(s). On the other hand, by the definition of B, bj(s)
is ranked higher than bj'(s) and, consequently, nbj(s)(Y) 2: nbjl(s)(Y). Thus, Y is not properly ordered, and
neither is xt .

Next, assume that Njr(y) = Njr+l(Y) for some s E S and some r, 0 < r < d(s). By the above discussion,
we can further assume that bj (s) (j. B for any j > i-, for otherwise there is nothing left to prove. Hence,
B = {bj(s) : 1 ~ j ~ jr}. It follows that Ajr(y) = bj(s) for some i, j ~ i-. and Ajr+l(Y) = bj/(s) for some
i', i' > jr. Consequently, Njr(y) = Njr+1(y) is equivalent to nbj(s)(Y) = nbjl(s)(y). On the other hand, by
(15) and (16), Pj(s) > Pjl(S), implying that x t is not properly ordered. 0

Notice that, in fact, ordering the symbols according to their probabilities to define super-symbols and
proper orders, is a special case of using an arbitrary ranking 'R over A (which may include ties). If'R(a)
denotes the number of symbols that are ranked higher than a E A (i.e., 'R(a) = 'R(b) means that a is tied with
bin 'R), a sequence xt is properly ordered with respect to 'R if'R(a) > 'R(b) implies that na(xt) > nb(xt), where
na(xt) denotes the number of occurrences of a E A in z". These concepts do not require the specification of a
probabilistic environment (a tree source T) and Lemma 3 applies to any ranking 'R. On the other hand, the
particular ranking (15) implies that the event that a sequence is not properly ordered is a large deviations
event, as stated in Lemma 4 below, an essential tool in the proof of Lemma 2.

Lemma 4 For every t > 0,

Probjzi'[s] is not properly ordered} ~ K 2 / ,

where K 2 and p are positive constants that depend on T and s, and p < 1.

9
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Proof. If xt[s] is not properly ordered, then there exist b, e E A such that p(bls) > p(els) and no(xt[s)) :::;

nc(xt[s)). Let p(bls) - p(els) ~ 2~ > O. Thus, either

nb(xt[s)) :::; n(xt[s))(p(bls) - ~), (21)

or
nc(xt[s)) ?: n(xt[s))(p(els) + ~),

where n(xt[s)) denotes the length of xt[s]. In either case, there exist ~ > 0 and a E A such that

(22)

(23)

(24)

A classical bound on the probability of the event (23) is derived by applying the large deviations principle
[27, Chapter 1] to the pair empirical measure of a Markov chain (see, e.g., [27, Theorem 3.1.13 and ensuing
remark), or [28, Lemma 2(a)] for a combinatorial derivation). The results in [27] and [28] can be applied to
any tree source by defining an equivalent Markov chain (possibly with a larger number of states [14, 15)), as
shown in the proof of [15, Lemma 3]. By [28, Lemma 2(a)),

li~~P~log prob{I~(~t[~~ -p(als)1 ?:~}:::;-D

where D is the minimum value taken over a certain set by the Kullback-Leibler information divergence
between two joint distributions over A. Furthermore, since T is assumed ergodic, the equivalent Markov
chain is irreducible. .It can be shown that this implies D > 0 and, consequently, for any p such that
0< 2-D < p < 1, (24) implies the claim of the lemma. 0

Proof of Lemma 2. By (10), the cases r = 0 and r = des) are trivial. Thus, we assume 0 < r < des). We
have

Prob{n;(xt[s)) ?: u} :::; Prob{Njr(xi[s)) = Njr+1(xi[s)) for some l ?: u}
:::; Prob{xl[s] is not properly ordered for some l ?: u} (25)

(26)

where the first inequality follows from the definition of n;(xt[s)) and the second inequality follows from
Lemma 3. Thus,

00

Prob{n;(xt[s)) ?: u} < L Prob{xi[s] is not properly ordered}
i=v.

< ~K e K 2 v.L..J 2P = --P
i=v. 1 - P

where the second inequality follows from Lemma 4, and the last equality follows from p < 1. Defining
K 1 = K 2(1 - p)-l, the proof is complete. 0

The partition (16) and the concept of properly ordered sequence are also instrumental in showing that
the number Mi(xt[s)) of occurrences of the i-th ranked symbol along xt[s] is close to Pi(s)n(xt [s)), with high
probability, as one would expect. Note that if all the entries of p( s) were different (i.e., if there were no ties
in the probability ranking (15)), this would be a direct consequence of Lemmas 1, 2, and 4. However, some
difficulties arise in the case where there exist tied probabilities, in which the partition (16) uses des) '" Q:. In
this case, Lemma 2 bounds the probability tlrat the number of ties in the sequential ranking be non-negligible,
only for contiguous positions i and i + 1 in the ranking which correspond to non-tied probabilities.
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Specifically, given an arbitrary constant f > 0, a sequence x t is said to be e-index-balanced if for every
s E S such that n(xt[s]) =I 0 and every i, 1 ~ i ~ 0:,

(27)

This means that we can look at the sequence of indices i generated by the sequential ranking as a "typical"
sample of a tree source with conditional probabilities Pi(S), except that an index with zero probability may
have a non-zero occurrence count (whose value may reach, at most, the number of different symbols that
actually occurred in x t , depending on the alphabetical order"). In the same fashion, if for every a E A

(28)

then the sequence is said to be f-symbol-balanced. Lemma 5 below applies to e-index-balanced sequences just
as (24) applies to e-symbol-balanced sequences.

Lemma 5 Let El denote the event that xt is f-index-unbalanced. Then, for any exponent 'T/ > 0 and every
t> 0,

(29)

where K 3 is a positive constant.

Proof. First, consider the special case where T is a memoryless source, i.e., there is only one state
(consequently, the conditioning state s is deleted from the notation). We further assume that the zero
probability symbols, if any, are ranked in the last places of the alphabetical order. Let yt denote the sequence
of ranking indices generated by x t, i.e., Xl = AYt (x l - 1 ) , 1 ~ f ~ t, and let P'(yt) denote the probability
that yt be emitted by a memoryless source with ordered probabilities {Pi}f=l' By the assumption on the
alphabetical order, we have Mi(xt ) = 0 when Pi = O. Thus,

Q

P'(yt) = rrp~i(xt).

i=l

(30)

Using the partition (16) and its related notation, and further denoting with f3 = id' the number of symbols
with non-zero probability (so that d' = d if 0: = f3, d' = d - 1 otherwise, and P(3 is the smallest non-zero
probability), (30) takes the form

(31)

d d'where the last equality follows from Ei=r Mr(xt ) = Er=l Mr(xt ) = t. On the other hand,

(32)

5For example, consider a case were the last symbol in the alphabetical order has non-zero probability and it occurs as x 1 at
state s. This will increase the count M ",(xt[s]) even though p",(s) might be zero.
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If x t is properly ordered, then the multiset of numbers 7lb j (z"), jr-l + 1 $ j $ i-, is the same as the multiset
Nj(xt ) , jr-l + 1 $ j $ i-. possibly in a permuted order. Hence, by (8), (32) implies

(33)

where the last inequality follows from Lemma 1 and the fact that Pjr > P{3, 1 $ r < d'. Now, let E 2 denote
the event that xt is not properly ordered, whose probability P(E2 ) , by Lemma 4, vanishes exponentially fast
with t. Since (33) holds for any properly ordered sequence, a union bound yields

d'-l ( )n.(x')
< P(E2 ) + L P'(yt) IT Pjr r

x'EEl r=l P{3

< P(E2 ) +~ Prob {n;(xt ) > Clogt} + tCL~~~lIOg ~ L P'(yt)
r=l x'EEl

(34)

for a suitable constant C to be specified later. By definition, xt is e-index-unbalanced if and only if v' is
an e-symbol-unbalanced sequence over the alphabet {I, 2, ... ,o:}, with respect to the memoryless measure
P'(.). This is an event E3 whose probability P'(E3 ) , by (24), vanishes exponentially fast with t. Thus, using
also Lemma 2 and d $ 0:,

(35)

Choosing C sufficiently large, so that Clog p < -'f/, completes the proof of the memoryless case with the
assumed alphabetical order. It is easy to see that a change in the location of the zero-probability symbols in
the alphabetical order may cause a variation of, at most, (3 in the value of the index counts Mi(xt ) , 1 $ i $ 0:.

Thus, in the memoryless case the lemma holds for any alphabetical order.

Now, consider an ergodic tree source T. We have

P(E1 ) < LsProb {I ~(~~~l~~) - Pi(s)1 ~ f for some i, 1 s i $ o:}
sE

< L[P(E4 ) + P(E5 ) + P(E6 ) ]

sES

(36)

where, for a given 8> 0, the three new events in (36) are defined as follows. Event E4 consists of sequences
such that

(37)

where pstat(s) #- 0 is the stationary probability of s, and we restrict events E5 and E6 to sequences in E4.
Event E5 consists of sequences such that the subsequence of the first t(ptat(s) - 8) emissions at state s is
f/2-index-unbalanced (with respect to the conditional measure), and E6 denotes the event that xt f/. E5 and
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xt[s] is e-index-unbalanced, Clearly, if x t E E6 then x£[s], 1 :::; e :::; t, turns from f/2-index-balanced to f
index-unbalanced in, at most, 2t8 occurrences of s. Taking 8 sufficiently small with respect to e and pstat(s),
we can guarantee that this number of occurrences is not sufficient for F.t3 to occur. In addition, by the same
large deviations arguments that lead to (24) [27, Theorems 3.1.2 and 3.1.6], P(E4) vanishes exponentially
fast. Thus, it suffices to prove that peEs) vanishes as required by the lemma. By the "dissection principle"
of Markov chains", peEs) equals the probability that the memoryless source defined by the conditional
measure at state s, emit an f/2-index-unbalanced sequence of length t(pstat(s) - 8). By our discussion on
the memoryless case, this probability vanishes as [t(pstat (s) - 8)t 17 , which completes the proof. 0

4 The Permutation-Context Algorithm

In this section we demonstrate an algorithm that combines sequential ranking with universal context mod
eling, and we show that it optimally encodes any ergodic tree source T with a model cost that corresponds
to the size of its permutation-minimal tree T'. The scheme will be referred to as the Permutation-Context
algorithm (or P-Context, for short), as it is based on Algorithm Context and on the concept of permutation
minimal trees. The algorithm assumes knowledge of an upper bound m on the depth of the leaves of T, and
its strong optimality is stated in Theorems 1 and 2 below. Rank indices (rather than the original symbols)
are sequentially processed, with the nodes of the context tree still defined by the original past sequence over
A. Symbol occurrences are ranked at each context of length m and an index is associated to xt+l in context
Xt·· ·Xt-m+l. An encoding node is selected by one of the usual context selection rules [15], using index
counts instead of symbol counts, and the index is encoded. Finally, the index counts are updated at each
node in the path, as well as the symbol counts at the nodes of depth m.

We start by describing how the data structure in the P-Context algorithm is constructed and updated.
The structure consists of a growing tree Tt, of maximum depth m, whose nodes represent the contexts, and
occurrence counts Mf(xt[s]) for each node s, 1 :::; i :::; a, which are referred to as index counts. In addition,
the nodes Sm of depth m in Tt, which are used as ranking contexts, have associated counts na(xt[sm]) for
every a E A, which are referred to as symbol counts. The algorithm grows the contexts and updates the
counts by the following rules:

Step o. Start with the root as the initial tree To, with its index counts all zero.

Step 1. Recursively, having constructed the tree Tt (which may be incomplete) from x t , read the sym
bol Xt+l. Traverse the tree along the path defined by xt,Xt-l,···, until its deepest node, say
Xt·· ·Xt-Hl, is reached. If necessary, assume that the string is preceded by zeros.

Step 2. If e< m, create new nodes corresponding to Xt-n e :::; r < m, and initialize all index counts as well
as the symbol counts at the node Sm of depth m to o.

Step 3. Using the symbol counts at Sm, find the index i such that Xt+l = Ai(xt[sm]) (thus, XHI is the i-th
most numerous symbol seen at context Sm in x t). If e< m, i.e., if Sm has just been created, then
xt[smJ = A and i is such that Xt+l is the i-th symbol in the alphabetical order. Increment the count
of symbol Xt+l at Sm by one.

6In our case, a suitable formulation of this principle can be stated as follows (see, e.g., [29, Proposition 2.5.1] for an alternative
formulation): Consider an ergodic Markov chain over a set of states S with a fixed initial state, and let P(·) denote the induced
probability measure. For a state s E S, let P'; (-) denote the i.i.d. measure given by the conditional probabilities at s. Let y n

denote the subsequence of states visited following each of the first n occurrences of s in a semi-infinite sequence x, and let Y n

denote a fixed, arbitrary n-vector over S. Then, Prob{x : y n = Y"} = p.(yn). The proof can be easily derived from the one
in [29].
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Step 4. Traverse the tree back from Sm towards the root and for every node s visited increment its index
count MI(xt [s]) by one. This completes the construction of 7t+l.

Clearly, the index counts satisfy

(38)
S'1'J1, : S is a prefix of STn

where the counts Mi(xt[sm]) are defined in (6). Note that, while Mf(xt[sm])
MI(xt[s]) =1= u, (xt [s]).

In practice, one may save storage space by limiting the creation of new nodes so that the tree grows only
in directions where repeated symbol occurrences take place, as in [13] and [15]. In addition, it is convenient
to delay the use of a ranking context until it accumulates a few counts, by use of a shallower node for
that purpose. These modifications do not affect the asymptotic behavior of the algorithm, while the above
simplified version allows for a cleaner analysis.

The selection of the distinguished context s* (x t) that serves as an encoding node for each symbol Xt+l
is done as in Context algorithm, but using index counts instead of symbol counts. Moreover, we encode the
ranking indices rather than the symbols themselves. Thus, the contexts s* (x t ) are estimates of the leaves of
a permutation-minimal tree, rather than a minimal tree in the usual sense. Clearly, as the ranking is based
on x", which is available to the decoder, Xt+l can be recovered from the corresponding index. Specifically,
we analyze the context selection rule of [15] but with a different "penalty term." To this end, we need the
following definitions. The "empirical" probability of an index i conditioned on a context s at time t is

MI(xt[s])
n(xt[s])

(39)

where we take % ~ o. For each context sb, bE A, in the tree, define

Dot(sb) = t MI(xt[sb]) log ~(i!sb)
i=l Pt(tls)

(40)

where hereafter the logarithms are taken to the base 2 and we take OlogO ~ O. This is extended to the
root by defining Dot(.>') = 00. Similarly to [15], Dot(sb) is non-negative and denotes the difference between
the (ideal) code length resulting from encoding the indices in context sb with the statistics gathered at the
parent s, and the code length resulting from encoding the indices in sb with its own statistics. In its simplest
form, the context selection rule is given by

find the deepest node s*(xt) in 7t where Dot(s*(xt)) :::: f(t) holds, (41)

where f(t) is a penalty term defined, in our case, by f(t) = 10i+"Y(t + 1) with 'Y > 0 an arbitrarily chosen
constant. If no such node exists, pick s*(xt) = Xt·· ·Xt-m+l. In fact, a slightly more complex selection
rule based on (41) is used in [15] to prove asymptotic optimality. That rule is also required in our proof.
However, since its discussion would be essentially identical to the one in [15], we omit it in this paper for
the sake of conciseness. Whenever properties derived from the selection rule are required we will refer to the
corresponding properties in [15]. Note that the penalty term f(t) differs slightly from the one used in [15].

Finally, following [26] and (4), the probability assigned to a symbol Xt+l = a whose associated index is
i, is

(42)
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The total probability assigned to the string x" is derived as in (3), and the corresponding code length
assigned by an arithmetic code is

n

L(xn) = - LlogPt(Xt+lls*(xt)).

t=O

(43)

Notice that in the binary case, the P-Context algorithm reduces to predicting symbol xHl as Xt+1
arg maxaEA na (x t [Xt ... Xt-m+1]) and applying Algorithm Context to the sequence of prediction errors Xt+l EB
Xt+1, with the conditioning states still defined by the original past sequence xt. Theorem 1 below establishes
the asymptotic optimality of the P-Context algorithm in a strong sense for the case where all the conditional
probabilities are non-zero. Later on, we present a modification of the algorithm that covers the general
ergodic case. Although the changes to be introduced are relatively minor, we postpone their discussion since
it might obscure some of the main issues addressed in Theorem 1.

Theorem 1 Let T be an arbitrary tree source whose conditional probabilities satisfy p(als) > 0 for all a E A
and s E S. Then, the expected code length ErL(xn) assigned by the P-Context algorithm to sequences x"
emitted by T satisfies

(44)

where Hn(T) denotes the per-symbol binary entropy of n-vectors emitted by T, k' denotes the number of
leaves in the permutation-minimal tree T' ofT, and the O(n- 1) term depends on T.

Notice that the assumption on the conditional probabilities implies that the tree source is ergodic. The
orem 1 says that P-Context attains Rissanen's lower bound in the extended source hierarchy that includes
permutation-minimal trees. This does not contradict the corresponding lower bound for conventional mini
mal tree sources, as for each given level in the hierarchy of minimal tree sources, the sub-class of sources for
which the permutation-minimal tree representation is strictly smaller than the minimal tree representation
has Lebesgue measure zero at that level of the parameter space (in the same way that reducible tree sources
have measure zero in the class of all Markov sources of a given order). However, the sub-class does capture
those sources for which prediction has a beneficial effect, which are interesting in practice. For those sources,
the reduction in model size yields a potential reduction in model cost, which is realized by P-Context.

The proof of Theorem 1 uses a key lemma which states that the probability that s*(x t ) is not a leaf of
T' vanishes at a suitable rate when t tends to infinity. This result, stated in Lemma 6 below, parallels [15,
Lemma 1]. Its proof, which is given in Appendix A, extends the one in [15] by use of the tools developed in
Section 3.

Lemma 6 Let T be as defined in Theorem 1 and let E t denote the event that s*(z") is not a leaf of T'.
Then, the probability P(Et) of E t satisfies

00

L P(Et
) logt < 00.

t=l

(45)

Lemma 6 means that the cost of ranking the symbols sequentially, based on an over-estimated model,
does not affect the rate at which the probability of the error event vanishes.

Proof of Theorem 1. Let yn denote the sequence of indices derived from xn by ranking the symbols
sequentially at the nodes of depth m in the tree, as in the P-Context algorithm. Thus, Yt, 0 < t S n, takes
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(46)

values over the integers between 1 and a. Let H(ynIT') denote the conditional entropy with respect to T
of the empirical measure defined in (39), namely

H(ynIT') ~ - L t MI(xn[s]) log MI(xn[s])
sES'i=l n n(xn[s])

where 8' denotes the set of leaves of T. Had the probability assignment (42) been computed using the
true (unknown) permutation-minimal tree T' instead of the sequence of contexts derived with the context
selection rule, we would have obtained for every sequence xn a code length L'(xn) satisfying, [26],

L'(x
n)

::; H(ynIT') + k'(a -1) logn + O(n-1).
n 2n

In addition, by the arguments in [14, Theorem 4(a)], Lemma 6 implies

.!.Er[L(xn) - L'(xn)] = O(n- 1).
n

Hence, it suffices to prove that

(47)

(48)

ErH(ynIT') ::; Hn(T) + O(n-1). (49)

Now, by the definition of T', all the descendants sv E 8 of s E 8' have the same associated conditional
probability vector, as defined after (15), which is independent of the string v and is denoted by p(s) =
[Pl(S), P2(s),···, Pa(s)]. Note that, in fact, this constitutes an abuse of notation since s may not be in 8, so
that the conditional distribution p(·ls) may not be defined. Now, applying Jensen's inequality to (46) and
then using (38), we obtain

a

H(ynIT') ::; _n-1L L L Mi(xn[sw]) logp.Is)
sES' w: Iswl=m i=l

(50)

where Iswl = mmeans that sw is a ranking context that has sas a prefix. Note that if we allowed zero-valued
conditional probabilities, there might be cases where some Mi(xn[sw]) -# 0 even though the corresponding
probability Pi(S) = 0, as noted in the discussion preceding Lemma 5. Consequently, the application of
Jensen's inequality in (50) relies on the assumption that all conditional probabilities are non-zero. Since sw
also has a prefix which is a state of T we can treat it as a state in a possibly non-minimal representation of
the source. Thus,

s,w,i

d(s)-l jr+l

_n-1L L L 10gpj(s)Er[Mj(xn[sw])]
s,w r=O j=jr+l

(51)

(52)

(53)

where the ir's are defined by (16) and, hence, depend on s (however, for the sake of clarity, our notation does
not reflect this dependency). The summation ranges of s, w, and i in (51) are as in (50). By the definition
of the partition boundaries, (52) takes the form

E,.H(ynIT') < -n~'~ d~'lOgp;'H(S)E,. [;!,M; (x
n""

des)
_n- 1L LlogPjr(s)Er [Mr(xn[sw])]

8,W r=l
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where the last equality follows from the definition (9). Thus, by Lemma 1,

ETH(yn IT') ~ _n-1 L logpj, (S)ET[Nr(xn[sw)) + n;_l (xn[sw])].
S,W,T

(54)

To compute ET[Nr(xn[sw])], we partition the set of n-sequences An as follows. For each ranking context
sw, let E1(sw) denote the event that xn[sw] is not properly ordered. By Lemma 4, this is a large deviations
event whose probability is upper-bounded by K2pn ,where we choose K2 and p as the maximum of the
corresponding constants over the set of m-tuples sw. If x!' ¢ E1(sw) then, clearly,

ir
Nr(xn[sw]) = L nbj(sw)(xn[sw))

i=ir-l+1

(55)

for every m-tuple sw and every r, 1 ~ r ~ d(s). Here, we recall that ~j(z)(xn[z]) denotes the number of
occurrences in xn[z] of the symbol with the j-th largest conditional probability at state z, Thus,

ir
ET [Nr(xn[sw])] s L P(xn)Nr(xn[sw)) + L ET[nbj(sw)(xn[sw])]

xnEE1 (sw) i=jr-l+1
i- n-1

< n(xn[sw))K2pn + L Pj(s) L Pt(sw)
j=jr-l+1 t=O

(56)

where ~(sw) denotes the probability that the state at time t (in a possibly non-minimal representation of
T) be sw. Again, by the definition of the jr's, (56) yields

n-1

ET [Nr(xn[sw])] s n(xn[sw])K2pn + (jr - jr-t}Pjr(s) L Pt(sw).
t=O

In (54) we also need to bound ET[n;_l(xn[SW])]. To this end, we have

(57)

00 00

ET[n;_l(xn[SW])] = L u Prob(n;_l(xn[SW)) = u) < L u Prob(n;_l(xn[sw)) 2: u) (58)
,.=0 ,.=0

for every sw and every r, 1 < r ~ d(s). Thus, by Lemma 2,
00

ET[n;_l(xn[SW])] ~ K 1L up" < 00,

,.=0

implying

ET [n;_l(:n[Sw))] = 0 (~)

Defining the positive constant Q ~ - minaEA,sEs logp(als), (54), (57), and (60) yield

ETH(ynIT') < aQK2pn - n-1 L [(jr - jr-1)Pjr(S) logPir(s) 'i Pt(SW)]
8,W,r t=O

+ Q L ET [n;_l(:n[sW])]
8,W,T

n-l~, [h.(P(S))~~P'(SW)]+oG)
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(60)

(61)



where ha. (.) denotes the binary entropy function over an o-ary alphabet. By the definitions of Sand S',
(61) can be rewritten as

ETH(ynIT') < n-
1~ [ha.({p(aIS)}aEA)~Pt(S)] +0 (~)

~n-'~~ [IOgp(aIS)~ x""(x'~'x,,,~" P(X
n

)] + 0 G)
-n-' x~" P(x

n
) [~IOgp(X'HIS(X'))] + 0 G)

_n- 1 L P(xn)logP(xn) + 0 (~) . (62)
x'nEAn

By the discussion preceding (49), this completes the proof of Theorem 1. o

Theorem 1 relies on the positivity of all the conditional probabilities since otherwise, as noted in its proof,
some value M, might be non-zero even when the corresponding entry ]);(s) in the probability vector is zero.
This is caused by the use of a predetermined alphabetical order in breaking ranking ties and by the fact that
the encoder does not have prior knowledge of the effective alphabet. A value M; corresponding to Pi(S) = 0
is upper-bounded by the constant a which implies that the empirical probability i't(ils) is 0(n-1) . However,
its contribution to the empirical entropy (46) is O(logn / n), which would void our proof of (49). The problem
would be eliminated if the tie-breaking order were such that zero-probability symbols were placed last in the
order. To remove the restriction on the conditional probabilities we modify the P-Context algorithm to use
a dynamically determined order in each ranking context Sm which is given by the order of first occurrence
of the symbols in xt[sm]. Thus, an M; =I- 0 always corresponds to a Pi(S) =I- O. This amounts, in fact, to
using a possibly different alphabet (of variable size) in each state, for which all conditional probabilities are
positive. The algorithm will guarantee that the decoder will be able to reconstruct the order.

Specifically, the dynamic tie-breaking order used in determining Ai(xt[smJ) in Step 3 of the P-Context
algorithm is derived as follows: If this is the first occurrence of Xt+l at context Sm and f3 different symbols
have occurred at this context, then Xt+l is assigned the place f3 + 1 in the dynamic alphabetical order.
Otherwise, if this is not the first occurrence of Xt+b it has already been placed in the order. Notice that
this order guarantees that in the first occurrence of a symbol Xt+l in a ranking context Sm the assigned
index is the smallest i such that Mi(xt[smD = 0 and, therefore, the count is incremented from 0 to 1. The
context selection rule does not need, any modification, but the formula (42) for the probability assigned to
a symbol has to be modified so that the decoder can recover symbols that occurred for the first time in a
ranking context, for which the index is not sufficient, since the dynamic order is still unavailable. To this
end, we first notice that for a ranking context Sm where f3(sm) different symbols occurred, with f3(Sm) < a,
the a possible events to be encoded at a selected encoding node S"(xt ) are of two kinds: on the one hand,
the indices 1, 2, "', f3(sm), from which the decoder can recover the corresponding symbol and, on the other
hand, the index f3(sm) + 1 in conjunction with one of the a - f3(sm) possible new symbols at Sm' For events
of the first kind, the probability assigned to a symbol Xt+l = a whose associated index is i :::; f3(sm), is

(63)

18



For each event of the second kind, we assign the probability

""'" M'(xt[s*(xt)]) + 1/2, (als*(xt)) = L,.,i=,B(s",)+l i
Pt n(xt[s*(xt)]) + ((3(Sm) + 1)/2

1
(64)

i.e., the remaining probability mass is distributed uniformly among the a - (3(sm) events of this kind. If
(3(sm) = a, then we use the probability assignment (42). Note that with (3(Sm) = a-I both assignments
coincide.

For the P-Context algorithm, modified as described above, we have:

Theorem 2 Let T be an arbitrary, ergodic tree source. Then, the expected code length ETL(xn) assigned by
the modified P-Context algorithm to sequences z" emitted by T satisfies

(65)

where Hn(T) denotes the per-symbol binary entropy of n-vectors emitted by T, S' denotes the set of leaves
of the permutation-minimal tree T' ofT, a(s) is the minimum between a-I and the number of non-zero
entries in the probability vector }3(s), and the O(n- 1 ) term depends on T.

Note that if all the conditional probabilities are positive, (65) reduces to (44) of Theorem 1. Otherwise,
there are savings in the asymptotic model cost. However, these savings are not enough to attain the optimum
0.5n-1 LSES,(a(s) -1) that could have been achieved if the fact that the source belonged to a subclass with
a reduced number of free parameters was known a priori by the coder. The J! additional parameters is the
cost that is paid for accomplishing the task sequentially.

The proof of Theorem 2 follows that of Theorem 1 almost verbatim if we notice that since Pi(s) = 0
implies Mi(xt[s]) = 0, Jensen's inequality can be safely used in deriving (50) and (A.4). The use of the
results in [26] to obtain an analogous to (47) is based on the fact that the assignment (64) is employed a
finitely bounded number of times and, therefore, the total contribution of the factors 1/(a -(3(sm)) to the
per-symbol code length is O(n-1) . Disregarding this factor, since (3(sm) + 1 in (63) is upper-bounded by
o:(s), where s is the unique prefix of 8m in S', the assignment p~(xt+lls*(xt)) is clearly at least as large as
Pt(xt+lls*(xt)) even if the latter were computed with an alphabet size of a(s) + 1. This is the origin of the
model cost in Theorem 2. Finally, in (A.3), the divisor p",(s), which may be zero, is replaced by P",(s)+l(s),
similarly to the proof of Lemma 5 (eq. (31)).

A Appendix: Proof of Lemma 6

By the context selection rule and proceeding as in the proofs of Lemmas 1, 2, and 3 of [15], it can be shown
that there exist only two non-trivial situations in which a sequence x t can lead to the selection of a context
s*(z") which is not a leaf of T':

a. There exists a leaf s of T' such that a longer context swc, c E A, lsi:::; Iswl < m, for which s is a
prefix, satisfies ~t(swc) ;::: f(t). In this case, there is an over-estimation error.

b. There exists a node z such that all its successors are leaves of T, for which LbEA ~t(zb) < a](t).
This case may lead to an under-estimation error.
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First, we consider the over-estimation case, for which we introduce some additional notation. For a context
z and a tree T, let Tz denote the minimal complete tree containing T and z: With s, w, and c defined as
above and fixed, let Ssw denote the set of leaves of Tsw. For a node v in Tsw, let S(v) denote the set of
leaves of Tsw having vasa prefix. Clearly,

where

logP(xt) = L L na(xt[zJ) logp(alz) + r.:
zES.w -S(sw) aEA

(A.l)

r.; ~ L L na(xt[zJ) logp(alz). (A.2)
zES(sw) aEA

Since s is a leaf of T', all the contexts in S (sw) share a common probability vector independent of w, which by
abuse of notation is denoted p(s) = [P1(S),··· ,Po(s)], as defined after (15). We use nj(xn[zJ) as a simplified
notation for the number nbj(z)(xn[zJ) of occurrences in xn[z] of the symbol with the j-th largest conditional
probability at state z. Thus,

e: L i: nj(xt[zJ) logpj(s) = t [IOgPj(S) L nj(xt[zJ)]
zES(sw) j=1 j=1 zES(sw)

= t [IOgPj(S) L Mj(Xt[ZJ)] +t [IOgPj(S) L [nj(xt[zJ) - Mj(Xt[Z])]]
j=1 zES(sw) j=1 zES(sw)

i: Mj(xt[swJ) logpj(s) +~ [lOg Pj~:~ L [nj(xt[zJ) - Mj(Xt[Z])]]
j=1 j=1 Po zES(sw)

.0. p(1) + p(2) (A.3)sw sw

where the fourth equality follows from (38) and from the fact that Ej=1[nj(x t [zJ) - Mj(xt[z])] = 0 for every
z. By (39) and Jensen's inequality, and then using (38) and (40), we obtain

p;}) s i: [L Mj(xt[swbJ) logiHjlsw) + Mj(xt[swcJ) IOgj\U1SWC)] - ~t(swc). (A.4)
j=1 bEA, bi'e

Next, we modify an argument used in the proof of [15, Lemma 2] by defining, for a fixed sequence x t , a
new process Qswe('; x t) by the tree Tswe, which is used to assign conditional probabilities as follows. For
z E Ssw - S(sw), we associate the original conditional probabilities p('lz), while symbols Yl+1 occurring at
nodes swb, b E A, in a sequence yt , are mapped to indices j such that Yl+1 = A j (lI [smJ) , where Sm denotes
the corresponding ranking context of length m. Then, we assign the conditional probabilities iHjlsw) for
occurrences at swb, b :f:. c, and fHjlswc) in case b = c, where the empirical probabilities, defined by (39),
correspond to the fixed sequence r. Clearly, given the entire sequence xt, the probability Qswe(' ;xt) can
be assigned sequentially to any sequence 11 and, consequently,

L Qswe(yt;xt) = 1.
ytEAt

(A.5)

Thus, we can define equivalence classes on At in a way similar to [15, Lemma 2] (but using index counts
instead of symbol counts) to show that

L Qswe(xt;xt) ~ (t + 1)20
xtEAt
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where the right hand side is a bound on the number of classes. On the other hand, (A.l), (A.3), (A.4), and
the definition of the process Qswe(· ; x t), imply that

(A.7)

(A.9)

Since over-estimation occurs whenever .6.t (swc) :::: f (t) = logH'Y(t + 1), the probability P?ver(swc) of over
estimation at time t for the node swc can be upper-bounded as

pover(swc) < '" Qswe(x
t;
xt)2P~~ < 1 '" Q (xt. xt)2P~~ (A.8)

t - L 2at(swe) - (t + 1)log'Y(t+l) L swe, .
xt: at(swe)~f(t) xtEAt

Thus, we can use (A.6) to upper-bound the over-estimation probability, provided we find a uniform upper
bound on Psc:;} for all sequences xt except a suitably small set. To this end, we apply the tools developed in
Section 3. By (A.3), the definition of the set S(sw), and (38), we have

pj~ ~ ~ [lOg::\t I.~=mln;(xt[swv]) - M;(Xt[SWVJ)]] ,

which, using the partition (16) and its related notation, can be written as

(A.lO)

Now, if xt[swv] is properly ordered, then (A.I0) takes the form

p(2) =sw

(A.H)

where the last inequality follows from Lemma 1. Proceeding as in the proof of Lemma 5, we first use Lemma 2
to show that

Prob {xt : L n;(xt[swv]) > 2mClog(t + 1) for some r, 1 s r < d(S)} < a2mK1(t + I)Clogp
v: Iswvl=m

(A.12)

for an arbitrary constant C. This leads to the desired uniform bound on Psc:;} for sequences in the comple
mentaryevent. By (A.8), Lemma 4, (A.12), and (A.H), it then follows that

1 "'C ",d(s)-ll ~
pover(swc) < K 2pt + a2mK1(t + I)Clogp + '" Q (x t. xt)(t + 1)2 L.Jr=l og Pats) •t - (t + 1)log'Y(t+l) L swe ,

xtEAt
(A.13)

By (A.6) and with R(s) ~ L~~i-llog ~j:«:? ' (A.13) takes the form

prer(swc) -:; K 2pt + a2mKltC log p + (t + 1)-log'Y(t+l)+2o+2"'CR(s).
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Thus, for an appropriate choice of C, the over-estimation probability is summable as desired".

Next, we turn to the under-estimation probability ptunder(z) associated with a node z such that all its
successors are leaves of T, as stated in the definition of the under-estimation case. Clearly, it suffices to
show that this probability is summable as desired. We have

ptunder(z) :::; Prob {xt : L ~t(zb) < af(t)} .
bEA

Now, by (40),

t ({ Mj(Xt[ZJ)}a ) t ({ Mj (x
t
[zbJ) }a )

~~t(zb) = n(x [zJ)ha n(xt[zJ) j=l - ~ n(x [zbJ)ha n(xt[zb]) j=l

(A.15)

(A.16)

By Lemma 5, we can assume that x t is f1-index-balanced for some f1 > 0, as the probability of the com
plementaryevent is summable as desired. In this case, for every m-tuple 8m and every j, 1 $ j $ a, we
have

1
M j (x

t
[s m]) ()I (A 7)

n(xt[sm]) - Pj Sm < er- .1

If Sm is a descendant ofthe leaf zb E S', we have Pj(sm) = pj(zb). Consequently, summing (A.17) over the
m-tuples that are descendants of zb we get

1

Mj(xt[zb]) 1

n(xt[zbJ) - pj(zb) < er-

By the continuity of the function haU, (A.16) and (A.18) yield

(A.18)

(A.19)

for some f2 > 0, which can be made arbitrarily small by letting e i approach O. Since t- 1 f(t) - 0 as t - 00,

it follows from (A.15) that it suffices to prove that

(A.20)

is summable as desired for some f > O. By applying the large deviations result of [28, Lemma 2(a)] (see
also [27, Theorem 3.1.13]) in a way similar to the proof of [15, Lemma 3], it can be shown that this holds
provided that

({ }
a )

P stat(zb) pstat(zb)_
s; LPj(zb) pstat(z) - L pstat(z) ha(p(zb» > 0,

bEA j=l bEA

where for a node S in T
pstat(S) ~ L pstat(su),

ts : suES

(A.21)

(A.22)

7Note that any oCt) penalty term of the form g(t) log(t + 1), where get) is an arbitrary, unbounded, increasing function of t,
would suffice to make p;ver(swc) summable. In (A.14), we have get) = log "Y (t + 1).
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and pstat(su) denotes the (unique) stationary distribution defined on S by the tree source. Note that, as in
[15, Lemma 3], we can assume that the process generated by T is a unifilar Markov chain (possibly with a
number of states larger than lSI). By Jensen's inequality, the strict inequality (A.21) holds, for otherwise
p(zb) would be independent of b, which would contradict the permutation-minimality of T'. 0
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