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1 Introduction

Prediction is one of the oldest and most successful tools in the data compression practitioner’s toolbox. It
is particularly useful in situations where the data (e.g., a digital image) originates from a natural physical
process (e.g., sensed light), and the data samples (e.g., real numbers) represent a continuously varying
physical magnitude (e.g., brightness). In these cases, the value of the next sample can often be accurately
predicted using a simple function (e.g., a linear combination) of previously observed neighboring samples [1].
The usual interpretation of the beneficial effect of prediction is that it decorrelates the data samples, thus
allowing the use of simple encoders for the sequence of prediction errors, from which the original data set
can be reconstructed. In fact, in the case of natural photographic images, very simple DPCM schemes based
on low order linear prediction followed by a zero-order Huffman code go a long stretch of the way towards
the best practical compression ratios.

It has been noted, though, both in theory [2, 3] and in practice (starting with [4]), that prediction alone
cannot achieve total decorrelation in general, even in the case of universal prediction [5, 6, 7, 2, 8]. In fact,
most state-of-the-art lossless image compression schemes (e.g., [9, 10, 11, 12]) use prediction followed by
some form of context modeling (i.e., encoding based on higher order conditional probability models), with
the latter stage exploiting dependencies left in the data after the prediction stage. In particular, prediction
can be followed by a universal encoder for a broad class of context models [13, 14, 15, 16, 10]. In this
case, however, the “decorrelation” benefit of prediction, which is obvious when followed by a zero-order
coder, becomes less clear, since the same contextual information that is used to predict is also available for
building the compression model, and the latter will eventually learn the “predictive” patterns of the data.
Yet, practical experience clearly indicates that prediction is still beneficial when used in conjunction with
higher order context models (as many practitioners who have attempted to use one of the various universal
schemes directly on image data and got disappointed will attest). Thus, the following questions arise, and
provide the motivation for this work: Why use two different modeling tools based on the same contextual
information, and how do these tools interact?

In this paper, we address these questions, and we study the interaction between universal prediction and
universal coding, bridging what we perceive as a gap in the formal treatment of this successful combination,
each of whose components has been thoroughly studied. We formalize and quantify the effect of prediction
in the framework of finite-memory {or tree) sources over finite alphabets [13, 14, 15]. A tree source consists
of an underlying a-ary context tree structure, where « is the size of the source alphabet, and a set of
conditional probability distributions on the alphabet, one associated with each leaf of the tree.! These
sources provide a reduced parametrization of Markov models (achieved through merging sibling states with
identical conditional probability distributions), and can be modeled by efficient algorithms {15, 16]. In our
main result, we show that prediction can provide an algorithmic way to reduce the model cost (i.e., the
intrinsic penalty in code length due to the number of free parameters modeled) incurred by a universal
modeler, thus allowing for a faster convergence to the model entropy as per Rissanen’s lower bound [17,
Theorem 1]. Notice that model size reduction is an appropriate refinement of the notion of decorrelation,
with total decorrelation corresponding to the extreme case where the model is reduced to one node (i.e., a
memoryless source).

Our starting point is the observation that the effect of prediction is often that of merging probability
distributions that are similar but centered at different values. This is typical, for example, of gray-scale
images, where sample values often obey a Laplacian-like (double sided exponential) probability distribution
whose center is context-dependent [18, 1]. By predicting a deterministic, context-dependent value £ for the
“next symbol” z, and considering the (context-)conditional probability distribution of the prediction error

LAIl technical terms and concepts discussed informally in this introduction will be precisely defined in subsequent sections.



e = x — £ rather than that of z itself, we allow for similar probability distributions on e, which may now be
all centered at zero, to merge in situations when the original distributions on z would not do so. In the case
where z is drawn from a finite alphabet of cardinality « (e.g., the set of numbers {0,1,...,a—1}), and given
a prediction value £ from the same alphabet, the prediction error e can take on only « different values, and
one can assume without affecting the losslessness of the prediction stage that e is computed over the integers
modulo a. Thus, prediction effects the alphabet permutation? z — (z — £) mod a. In our framework,
we will consider arbitrary permutations of the alphabet, thus freeing the analysis from any assumption of
“smoothness” or even a metric on the input samples. The notion of two probability distributions that can
be made similar by “centering” is replaced by that of two distributions that can be made similar by an
arbitrary permutation of the alphabet. In this framework, the analog of a “predicted value” & that centers
the distribution is a permutation that ranks the alphabet symbols in decreasing probability order (with
appropriate provisions for ties). Thus, instead of just predicting what the most likely next symbol is, we
will predict also what the second most likely symbol is, what the third most likely symbol is, and so on.3
A permutation-minimal tree is defined as a tree source representation in which we have merged, to the
maximum extent possible, complete sets of sibling leaves that have the same sorted probability vector (i.e.,
the same conditional probability distribution up to a permutation of the symbol “labels”). The permutation-
minimal tree representation of a source may be smaller than its conventional minimal tree representation,
thus allowing for potential savings in model cost and faster convergence to the source entropy.

To obtain the ranking permutations that allow for the construction of a permutation-minimal tree, we
will define universal sequential ranking as a generalization of universal sequential prediction, to be used in
conjunction with the universal coder. Universal ranking, however, also requires a model structure with an
associated model cost (as does universal prediction), which should be weighted against the potential savings
in compression model cost. An indication that this trade-off might be favorable is given by a comparison
between the compressibility bound in [17] and the predictability bound in [8], which shows that the model
cost for prediction — O(1/n) — is negligible with respect to that associated with compression — O(logn/n).

Thus, the use of prediction is predicated on a “prior belief” that the source we are dealing with does
indeed contain states that are permutation-equivalent (as would be the case, say, with “smooth” gray-scale
images). In this case, we are willing to invest the price of modeling a predictor for the source. If our belief
is correct, the permutation-minimal representation will be strictly smaller than the conventional minimal
representation, and we will get the pay-off of a reduction in compression model cost and faster convergence
to the entropy. If our belief is incorrect, then the permutation-minimal tree will not be smaller than the
minimal tree, the compression model cost will remain the same, and we will have paid an unnecessary
prediction model cost (albeit a third-order term penalty). Notice that in no case there is a penalty in the
second-order term (the dominant redundancy term). '

To formalize these ideas, we present a theorem which in simplified form states that for every ergodic
tree source T (which includes the underlying graph and the associated conditional probabilities) a universal
scheme combining sequential ranking and context modeling yields a total expected code length ErL(z™)
satisfying

1 Kla—-1

;ZETL(.I‘n) < Hn(T) + (T) logn + O(n_l) (1)
where H,(T') denotes the per-symbol binary entropy of n-vectors emitted by T and k¥’ denotes the number
of leaves in the permutation-minimal tree T’ of T. Hence, the combined scheme attains Rissanen’s lower

20ther mappings of the error value into a set of a different values are possible, and may have compression advantages in
certain applications [19]. These alternate mappings amount to more elaborate permutations determined by the predicted value
E.

3In the case of binary sources, the concepts of ranking and prediction coincide, as binary prediction is equivalent to guessing
what the most likely binary value is for the next symbol, which amounts to ranking the binary alphabet.



bound in an extended source hierarchy that includes permutation-minimal trees. If 7" has indeed fewer
leaves than T, the combined algorithm converges faster than an optimal algorithm modeling T in the class
of general tree sources. The notion of a hierarchy of sources here is borrowed from [20]: At the top of the
hierarchy are all Markov models of order, say, m, e.g., in the binary case, tree sources with 2™ leaves and
all possible parametrizations. Each sub-tree with 2™ —1 leaves defines a sub-class, consisting of all the tree
sources whose parametrizations can be reduced, thru merging of two leaves, to the given sub-tree. This
process is continued for all possible sub-trees of smaller sizes. Thus, the “place” of a given source in the
hierarchy is determined by the underlying tree of its minimal parametrization. The universal algorithms
considered here attain Rissanen’s lower bound for the smallest sub-class to which a source belongs.*

The combined universal scheme is presented in the form of an algorithm named P-Context. This algorithm
is based on Algorithm Context [13, 22, 15], which provides a practical means to estimate tree sources.
However, our emphasis is on providing a formal framework for the “success story” of prediction in conjunction
with context modeling, rather than on the specific algorithm described, which is presented as an example of
how the gains available through prediction can be realized. In fact, similar results could be derived for other
universal modeling algorithms for tree sources (e.g., context-tree weighting [16], or the algorithm in [14}). In
particular, [16] provides an elegant scheme which recursively computes a mixture of all possible models in the
class of tree sources (of any size), without explicit enumeration of the models. This “mixing” approach (as
opposed to the “plug-in” or “state-estimation” approach of [15] and [14]) provides asymptotic optimality also
in a non-probabilistic framework [23]. In order to maintain this property in the extended source hierarchy,
it would be necessary to include additional models in the mixture. For example, consider the binary case
and assume that the Markov order of the models is at most one. Optimality in the extended hierarchy
would require that, besides a two-parameter model given by a Markov source of order one, and a one-
parameter memoryless model, the mixture include an additional one-parameter model, in which probabilities
are computed under the assumption that p(0|0) = p(1|1). For larger alphabets and trees, one should
include all possible permutations of the alphabet at every node. Although this approach is possible in
principle, an implementation of the mixture in a way analogous to [16] is an open research problem. Such
an implementation would provide a “mixing equivalent” of the practical prediction-based algorithms, which
seem to follow an inherently plug-in approach. Using ranking in conjunction with the context-tree weighting
method is also possible and would lead to results similar to those presented in this paper. However, for this
hybrid (plug-in and mixing) approach, the pointwise (non-probabilistic) optimality of [16] may no longer
hold.

Algorithm P-Context builds two models on a common data structure: an over-estimated prediction
model (i.e., a non-minimal tree) where at each (over-estimated) state we use a universal ranker based on
frequency counts, and a compression model which is in turn used to encode rank indices. Notice that in
the compression model built, the conditioning contexts are still determined by the original symbols, but the
assigned conditional probabilities correspond to the rank indices. As explained in our discussion on “prior
belief,” for the sources of interest, the cost of using an over-estimated prediction model will be offset by
the savings resulting from a smaller compression model. P-Context was conceived with a theoretical goal
in mind, and in fact it may be too complex for some practical applications. However, some of the best
published lossless image compression schemes [10, 11, 12] can be seen as simplifications of the basic concepts
embodied in P-Context, including the basic paradigm of using a large model for adaptive prediction which in
turn allows for a smaller model for compression, and the use of contexts determined by original symbols to
encode prediction errors. Moreover, symbol ranking has been proposed in recent lossless image compression
algorithms [12, 24] and in other practical applications [25], without a formal convergence proof.

The rest of the paper is organized as follows: In Section 2 we review finite-memory sources and tree

4This is sometimes referred to as a twice universal algorithm [21].



models, and we formally define the sub-hierarchy of permutation-minimal tree sources. In Section 3 we
define sequential ranking of non-binary sources, and we study its combinatorial and probabilistic properties.
Here, we generalize some results on universal prediction from [8] to non-binary alphabets. Finally, in Section 4
we describe the P-Context algorithm and present our main theorem.

2 Tree Models

In a finite-memory source, the conditional probability of the next emitted symbol, given all the past, depends
only on a finite number of contiguous past observations. In many instances of practical interest, however,
fitting a plain Markov model to the data is not the most efficient way to estimate a finite-memory source,
since there exist equivalent states that yield identical conditional probabilities. Thus, the number of states,
which grows exponentially with the order m in a Markov model, can be dramatically reduced by removing
redundant parameters after lumping together equivalent states. The reduced models [13, 14] have been
termed tree sources [15], since they can be represented with a simple tree structure, and are reviewed next.

Consider a sequence " = z1Z3 - - - T, of length n over a finite alphabet A of a symbols. Any suffix of ™ is
called a contezt in which the “next” symbol z,,,1 occurs. A probabilistic model P, defined on A™ for alln > 0,
has the finite-memory property if the conditional probability function p(zn,41 = alz™) £ P(z™a)/P(z™)
satisfies

P(Znt1 = a|z™) = p(Tpt1 = alus(z™)) Vue A", a€ A (2)

where 7 denotes the reverse of a string y, and s(2*) = ,, - - - Tp—g41 for some £, 0 < £ < m, not necessarily
the same for all strings (the sequence of indices is decreasing, except for the case £ = 0 which is interpreted
as defining the empty string A; thus, we write the past symbols in reverse order). Such a string s(z®) is
called a state. In a minimal representation of the model, 3(z™) is the shortest context satisfying (2). Now,
consider a complete a-ary tree, where the branches are labeled by symbols of the alphabet. Each context
defines a node in the tree, reached by taking the path starting at the root with the branch z,, followed
by the branch z,_1, and so on. The set S of states is such that it defines a complete subtree T, with S
as the set of leaves. Incurring a slight abuse of notation, we will write p(a|s), a € A, s € S, to denote
the conditional probability p(z,+1 = a|u3(z™)), which is independent of u € A*. Using the tree T' and the
associated conditional distributions {p(a|s) : a € A, s € S}, we can express the probability P(z™) as

n-1

P(z") = [] p(zenils(a*)) 3)

for any string (a detailed description of how this is done for the very first symbols in the string, for which a
leaf in the tree may not be defined, is given in [15]). For the sake of simplicity, in the sequel, T will denote
the whole model, i.e., both the tree and its associated conditional probabilities.

A tree T is called minimal [14, 15] if for every node w in T such that all its successors wb are leaves, there
exist a, b, c € A satisfying p(aJwb) # p(ajwc). Clearly, if for some such node w the distributions p(: |wb) are
equal for all b, we could lump the successors into w and have a smaller complete tree representing the same
process. Thus, a minimal tree guarantees that the children of such a node w are not all equivalent to it,
and hence they cannot be replaced by the parent node. Notice that even in a minimal tree, there may still
be sets of equivalent leaves, not necessarily siblings, having the same associated conditional probabilities.
These equivalent nodes could, in principle, be lumped together thus reducing the number of parameters in
the model. However, such a reduced parameterization may no longer admit a simple tree implementation
nor a practical construction.



Algorithm Context, introduced in {13], improved in [22], and further analyzed in [15], provides a practical
means to estimate tree sources. The algorithm has two interleaved stages, the first for growing the tree and
the second for selecting a distinguished context to define the state s(z*) for each t > 0. There are several
variants of the rule for the “optimal” context selection, all of which are based on a stochastic complexity
argument; that is, the context which would have assigned the largest probability for its symbol occurrences
in the past string should be selected for encoding. The probability of occurrence of a symbol a € A in a
context s may suitably be taken as [26]

. ng(xt[s]) +1/2
Pl = e am @D + a2 @

*

where np(xt[s]) denotes the number of occurrences of b € A at context s in z*. It is shown in [15], for a
particular context-selection rule, that the total probability (3) induced from (4) attains Rissanen’s lower
bound.

Although the parameter reduction achieved by tree models over Markov models can be significant, it
does not fully exploit some structural symmetries in the data, which, in practice, are often handled through
prediction, as discussed in Section 1. The intuitive ideas there can be formalized by modifying our definition
of a minimal tree as follows. Let B(s) = [p(ai,|s) p(ai,|s) - - - p(ai, |s)] denote the conditional probability vector
associated with a state s of a tree source, where the symbols a;; € A, 1 < j < a, have been permuted so that
p(ai,|s) > play,ls) > -+ > plai,|s). A tree T is called permutation-minimal if for every node w in T such
that all its successors wb, b € A, are leaves, there exist b, ¢ € A such that p(wb) # p(wc). In the binary case,
this means that p(0jw0) # p(0|wl) and p(0|wO) # p(1|wl). Thus, a tree that is not permutation-minimal
can be reduced by lumping the redundant successors wb, b = 0,1, into w whenever the distributions at the
siblings wb are either identical or symmetric. The common conditional probability vector is also assigned
to the resulting leaf w. For example, consider the binary tree T defined by the set of leaves {0, 10, 11},
where the probabilities of 0 conditioned on the leaves are p, (1 —p), and p, respectively, and assume p > 1/2.
Clearly, T is minimal in the traditional sense, but it can be reduced to the root 7' = {A} in the new sense,
with conditional probability vector [p, 1 — p] given A.

3 Sequential Ranking for Non-Binary Tree Sources

Imagine a situation where data is observed sequentially and at each time instant ¢ the alphabet symbols
are ranked according to their frequency of occurrence in z*. Then, after having observed z;.;, we note its
rank, and we keep a count of the number of times symbols with that rank occurred. For the highest rank,
this would be the number of correct guesses of a sequential predictor based on counts of past occurrences.
However, in our case, we are also interested in the number of times the second highest ranked symbol, the
third one, and so forth, occurred. We compare these numbers with the number of times the symbol that
ends being ranked first, second, and so on after observing the entire sequence occurred. Hence, in the latter
case we keep track of regular symbol counts and we sort them to obtain a “final ranking,” while in the
former case we keep track of counts by index, incrementing the count corresponding to index ¢ if 2; happens
to be the symbol ranked i-th in the ranking obtained after observing z'~!. In the binary case this process
amounts to comparing the number of (sequential) correct predictions with the number of occurrences of the
most frequent symbol in the whole sequence. This combinatorial problem on binary sequences is considered
in [8, Lemma 1], where it is shown that these quantities differ by at most the number of times the sequence
is balanced, i.e., contains as many zeros as ones. Note that at this point we do not distinguish between the
different contexts in which the symbols occur. As the problem is essentially combinatorial, all the results
still hold when occurrences are conditioned on a given context.



Table 1: Symbol counts, ranking and index counts
Example: 1% = ccabbbcaac

Sorted Index

Symbol counts Ranking symbol counts of Index counts

t |z | ne(zt),€=a,b,c | Ai(z?),i=1,2,3 | N;(z*),i=1,2,3 | z; in zt~1 | M;(z!),i=1,2,3
0f - 0,0,0 a,b,c 0,0,0 - 0,0,0
1] ¢ 0,0,1 c,a,b 1,0,0 3 0,0,1
24 c 0,0,2 c,a,b 2,0,0 1 1,0,1
3] a 1,0,2 c,a,b 2,1,0 2 1,11
4 b 1,1,2 c,a,b 2,11 3 1,1,2
5 b 1,2,2 b,c,a 2,2,1 3 1,1,3
6! b 1,3,2 b,c,a 3,2,1 1 2,1,3
7| ¢ 1,3,3 b,c,a 3,3,1 2 2,2,3
8| a 2,3,3 b,c,a 3,3,2 3 2,24
9| a 3,3,3 a,b,c 3,3,3 3 2,2,5
10| ¢ 3,3,4 c,a,b 4,3,3 3 2,2,6

In order to generalize the result of [8] to any a > 2, we introduce some definitions and notation. Let
A;(z*) denote the i-th most numerous symbol in z¢, 0 <t < n,1 < i < a (it is assumed that there is an
order defined on A and that ties are broken alphabetically; consequently, A;{)\) is the i-th symbol in the
alphabetical order). We define

Ni(zt 2 [{: 2= Aiat), 1< <8}, Ny(O) 20, 1<i<a, (5)

and
M) 2 |{€: o= As(a¥Y),1<0<t}, MiN20,1<i<a, (6)

i.e., Ny(zt) and M;(z?) are, respectively, the number of occurrences of the i-th most numerous symbol after
observing the entire sequence z’, and the number of occurrences of the i-th index. This is exemplified in
Table 1 for the sequence z!° = ccabbbcaac over A = {a, b, c}. Our goal is to bound the difference between
N;i(z™) and M;(z™). Later on, we consider probabilistic properties of this difference. As these properties
will depend on whether the probabilities of the symbols with the i-th and ¢ + 1-st largest probabilities are
equal, it will prove helpful to partition the alphabet into subsets of symbols with identical probabilities. This
probability-induced partition provides the motivation for the following discussion, where we consider more
general partitions. Specifically, consider integers 0 = jp < j1 < --- < jg = «, where d is a positive integer not
larger than «. These integers induce a partition of the integers between 0 and « into d contiguous subsets
of the form {j : jr—1 <j < jr}, 0 < r < d. This, in turn, defines a partition of A by

Ar(fltt) = {A_,(.'I)t) CIr-1<3<7r}, 0<r<d (M

Thus, each subset A,.(z?) of A contains symbols that are contiguous in the final ranking for zt. The subsets
A (z?), 0 < r < d, will be called super-symbols. The partitions and the induced super-symbols are depicted
in Figure 1. Notice that while the partition of the integers is fixed, the partition of the alphabet may vary
with ¢, according to the ranking. For typical sequences z*, this ranking will correspond to the order of the
probability values, and the partition of {1, 2, - - -, a} will be defined so that super-symbols consist of symbols
of equal probability, as intended. The super-symbols define new occurrence counts
Ji
Ni@) & > Ni(ah) ={f: ze € Ai(ah), 1< £ <t} 0<i<d, (8)

Jj=ji-1+1



Fixed Dynamic

partition of partition Super- Associated
integers of A symbols counts
Jo=0
1 A,(x%) Ny(z")
: = : Ai(z?) : M(z*)
J1 Aj (z*) Nj (=)
s+l Aji+1(2") Nj+1(z%)
Jo Ajz (xt) sz (mt)
Jd-1+1 Ajy_i41(z") Njsy+1(z")
: = : Ay(z?) : Na(z?)
Ja=a Ajd (mt) de (xt)
Figure 1: Partition of {1,2,...,a}, induced partition of A, and associated counts
and )
Ji
M@ 2 Y M) = {£:ze At 1<0< 8}, 0<i<d. (9)
j=ji-1+1

Finally, let n}(z*) denote the number of times in z* that, after having observed zf~1,1 < £ < t, there is a tie
in the rankings of x¢, of the first symbol of super-symbol A,+1 (a:“l), and of the last symbol of super-symbol
Ar(zt™1), and z4 comes after the latter in the alphabetical order (the notation n} follows [8, Lemma 1],
where n* denotes the number of times a binary sequence contains as many zeros as ones). Specifically, n}(z*)
is defined by

ny(zt) =ni(z*) =0 for every sequence z*
nr(A) =0 O0<r<d
. 1
1 if er(xt) — er+l(mt) —_ .= j.«+l(zt) ( 0)
ny(ztt) = n¥(zt) + and z441 = Aj_ti(z?) for some I > 1, t>0,0<r<d.
0 otherwise
Notice that in the case & = d = 2, n*(z**1) is independent of z;;.
Lemma 1 For everyr,1<r<d,
Ne(@) + 7 y(2%) 2 Me(z") 2 Np(z") = ni(z") - (11)

Notice that with a = d = 2 the inequalities for 7 = 1 and r = 2 coincide, as Ni(z?) + No(zt) =
M (z*) + Ma(zt) = t. Thus, the lemma reduces to

Ni(z') 2 My(z*) > Mi(z) - ni(a") - (12)



In this case M;(z?) is, clearly, the number of correct guesses with a sequential predictor based on previous
occurrence counts and alphabetical tie-breaking (in fact, (11) is valid for any tie-breaking policy). Thus,
(12) is essentially equivalent to [8, Lemma 1}, where expectations have been taken due to a randomized tie-
breaking policy. Notice also that taking d = o, Lemma 1 bounds the differences M;(z?) — N;(z?), 1 <i< a.

Proof of Lemma 1. The proof is by induction on t, with the case ¢ = 0, for which (11) holds trivially,
serving as basis. Assume that (11) holds for every ¢,0 < £ < t. Next, we prove it for £ = t + 1. We
distinguish between the cases z;41 € A(z') and 7441 & A (z).

In the first case, by definition (9), we have M, (z!*1) = M, (z)+1. If r = 1 or N;,_, (2*) > N;, _, 41(z?),
then also M, (z'*1) = MN,(z%) + 1. Otherwise, r > 1 and, since N;,_,(z%) > N;._,+1(z?), we must have
Nj,_.(x*) = Nj,_,+1(z), in which case either n*_;(z**1) = n’_,(z?)+1 (if 141 is also tied with 4;__, +1(z?))
or Ny (z'+1) = N;(z?)+1 (if 2441 has a lower ranking than A;, | 11(z*) despite being in A.(z?)). In addition,
for any fixed infinite sequence z having z* as a prefix, both A;.(-) and n}_,(-) are non-decreasing functions
of t. Hence, in both cases, the left-hand side of (11) holds. The right-hand side follows from the increment
in M,(2**!) and from the trivial relations NV, (z**1) < M, (z?) + 1 and n}(z**?) > n¥(z?).

In the case where ;11 & A (z*), we have M, (z**!) = M, (z*). Thus, the left-hand side of (11) holds, as
N.(-) and n}_,(-) are non-decreasing functions of t. Moreover, if N.(z**) = N, (z*) then also the right-hand
side holds. Otherwise, we have A (z?*!) = N, (z!) + 1, which means that there was an increment in the
number of occurrences of the r-th ranked super-symbol even though the r-th ranked super-symbol itself did
not occur (as z1+1 ¢ A.(z*)). This may happen only if symbols in A,(z?), r < d, were tied with symbols
in A,41(z?) and, possibly, subsequent super-symbols (containing symbols of lower alphabetical precedence),
and one of the latter symbols occurred; namely, if

Nj (2*) = Nj11(z®) = --- = Nj,u(z) and 441 = Aj (c’), 1> 1. (13)

Hence, by definition (10), we have n}(z**!) = n¥(z?) + 1, implying
No (@) = ni(e) = Mo (z?) ~ ni(2') < M, (z?) = M, (z") (14)
which completes the proof. ]

Hereafter, we assume that z™ is emitted by an ergodic tree source T with a set of states (leaf contexts) S.
For the sake of simplicity, we further assume that z” is preceded by as many zeros (or any arbitrary, fixed
symbol) as needed to have a state defined also for the first symbols in =", for which the past string does not
determine a leaf of T'. For a state s € S and any time instant t, 1 <t < n, let z*[s] denote the sub-sequence
of z! formed by the symbols emitted when the source is at state s. The probabilities conditioned on s are
used to determine the super-alphabet of Lemma 1 for z[s], by defining the partition given by the integers
{jr} as follows. First, we sort the conditional probabilities p(als}, a € 4, so that

play,|s) > play,ls) > - > plai,ls), a;; € A, 1< j<a. (15)

Next, we denote p;(s) = p(a;;|s) (the j-th conditional probability value at state s in decreasing order), so
that the conditional probability vector associated with state s is B(s) = [p1(s), p2(s), - - -, Pa(s)]. We define

d(s) £ [{p;(s)}5y], Jo £ 0, and for 0 < 7 < d(s),
Jr+1 = max{j : ps(§) = ps(dr + 1)} . (16)

Hence, the partition is such that p;,(s) > p;,,,(s) and p;(s) is constant for j € [jr + 1, jr+1]. The symbol
a;;, whose probability is p;(s), is denoted b;(s).

Lemma 2 below, in conjunction with Lemma 1, shows that with very high probability the difference
between N (z![s]) and M, (z¢[s]) is small for the partition (16).



Lemma 2 For every s € S, every r, 0 < r < d(s), every positive integer u, and every t > u,
Prob{n}(z*[s]) > u} < Kyp*, (17)

where Ky and p are positive constants that depend on T and s, and p < 1.

The proof of Lemma 2 uses the concept of properly ordered sequence. A sequence z*[s] is said to be
properly ordered if for every a, b € A, p(als) > p(b|s) implies ng(z[s]) > np(zt[s]) (we remind that nq(z*{s])
denotes the number of occurrences of a € A at state s in 2, i.e., the number of occurrences of a in z*[s]). The
sequence z° is said to be properly ordered with respect to T if z¥[s| is properly ordered for every s € S. The
following combinatorial lemma on the relation between the partition (16) and properly ordered sequences is
used in the proof of Lemma 2.

Lemma 3 If N;_(z%(s]) = Nj.4+1(z*[s]) for some s € S and some r, 0 < r < d(s), then z* is not properly
ordered.

Proof. Given s € S and r, 0 < r < d(s), we introduce the simplified notation y 2 gt [s] and we define

r
A
=1
i.e., B is the set of symbols ranked 1,2, - -, j, after having observed y. We further define
d(s)
B24A-B= |J AW (19)
l=r+1 /

First, we notice that if, for some s and r, b;(s) € B for some j > j,, then we must have bj(s) € B for
some j' < jr. By (16), this implies that p;(s) < pjs(s). On the other hand, by the definition of B, b;(s)
is ranked higher than b/ (s) and, consequently, ny,(5)(¥) = no,, (s) (y). Thus, y is not properly ordered, and
neither is zt.

Next, assume that Nj _(y) = Nj, +1(y) for some s € S and some r, 0 < r < d(s). By the above discussion,
we can further assume that b;j(s) ¢ B for any j > j, for otherwise there is nothing left to prove. Hence,
B = {bj(s) : 1 < j <jr}. It follows that A;_(y) = b;j(s) for some j, j < jr, and Aj, 41(y) = bj(s) for some
7'y 3' > jr. Consequently, Nj (y) = Nj,4+1(y) is equivalent to ny,(5)(y) = b, (s) (y). On the other hand, by
(15) and (16), p;(s) > p;(s), implying that z* is not properly ordered. ]

Notice that, in fact, ordering the symbols according to their probabilities to define super-symbols and
proper orders, is a special case of using an arbitrary ranking R over A (which may include ties). If R(a)
denotes the number of symbols that are ranked higher than a € A (i.e., R(a) = R(b) means that a is tied with
bin R), a sequence z* is properly ordered with respect to R if R(a) > R(b) implies that ng(z*) > np(z*), where
nq(zt) denotes the number of occurrences of a € A in 2*. These concepts do not require the specification of a
probabilistic environment (a tree source T') and Lemma 3 applies to any ranking R. On the other hand, the
particular ranking (15) implies that the event that a sequence is not properly ordered is a large deviations
event, as stated in Lemma 4 below, an essential tool in the proof of Lemma 2.

Lemma 4 For everyt > 0,
Prob{z'[s] is not properly ordered} < Kzp', (20)

where Ko and p are positive constants that depend on T and s, and p < 1.



Proof. If xt[s] is not properly ordered, then there exist b, ¢ € A such that p(b|s) > p(c|s) and ny(z![s]) <
ne(z*[s]). Let p(b|s) — p(c|s) 2 2A > 0. Thus, either

ny(z*[s]) < n(z"[s])(p(bls) ~ A), (21)
or
ne(z[s]) > n(z'[s])(p(c|s) + A), (22)
where n(z*(s]) denotes the length of zt[s]. In either case, there exist A > 0 and a € A such that
na(z’[s])
nats]) p(als)| = A. (23)

A classical bound on the probability of the event (23) is derived by applying the large deviations principle
[27, Chapter 1] to the pair empirical measure of a Markov chain (see, e.g., [27, Theorem 3.1.13 and ensuing
remark], or [28, Lemma 2(a)] for a combinatorial derivation). The results in [27] and [28] can be applied to
any tree source by defining an equivalent Markov chain (possibly with a larger number of states [14, 15]), as
shown in the proof of (15, Lemma 3]. By [28, Lemma 2(a}],

na(z’(s])

. 1
limsup - log Prob { s p(als)

t—o0 t

> A} <-D (24)

where D is the minimum value taken over a certain set by the Kullback-Leibler information divergence
between two joint distributions over A. Furthermore, since T is assumed ergodic, the equivalent Markov
chain is irreducible. ‘It can be shown that this implies D > 0 and, consequently, for any p such that
0 < 27D < p < 1, (24) implies the claim of the lemma. o

Proof of Lemma 2. By (10), the cases r = 0 and r = d(s) are trivial. Thus, we assume 0 < r < d(s). We
have

Prob{n}(z*[s]) > u} Prob{N;, (z°[s]) = Nj,+1(z%[s]) for some £ > u}

<
< Prob{z*[s] is not properly ordered for some £ > u} (25)

where the first inequality follows from the definition of n}(x*(s]) and the second inequality follows from
Lemma 3. Thus,

o
Z Prob{z[s] is not properly ordered}

Prob{n}(z*[s]) > u} <
=u
Nt K
& __ 2 u
< €E=u Kap™ = i, pP (26)

where the second inequality follows from Lemma 4, and the last equality follows from p < 1. Defining
Ki = K3(1 — p)~1, the proof is complete. o

The partition (16) and the concept of properly ordered sequence are also instrumental in showing that
the number M;(z*[s]) of occurrences of the i-th ranked symbol along z*[s] is close to p;(s)n(z*[s]), with high
probability, as one would expect. Note that if all the entries of B(s) were different (i.e., if there were no ties
in the probability ranking (15)), this would be a direct consequence of Lemmas 1, 2, and 4. However, some
difficulties arise in the case where there exist tied probabilities, in which the partition (16) uses d(s) # a. In
this case, Lemma 2 bounds the probability tltat the number of ties in the sequential ranking be non-negligible,
only for contiguous positions ¢ and i + 1 in the ranking which correspond to non-tied probabilities.
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Specifically, given an arbitrary constant € > 0, a sequence z* is said to be e-indexr-balanced if for every
s € S such that n(z*[s]) # 0 and every i, 1 < i < q,

M) ]
a@) PO

This means that we can look at the sequence of indices ¢ generated by the sequential ranking as a “typical”
sample of a tree source with conditional probabilities p;(s), except that an index with zero probability may
have a non-zero occurrence count (whose value may reach, at most, the number of different symbols that
actually occurred in z¢, depending on the alphabetical order®). In the same fashion, if for every a € A

na(z*[s])

W — p(als)

(27)

<k, (28)

then the sequence is said to be e-symbol-balanced. Lemma 5 below applies to e-index-balanced sequences just
as (24) applies to e-symbol-balanced sequences.

Lemma 5 Let E; denote the event that x* is e-indez-unbalanced. Then, for any exponent n > 0 and every
t>0,
P(E1) < Kst™" (29)

where K3 is a positive constant.

Proof. First, consider the special case where T is a memoryless source, i.e., there is only one state
(consequently, the conditioning state s is deleted from the notation). We further assume that the zero-
probability symbols, if any, are ranked in the last places of the alphabetical order. Let y* denote the sequence
of ranking indices generated by z%, i.e., 7o = A, (z*71),1 < £ < t, and let P'(y*) denote the probability
that y* be emitted by a memoryless source with ordered probabilities {p;}2. ;. By the assumption on the
alphabetical order, we have M;(z') = 0 when p; = 0. Thus,

(23
P'y’) = [[p"®. (30)
i=1

Using the partition (16) and its related notation, and further denoting with 8 = jgy the number of symbols
with non-zero probability (so that d’' = d if @ = 8, d’ = d — 1 otherwise, and pg is the smallest non-zero
probability), (30) takes the form

M d -1 p; M (zh)
) = Hp - TT (%) (31)
r=1 Pp

where the last equality follows from 3% M, (z*) = Zf’:l M., (z?) = t. On the other hand,

P(:L‘t) - H p(a)""(z ) — Hp(b ,-__]r L+ (@ ).

a€EA

(32)

5For example, consider a case were the last symbol in the alphabetical order has non-zero probability and it occursas z 1 at
state s. This will increase the count M o (x?[s]) even though p,(s) might be zero.
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If x is properly ordered, then the multiset of numbers T, (x?), Jr—1+1 S j < jr, is the same as the multiset
N;(z?), jr—1 + 1 < j < jr, possibly in a permuted order. Hence, by (8), (32) implies -

d @ d -1 p; N (z*)
Pz = [Irm " =01 <;’—> '
r=1 r=1 8

o d'-1 »; N () =M, (z*) . d-1 ;i ny(z")
Py) (—) < Py (—) (33)
11 (% W15

where the last inequality follows from Lemma 1 and the fact that p; > pg, 1 <r < d’. Now, let E> denote
the event that z* is not properly ordered, whose probability P(E2), by Lemma 4, vanishes exponentially fast
with ¢. Since (33) holds for any properly ordered sequence, a union bound yields

It

d-1 D; ni(zt)
P(E) < PE)+ Y P[] (L)

zteE, r=1 Ps
d'—1 Cza’-llogﬁn

< P(E)+ Z Prob {n}(z') > Clogt} +t “r=2 "~ 78 Z P'(y*) (34)
r=1 ztEE

for a suitable constant C to be specified later. By definition, z! is e-index-unbalanced if and only if y* is
an e-symbol-unbalanced sequence over the alphabet {1,2,---,a}, with respect to the memoryless measure
P’(-). This is an event E3 whose probability P’(E3), by (24), vanishes exponentially fast with ¢. Thus, using
also Lemma 2 and d < ¢,

dl

-1 Pj
P(E1) < P(BEp)+ aK;tClese € 2el 855 pigy)
< P(E2) + aKtC18 1 {Co18 55 pr(Ey). : (35)

Choosing C sufficiently large, so that Clogp < —n, completes the proof of the memoryless case with the
assumed alphabetical order. It is easy to see that a change in the location of the zero-probability symbols in
the alphabetical order may cause a variation of, at most, 8 in the value of the index counts M;(z*), 1 <i < a.
Thus, in the memoryless case the lemma holds for any alphabetical order.

Now, consider an ergodic tree source T. We have

Mi(z'[s]) : .
P(E;) < ;Prob { W —pi(s)| > € for some i, 1 <i < a}
< Y _[P(Es)+ P(Es) + P(Es)] (36)
sES

where, for a given § > 0, the three new events in (36) are defined as follows. Event E consists of sequences
such that

n((L‘:[S]) _ Pstat(s) >§ (37)

where P%*2(s) #£ 0 is the stationary probability of s, and we restrict events Es and Eg to sequences in Ej.
Event E5 consists of sequences such that the subsequence of the first ¢(P'**(s) — §) emissions at state s is
€/2-index-unbalanced (with respect to the conditional measure), and Eg denotes the event that =* ¢ E5 and
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xt(s] is e-index-unbalanced. Clearly, if ¢ € Eg then z[s], 1 < £ < ¢, turns from e/2-index-balanced to e-
index-unbalanced in, at most, 2t6 occurrences of s. Taking é sufficiently small with respect to € and P5*?(s),
we can guarantee that this number of occurrences is not sufficient for Fg to occur. In addition, by the same
large deviations arguments that lead to (24) [27, Theorems 3.1.2 and 3.1.6], P(E4) vanishes exponentially
fast. Thus, it suffices to prove that P(Ej5) vanishes as required by the lemma. By the “dissection principle”
of Markov chains®, P(Es) equals the probability that the memoryless source defined by the conditional
measure at state s, emit an e/2-index-unbalanced sequence of length t(Ps*?(s) — §). By our discussion on
the memoryless case, this probability vanishes as [t(P***(s) — §)]~", which completes the proof. o

4 The Permutation-Context Algorithm

In this section we demonstrate an algorithm that combines sequential ranking with universal context mod-
eling, and we show that it optimally encodes any ergodic tree source T" with a model cost that corresponds
to the size of its permutation-minimal tree T'. The scheme will be referred to as the Permutation-Context
algorithm (or P-Context, for short), as it is based on Algorithm Context and on the concept of permutation-
minimal trees. The algorithm assumes knowledge of an upper bound m on the depth of the leaves of T', and
its strong optimality is stated in Theorems 1 and 2 below. Rank indices (rather than the original symbols)
are sequentially processed, with the nodes of the context tree still defined by the original past sequence over
A. Symbol occurrences are ranked at each context of length m and an index is associated to z;41 in context
Ty - Te—m+1- An encoding node is selected by one of the usual context selection rules [15], using index
counts instead of symbol counts, and the index is encoded. Finally, the index counts are updated at each
node in the path, as well as the symbol counts at the nodes of depth m.

We start by describing how the data structure in the P-Context algorithm is constructed and updated.
The structure consists of a growing tree 7, of maximum depth m, whose nodes represent the contexts, and
occurrence counts M/ (z*[s]) for each node s, 1 < i < a, which are referred to as inder counts. In addition,
the nodes sy, of depth m in 7;, which are used as ranking conterts, have associated counts 7, (zt[sy,]) for
every a € A, which are referred to as symbol counts. The algorithm grows the contexts and updates the
counts by the following rules:

Step 0. Start with the root as the initial tree 7y, with its index counts all zero.

Step 1. Recursively, having constructed the tree 7; (which may be incomplete) from z?, read the sym-
bol x;y1. Traverse the tree along the path defined by x;,x;_1,- -, until its deepest node, say
Ty---ZTi—g41, is reached. If necessary, assume that the string is preceded by zeros.

Step 2. If £ < m, create new nodes corresponding to z;—,, £ < r < m, and initialize all index counts as well
as the symbol counts at the node s,, of depth m to 0.

Step 3. Using the symbol counts at s, find the index i such that z:1+1 = A;(z%[sm]) (thus, z;41 is the i-th
most numerous symbol seen at context s,, in zt). If £ < m, i.e., if s, has just been created, then
z*[sm] = X and i is such that ;41 is the i-th symbol in the alphabetical order. Increment the count
of symbol z;;1 at s,, by one.

61In our case, a suitable formulation of this principle can be stated as follows (see, e.g., [29, Proposition 2.5.1] for an alternative
formulation): Consider an ergodic Markov chain over a set of states S with a fixed initial state, and let P(-) denote the induced
probability measure. For a state s € S, let P,(-) denote the i.i.d. measure given by the conditional probabilities at s. Let y ™
denote the subsequence of states visited following each of the first n occurrences of s in a semi-infinite sequence r, and let Y ™
denote a fixed, arbitrary n-vector over S. Then, Prob{z : y » = Y™} = P;(Y™). The proof can be easily derived from the one
in [29].
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Step 4. Traverse the tree back from s, towards the root and for every node s visited increment its index
count M/(z*[s]) by one. This completes the construction of T4 1.

Clearly, the index counts satisfy

M;(z'[s]) = > M;(2"[sm]) (38)

Sm : 8 is a prefix of 8.,

where the counts M;(z?[ss]) are defined in (6). Note that, while M/(z%[s;m]) = M;(z*[sm]), in general,
M;(z*(s]) # Mi(z*[s])-

In practice, one may save storage space by limiting the creation of new nodes so that the tree grows only
in directions where repeated symbol occurrences take place, as in [13] and [15]. In addition, it is convenient
to delay the use of a ranking context until it accumulates a few counts, by use of a shallower node for
that purpose. These modifications do not affect the asymptotic behavior of the algorithm, while the above
simplified version allows for a cleaner analysis.

The selection of the distinguished context s*(z?) that serves as an encoding node for each symbol z;;
is done as in Context algorithm, but using index counts instead of symbol counts. Moreover, we encode the
ranking indices rather than the symbols themselves. Thus, the contexts s*(z*) are estimates of the leaves of
a permutation-minimal tree, rather than a minimal tree in the usual sense. Clearly, as the ranking is based
on z?, which is available to the decoder, z;11 can be recovered from the corresponding index. Specifically,
we analyze the context selection rule of [15] but with a different “penalty term.” To this end, we need the
following definitions. The “empirical” probability of an index ¢ conditioned on a context s at time ¢ is

Mi(z'ls])  _ M(«'[s])

P,(i|s) 2 = 39
Wil9) = S M)~ nele) 59

where we take 0/0 £ 0. For each context sb, b € A, in the tree, define
Ay(sh) = Z M (z*[sb]) log t("Sb) (40)

Fi(ils)

where hereafter the logarithms are taken to the base 2 and we take 0log0 2 0. This is extended to the
root by defining A;(A\) = oco. Similarly to [15], A;(sb) is non-negative and denotes the difference between
the (ideal) code length resulting from encoding the indices in context sb with the statistics gathered at the
parent s, and the code length resulting from encoding the indices in sb with its own statistics. In its simplest
form, the context selection rule is given by

find the deepest node s*(x*) in 7; where A;(s*(z*)) > f(t) holds, (41)

where f(t) is a penalty term defined, in our case, by f(t) = logt™ (t + 1) with v > 0 an arbitrarily chosen
constant. If no such node exists, pick s*(z!) = ¢+ T4—m+1. In fact, a slightly more complex selection
rule based on (41) is used in [15] to prove asymptotic optimality. That rule is also required in our proof.
However, since its discussion would be essentially identical to the one in [15], we omit it in this paper for
the sake of conciseness. Whenever properties derived from the selection rule are required we will refer to the
corresponding properties in [15]. Note that the penalty term f(t) differs slightly from the one used in [15].

Finally, following [26] and (4), the probability assigned to a symbol z ;41 = a whose associated index is
1, is
Mj(a'[s*(z)]) +1/2
* ¢t — 1
Pl ) = ST @) T a2

(42)
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The total probability assigned to the string =™ is derived as in (3), and the corresponding code length
assigned by an arithmetic code is

L") = = 3 logpu(sesls (2). (43)
t=0

Notice that in the binary case, the P-Context algorithm reduces to predicting symbol z:y, as &1 =
arg maXqe A4 Na (T [Ty - - - Tt—m+1]) and applying Algorithm Context to the sequence of prediction errors z;+1®
%141, with the conditioning states still defined by the original past sequence z*. Theorem 1 below establishes
the asymptotic optimality of the P-Context algorithm in a strong sense for the case where all the conditional
probabilities are non-zero. Later on, we present a modification of the algorithm that covers the general
ergodic case. Although the changes to be introduced are relatively minor, we postpone their discussion since
it might obscure some of the main issues addressed in Theorem 1.

Theorem 1 Let T be an arbitrary tree source whose conditional probabilities satisfy p(a|s) > 0 for alla€ A
and s € S. Then, the expected code length ErL(x™) assigned by the P-Context algorithm to sequences =™
emitted by T satisfies

"ErL(s") < Ha(T) + logn +0(n™"), (44)

Ea-1)
2
where Hn(T) denotes the per-symbol binary entropy of n-vectors emitted by T, k' denotes the number of

leaves in the permutation-minimal tree T’ of T, and the O(n~') term depends on T.

Notice that the assumption on the conditional probabilities implies that the tree source is ergodic. The-
orem 1 says that P-Context attains Rissanen’s lower bound in the extended source hierarchy that includes
permutation-minimal trees. This does not contradict the corresponding lower bound for conventional mini-
mal tree sources, as for each given level in the hierarchy of minimal tree sources, the sub-class of sources for
which the permutation-minimal tree representation is strictly smaller than the minimal tree representation
has Lebesgue measure zero at that level of the parameter space (in the same way that reducible tree sources
have measure zero in the class of all Markov sources of a given order). However, the sub-class does capture
those sources for which prediction has a beneficial effect, which are interesting in practice. For those sources,
the reduction in model size yields a potential reduction in model cost, which is realized by P-Context.

The proof of Theorem 1 uses a key lemma which states that the probability that s*(z?) is not a leaf of
T’ vanishes at a suitable rate when t tends to infinity. This result, stated in Lemma 6 below, parallels [15,
Lemma 1]. Its proof, which is given in Appendix A, extends the one in [15] by use of the tools developed in
Section 3.

Lemma 6 Let T be as defined in Theorem 1 and let E* denote the event that s*(z*) is not a leaf of T".
Then, the probability P(E?) of E satisfies

i P(E")logt < oo. (45)

t=1

Lemma 6 means that the cost of ranking the symbols sequentially, based on an over-estimated model,
does not affect the rate at which the probability of the error event vanishes.

Proof of Theorem 1. Let y™ denote the sequence of indices derived from 2" by ranking the symbols
sequentially at the nodes of depth m in the tree, as in the P-Context algorithm. Thus, ¥, 0 < t < n, takes
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values over the integers between 1 and o. Let H (¥™|T") denote the conditional entropy with respect to T
of the empirical measure defined in (39), namely

Ay 2 - Y 30 MG Mila7l) )

SE€S’ i=1 ’I'L(.’L‘"[S])

where S’ denotes the set of leaves of 7". Had the probability assignment (42) been computed using the
true (unknown) permutation-minimal tree T’ instead of the sequence of contexts derived with the context
selection rule, we would have obtained for every sequence z" a code length L'(z™) satisfying, [26],

Ll n R / —
L'(=") < H"|T') + Fl-1) logn +O(n™1). (47)
n 2n
In addition, by the arguments in [14, Theorem 4(a)], Lemma 6 implies
%ET[L(J;") _ (@™ = O(nY). (48)
Hence, it suffices to prove that )
ErHy™T') < H,(T) +O(n7Y). (49)

Now, by the definition of 77, all the descendants sv € S of s € § have the same associated conditional
probability vector, as defined after (15), which is independent of the string v and is denoted by p(s) =
[P1(s), p2(s), - - -, Pa(s)]. Note that, in fact, this constitutes an abuse of notation since s may not be in S, so
that the conditional distribution p(-|s) may not be defined. Now, applying Jensen’s inequality to (46) and
then using (38), we obtain

AT < 'Y Y3 M [sul) logi(s) (50)

€8’ w:|swj=m =1

where |sw| = m means that sw is a ranking context that has s as a prefix. Note that if we allowed zero-valued
conditional probabilities, there might be cases where some M;(z™[sw]) # 0 even though the corresponding
probability p;(s) = 0, as noted in the discussion preceding Lemma 5. Consequently, the application of
Jensen’s inequality in (50) relies on the assumption that all conditional probabilities are non-zero. Since sw
also has a prefix which is a state of T' we can treat it as a state in a possibly non-minimal representation of
the source. Thus,

ETﬁ(y"IT’) < —n7?! Z.logpi(s)ET[M,-(z"[sw])] (61)
, ,d(s)—l Jr+1
= 'Y S logpy(s) BrlMy(zsul)] (52)

s,w r=0 j=j,+1

where the j.’s are defined by (16) and, hence, depend on s (however, for the sake of clarity, our notation does
not reflect this dependency). The summation ranges of s, w, and ¢ in (51) are as in (50). By the definition
of the partition boundaries, (52) takes the form

d(s)—1 Jr41
ErHWMT) < -n7') 0 Y logpja(9)Br | ) Mj(z"(suw))
s,w  r=0 j=Jjr+1
d(s)
= IZZIngJr(S)ET (Mo (2" [sw])] (53)
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where the last equality follows from the definition (9). Thus, by Lemma 1,
BrAET) < -n1 S logp;, (5) BrlN (e [swl) + ni_y @ [sul)]. (54)
s, w,r

To compute E7[N,.(z"[sw])], we partition the set of n-sequences A™ as follows. For each ranking context
sw, let Eq(sw) denote the event that £™[sw] is not properly ordered. By Lemma 4, this is a large deviations
event whose probability is upper-bounded by K,p™, where we choose K> and p as the maximum of the
corresponding constants over the set of m-tuples sw. If 2" ¢ E;(sw) then, clearly,
j”'
No(@™[sw]) = Y npy(ew) (™ [sw]) (55)
F=jr-1+1

for every m-tuple sw and every r, 1 < r < d(s). Here, we recall that ng,(,)(z"[2]) denotes the number of
occurrences in z"[z] of the symbol with the j-th largest conditional probability at state z. Thus,

j"‘

ErNe@"su])] < ) P@IN(@sw)+ D Erlneew(@"[swl)]

z"EEl(sw) j=jr-1+1
Jr n-1

< nE@ludKat+ Y () Y Plou) (56)
J=jr-1+1 t=0

where P;(sw) denotes the probability that the state at time ¢ (in a possibly non-minimal representation of
T) be sw. Again, by the definition of the j,’s, (56) yields

n—1
Er [Ne(z"[su])] < n(z"[sw]))K2p" + (jr — Gr-1)Pj,(5) ) Pi(sw). (57)
t=0
In (54) we also need to bound Ex[n;_,(z"[sw])]. To this end, we have
[o o] [o o]
Erlni_(z"{sw])] = Y _ u Prob(n}_;(z"[sw]) = u) < Y _ u Prob(n}_,(z"[sw]) > u) (58)
u=0 u=0
for every sw and every r, 1 < r < d(s). Thus, by Lemma 2,
Erlny_y(z"[su])] < K1 3 up® < o0, (59)
u=0
implying
Er ["_TM] =0 (l) ) (60)
n n

Defining the positive constant Q s _ minge 4, se s logp(als), (54), (57), and (60) yield

n-—1
ErHWT') < aQKyp®—n7') [(jr — Jr=1)p;.(s) logps.(s) Y Pt(sw)]

S, w,r t=0

n—1
Tty lha(r’»’(S)) PIPIRICH)

s€S’ t=0 w

+0 (%) (61)
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where hy(-) denotes the binary entropy function over an a-ary alphabet. By the definitions of S and S,
(61) can be rewritten as
1
10 (_)
n

-ty logp(aIS)ni:1 > P@") +O(%)

s€SacA t=0 zn:s(zt)=s,0141=0
1
= —pn! Z P(z™) +O<—>
T"EA" n

—n=t Y~ P(z")log P(z") + O (%) . (62)

T EA™

ErH(y"|T")

INA

n—1
= [ha ({p(als)}aca) 3 Pels)
t=0

sES

n—1
) logp(zerals(zt))
t=0

By the discussion preceding (49), this completes the proof of Theorem 1. ]

Theorem 1 relies on the positivity of all the conditional probabilities since otherwise, as noted in its proof,
some value M; might be non-zero even when the corresponding entry p;(s) in the probability vector is zero.
This is caused by the use of a predetermined alphabetical order in breaking ranking ties and by the fact that
the encoder does not have prior knowledge of the effective alphabet. A value M; corresponding to p;(s) = 0
is upper-bounded by the constant a which implies that the empirical probability P;(i|s) is O(n!). However,
its contribution to the empirical entropy (46) is O(logn / n), which would void our proof of (49). The problem
would be eliminated if the tie-breaking order were such that zero-probability symbols were placed last in the
order. To remove the restriction on the conditional probabilities we modify the P-Context algorithm to use
a dynamically determined order in each ranking context s, which is given by the order of first occurrence
of the symbols in z![s,,]). Thus, an M; # 0 always corresponds to a p;(s) # 0. This amounts, in fact, to
using a possibly different alphabet (of variable size) in each state, for which all conditional probabilities are
positive. The algorithm will guarantee that the decoder will be able to reconstruct the order.

Specifically, the dynamic tie-breaking order used in determining A4;(z%[sy]) in Step 3 of the P-Context
algorithm is derived as follows: If this is the first occurrence of z;,; at context s,, and 3 different symbols
have occurred at this context, then x;,; is assigned the place 8 + 1 in the dynamic alphabetical order.
Otherwise, if this is not the first occurrence of zy11, it has already been placed in the order. Notice that
this order guarantees that in the first occurrence of a symbol z;,; in a ranking context s, the assigned
index is the smallest ¢ such that M;(x?[s,,]) = 0 and, therefore, the count is incremented from 0 to 1. The
context selection rule does not need any modification, but the formula (42) for the probability assigned to
a symbol has to be modified so that the decoder can recover symbols that occurred for the first time in a
ranking context, for which the index is not sufficient, since the dynamic order is still unavailable. To this
end, we first notice that for a ranking context s,, where 3(s,,) different symbols occurred, with 8(s,,) < «,
the o possible events to be encoded at a selected encoding node s*(x?) are of two kinds: on the one hand,
the indices 1, 2, - - -, B3(8y ), from which the decoder can recover the corresponding symbol and, on the other
hand, the index 8(sy,) + 1 in conjunction with one of the a — (s, ) possible new symbols at s,,. For events
of the first kind, the probability assigned to a symbol z;+1 = a whose associated index is ¢ < B(sp), is

Mi(z'[s*(z")]) +1/2

pi(als™(z")) = a(@s* (@) + (Blsm) + 1)/2

(63)
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For each event of the second kind, we assign the probability

D iep(sm)+1 Mi(&t[s*(2h)]) +1/2 . 1
n(ztfs*(2))]) + (B(sm) +1)/2 o~ B(sm)’
i.e., the remaining probability mass is distributed uniformly among the o — 3(s,,) events of this kind. If

B(sm) = «, then we use the probability assignment (42). Note that with 3(s,) = a — 1 both assignments
coincide.

pi(als*(z)) = (64)

For the P-Context algorithm, modified as described above, we have:

Theorem 2 Let T be an arbitrary, ergodic tree source. Then, the expected code length ExL(z™) assigned by
the modified P-Context algorithm to sequences x™ emitted by T satisfies

Zses' a(s)

1 n
= <
nETL(x )< H,(T)+ o

logn +0(n71), (65)
where Hy,(T) denotes the per-symbol binary entropy of n-vectors emitted by T, S’ denotes the set of leaves
of the permutation-minimal tree T' of T, a(s) is the minimum between a — 1 and the number of non-zero
entries in the probability vector p(s), and the O(n~') term depends on T.

Note that if all the conditional probabilities are positive, (65) reduces to (44) of Theorem 1. Otherwise,
there are savings in the asymptotic model cost. However, these savings are not enough to attain the optimum
0.5n"1Y" s (a(s) — 1) that could have been achieved if the fact that the source belonged to a subclass with
a reduced number of free parameters was known a priori by the coder. The ¥ additional parameters is the
cost that is paid for accomplishing the task sequentially.

The proof of Theorem 2 follows that of Theorem 1 almost verbatim if we notice that since p;(s) = 0
implies M;(z*(s]) = 0, Jensen’s inequality can be safely used in deriving (50) and (A.4). The use of the
results in [26] to obtain an analogous to (47) is based on the fact that the assignment (64) is employed a
finitely bounded number of times and, therefore, the total contribution of the factors 1/(a — B(sm)) to the
per-symbol code length is O(n~!). Disregarding this factor, since B(s;) + 1 in (63) is upper-bounded by
a(s), where s is the unique prefix of s, in S’, the assignment p,(z;+1|s*(z*)) is clearly at least as large as
Pe(Te41|8*(2?)) even if the latter were computed with an alphabet size of a(s) + 1. This is the origin of the
model cost in Theorem 2. Finally, in (A.3), the divisor p,(s), which may be zero, is replaced by pa(s)+1(8),
similarly to the proof of Lemma 5 (eq. (31)).

A Appendix: Proof of Lemma 6

By the context selection rule and proceeding as in the proofs of Lemmas 1, 2, and 3 of [15], it can be shown
that there exist only two non-trivial situations in which a sequence z! can lead to the selection of a context
s*(x?) which is not a leaf of T':

a. There exists a leaf s of TV such that a longer context swe, ¢ € A, |s| < |sw| < m, for which s is a
prefix, satisfies A¢(swc) > f(¢). In this case, there is an over-estimation error.

b. There exists a node z such that all its successors are leaves of T, for which >, 4 A¢(2b) < af(t).
This case may lead to an under-estimation error.
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First, we consider the over-estimation case, for which we introduce some additional notation. For a context
z and a tree T, let 7, denote the minimal complete tree containing 7 and z. With s, w, and ¢ defined as
above and fixed, let S,,, denote the set of leaves of T},,. For a node v in Ty, let S(v) denote the set of
leaves of T, having v as a prefix. Clearly,

log P(z%) = Z Z nqo(z'[2]) logp(alz) + Psyw (A.1)
2€S,w—S(sw) a€EA

where

P,, 2 Z Zna(mt[z])logp(a|z). (A.2)

z€S8(sw) a€A

Since s is a leaf of T”, all the contexts in S(sw) share a common probability vector independent of w, which by
abuse of notation is denoted B(s) = [p1(s), - - -, pa(s)], as defined after (15). We use n;(z"(z]) as a simplified
notation for the number np,(,)(z™[2]) of occurrences in x™(z] of the symbol with the j-th largest conditional
probability at state z. Thus,

P, = Z an(zt[z])logpj(s) Zl:logpj(S) Z "j(wt[z]):l

z€S(sw) j=1 z€S(sw)

= > |logpi(s) Y M,‘(mt[z])]+2[logpj(8) Y [ng(atle]) — Mj(a"[])]

=1 z€8(sw) j=1 2€8(sw)
a a—-1
— S Mt fsul) logpy(9) + 3 [log 2 S pny(a z])—M'(xt[z])]]
j=1 j=1 Pa( ) 2E€8(sw)
A pwy p@ (A.3)

where the fourth equality follows from (38) and from the fact that Y07, [n;(x*[2]) — Mj(z*(2])] = O for every
z. By (39) and Jensen’s inequality, and then using (38) and (40), we obtain

PY) < Z Z Mj(z*[swb]) log P,(j|sw) + Mj(z*[swc]) log P,(j|swe) | — As(swe). (A.4)
i=1 [bea, bc

Next, we modify an argument used in the proof of [15, Lemma 2] by defining, for a fixed sequence z%, a
new process Qguc(-;zt) by the tree Ty, which is used to assign conditional probabilities as follows. For
z € S5 — S(sw), we associate the original conditional probabilities p(-|z), while symbols y¢41 occurring at
nodes swb, b € A, in a sequence y*, are mapped to indices j such that yer1 = A;(¥¢[sm]), where s, denotes
the corresponding ranking context of length m. Then, we assign the conditional probabilities Pt(][s'w) for
occurrences at swb, b # ¢, and P;(j|swc) in case b = ¢, where the emplrlcal probabilities, defined by (39),
correspond to the fixed sequence z*. Clearly, given the entire sequence z!, the probability Qsuyc(-;zt) can
be assigned sequentially to any sequence 3 and, consequently,

> Qeuehizh) =1 (A.5)
ytEAL

Thus, we can define equivalence classes on A’ in a way similar to [15, Lemma 2] (but using index counts
instead of symbol counts) to show that

Z Qswe(zh;xt) < (t +1)% (A.6)

ztE At
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where the right hand side is a bound on the number of classes. On the other hand, (A.1), (A.3), (A.4), and
the definition of the process Qsuc(-;z?), imply that

log P(z?) < log Qgue(zt; 2t) — As(swe) + P . (A.7)

Since over-estimation occurs whenever A,(swc) > f(t) = log'™(t + 1), the probability PP¥*"(swc) of over-
estimation at time t for the node swc can be upper-bounded as

over stc(xt;mt)2P§fu) 1 t. . t\oP3)
PPYH(swe) < > PaGue) = (¢ + 1)log"(+D) > Qouc(a’;z)2™. (A-8)
zt: Ag(swe)> f(t) ztE At

Thus, we can use (A.6) to upper-bound the over-estimation probability, provided we find a uniform upper

bound on P,,(f,) for all sequences z* except a suitably small set. To this end, we apply the tools developed in

Section 3. By (A.3), the definition of the set S(sw), and (38), we have

a—1
PO=Y [ 2 Sy (atfsuwnd) - My(atfsunl)]| | (A9)
j=1 pa(S) v:|swuj=m
which, using the partition (16) and its related notation, can be written as
P? = Z log 22-3%) Z Z [nj(zt[swv]) — M;(zt[swv))]| . (A.10)
r=1 pa(s) Fj=jr-1+1 v:|swvj=m
Now, if z*[swwv] is properly ordered, then (A.10) takes the form
d(s)—-1 [ (5)
P2 = Z log 233 Z N (zt [swu]) — M (z*[swv])]
r=1 | Pa(s) v: |swu|=m
d(s)-1[ P (S)
< > |log % S niEtsw)) (A.11)
r=1 | Pa v: |swyl=m

where the last inequality follows from Lemma 1. Proceeding as in the proof of Lemma 5, we first use Lemma 2
to show that

Prob {zt : Z ni(xt[swv]) > 2™Clog(t + 1) for some r, 1 <71 < d(s)} < a2™K;(t + 1)Closr
v: |swy|=m
(A.12)
for an arbitrary constant C. This leads to the desired uniform bound on Ps(f,) for sequences in the comple-
mentary event. By (A.8), Lemma 4, (A.12), and (A.11), it then follows that

over o 1 m d(s)-1 Pip(s)
F; (swc) < szt + a2mK1(t + 1)01 gl 4 W:‘l‘)‘ g‘lt stc(xt;xt)(t + 1)2 CZ"=1 108 Zat .
(A.13)
By (A.6) and with R(s) 2 ng_l log l;ir—((f%, (A.13) takes the form
Ptover(swc) < szt + ame1tCIng + (t + 1)—log'7(t+1)+2a+2"'CR(s)_ (A14)
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Thus, for an appropriate choice of C, the over-estimation probability is summable as desired”.

Next, we turn to the under-estimation probability P*"d¢*(z) associated with a node z such that all its
successors are leaves of T", as stated in the definition of the under-estimation case. Clearly, it suffices to
show that this probability is summable as desired. We have

Pprder(5) < Prob {xt : Z Ag(2b) < af(t)} . (A.15)
beA
Now, by (40),
e ([T o (MDY
;At(Zb) = n(z"{z])ha ({ n(zt[z]) }j=1> beZA (z°[2b]) ha ({ n(z[zb]) }j=1> : (A.16)

By Lemma 5, we can assume that ! is e;-index-balanced for some ¢; > 0, as the probability of the com-

plementary event is summable as desired. In this case, for every m-tuple s, and every 7,1 < j < a, we

have

M; (2 [sm])
n(z*[sm])

If 5., is a descendant of the leaf zb € S’, we have p;(s;,) = pj(2b). Consequently, summing (A.17) over the

m-tuples that are descendants of zb we get

- pj(sm)‘ < €. (A.17)

5 (a*[2b])

n(xt[zb]'—) - pji(zb)| < er. (A.18)

By the continuity of the function hq(-), (A.16) and (A.18) yield
?
beA beA (L' {Z]) beA

3™ Au(eb) > n(z'fz)ha {Z p;(zb )"(“‘ [Zb])} — 3 n(atzb]) halB(25)) — tes (A.19)
=1

for some e, > 0, which can be made arbitrarily small by letting €; approach 0. Since ¢~ f(t) — 0 as t — oo,
it follows from (A.15) that it suffices to prove that

¢ . n(*fz]) n(z*[2b]) n(zt[zb]) -
Prob {m : = ha ({g1 pi(z )n(zt[z])} 1) —Z—t————ha(p(zb))<e} (A.20)

beA

is summable as desired for some € > 0. By applying the large deviations result of [28, Lemma 2(a)] (see
also [27, Theorem 3.1.13]) in a way similar to the proof of [15, Lemma 3], it can be shown that this holds
provided that

stat 2 s t
({;pj (Zb) PPstatEZI))) } ) g‘l F;gstat(Zb)) a(ﬁ(zb)) >0, (A21)
=]
where for a node s in T
Pstat(s) é E Pstat(su), (A_22)

u:su€esS

7Note that any o(t) penalty term of the form g(t) log(t + 1), where g(t) is an arbitrary, unbounded, increasing function of ¢,
would suffice to make P¥°" (swc) summable. In (A.14), we have g(t) = log” (¢t + 1).
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and P2*(su) denotes the (unique) stationary distribution defined on S by the tree source. Note that, as in
[15, Lemma 3], we can assume that the process generated by T is a unifilar Markov chain (possibly with a
number of states larger than |S|). By Jensen’s inequality, the strict inequality (A.21) holds, for otherwise

0O

P(2b) would be independent of b, which would contradict the permutation-minimality of T".
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