Internal Accession Date Only

Predicating Load Latencies
Using Cache Profiling

Santosh G. Abraham, B. Ramakrishna Rau
Compiler and Architecture Research

HPL-94-110
November, 1996

HPL-94-110: Predicating Load Latencies Using Cache Profiling

(ﬁ, HEWLETT

PACKARD

Predicting Load Latencies Using

Cache Profiling

Santosh G. Abraham, B. Ramakrishna Rau
Compiler and Architecture Research

HPL-94-110
November, 1994

cache profiling,
simulation, cache
management
instructions,
prefetching,
memory system
analysis,
program
characterization

Due to increasing cache-miss latencies, cache control
instructions are being implemented for future systems. In
order to investigate the potential benefit of using these
instructions in compiling a broad range of applications, we
study the memory referencing behavior of individual
machine-level instructions using simulations of fully-
associative caches. Our objective is to obtain a deeper
understanding of useful program behavior that can be
eventually employed at optimizing programs and to motivate
architectural features aimed at improving the efficacy of
memory hierarchies. Our simulation results show that a
small number of load instructions account for a majority of
data cache misses in the SPEC89 benchmarks. Most load
instructions rarely miss the data cache and a few instructions
have miss rates much higher than the global miss ratio. We
develop a model where the cost associated with scheduling
loads with miss latencies is parameterized. Using this model,
we explore the potential net benefit associated with profile-
based scheduling of load instructions where some loads are
selected for scheduling with miss latencies based on their
behavior under profiling. Finally, we investigate the
sensitivity of cache profiling information to input data sets.
In many cases, the profile information obtained using one
data set is quite effective in predicting the behavior of a
program on other data sets, but in some cases the predicted
caching behavior is quite different from the actual behavior.

© Copyright Hewlett-Packard Company 1994

1 Introduction

Processor performance has been increasing at 50% per year but memory access times
have been improving at 5-10% per year only. As a result, the latency of cache misses
in processor cycles is increasing rapidly. Besides the increasing cache-miss latencies,
another trend is towards processors that issue a larger number of instructions/oper-
ations per cycle, such as VLIW or superscalar processors. In these systems, the effec-
tive cache-miss penalty is proportional to issue width. Therefore, it is important to de-
velop techniques to reduce the cache miss ratio and tolerate the latency of cache miss-
es.

Current compilers use all-hit scheduling where all loads are scheduled using the
cache-hit latency. Even though a lockup-free cache prevents a stall on a cache miss,
the processor often stalls soon afterwards on an instruction that requires the data
that missed the cache. The dynamic scheduling capabilities needed to cope with the
highly variable latencies associated with cache misses are expensive and could
degrade the processor cycle time. The alternative of scheduling all loads with the
cache-miss latency (referred to subsequently as all-miss scheduling) is not feasible
for most programs because it requires considerable instruction level parallelism
(which may not be present) if it is to be successful and increases register pressure.
Studies investigating load delay slots in RISC processors support this observation.
Scheduling with the miss latency eliminates a large portion of the value of having a
cache, viz., the short average latency, and retains only the reduction in main memory
traffic. In this report, we investigate the potential improvements of a third alterna-
tive, selective load scheduling where some loads are selected for scheduling with the
cache-miss latency while other loads are scheduled with the cache-hit latency.

In order to effectively support selective load scheduling, systems should minimally
have a lockup-free cache and preferably instructions that permit the software to
manage the cache, e.g., DEC Alpha [1]. Kathail et al [2] describe the HPL PlayDoh
architecture which supports a comprehensive set of load/store operation specifiers
for managing the data cache. We review the set of source-cache or latency specifiers
for loads provided in the HPL PlayDoh architecture that specifies the highest level in
the memory hierarchy where the data is likely to be found. After an earlier phase of
compilation has inserted the latency specifiers, the instruction scheduler preferen-
tially schedules long-latency loads which tend to miss the cache and all other short-
latency loads with the cache-hit latency. In a VLIW processor, the architectural
latency of a load is determined using its latency specifier. If the behavior of loads is
consistent with their latency specification, a major source of non-deterministic high-
variance latencies which greatly impacts the performance of VLIW processors is
eliminated. Superscalar processors can also use the latency specifiers for dynamic
scheduling. We also review a set of target cache or level-direction specifiers for load/
store instructions that install data at specific levels in the memory hierarchy [2].
Through these instructions, the software can manage the contents of caches at vari-

ous levels in the memory hierarchy and potentially improve cache-hit ratios and/or
improve the accuracy of latency specification.

In selective load scheduling, the compiler must tag each load with a latency specifier.
For regular scientific programs, compile-time analysis can identify the loads to
schedule with the cache-miss latency. But, for irregular programs such as gcc or
spice, compile-time techniques have not been developed. A key issue that will
determine the effectiveness of latency specification is the predictability of load laten-
cies for such irregular programs. In this report, we study the behavior of individual
load/store instructions with respect to their data cache accessing behavior using
cache simulations. Unlike earlier research that reported overall miss ratios, we
determine the miss ratios of individual load/store instructions. Though a relatively
small number of loads account for a large majority of memory references, a much
smaller number of loads account for most cache misses. We show that a large frac-
tion of memory references are made by instructions that miss extremely infre-
quently. We use the profiling information obtained by these cache simulations to
label loads as short or long latency instructions. In addition to the results that were
presented earlier in Abraham et al [3], we present a model where we characterize the
net benefit of selective load scheduling as a function of the scheduling costs associ-
ated with scheduling loads with miss latencies. Furthermore, we investigate the sen-
sitivity of cache profiling to different input data sets.

There are some important factors that make the usage of load profiling information
more difficult than the more established branch profiling. Firstly, load profiling is
inherently more expensive than branch profiling by one or two orders of magnitude.
However, there are several methods to reduce this cost, such as using trace sampling
and inline simulation of cache hits. Secondly, unlike branches whose targets are usu-
ally known, the address of a load is often not known sufficiently in advance. If the
address is not known, the long latency load cannot be moved ahead in the schedule
sufficiently. Thus, if there is little flexibility in scheduling loads with miss latencies,
then selective load scheduling can only be marginally better than conventional all-
hit scheduling. Finally, the results in this report indicate that cache profiling is more
sensitive to changes in input data set than branch profiling. Further work is needed
to develop more sophisticated profiling techniques that are less sensitive to changes
in data set. Even if cache profiling is not feasible for production compiler use, the
cache profiling results may lead to compiler techniques that generate similar infor-
mation.

2 Related Work

Several researchers have investigated prefetching to reduce cache miss stalls. Calla-
han and Porterfield [4] investigate the data cache behavior of scientific code using
source-level instrumentation. For a suite of regular scientific applications, they show
that a few source-level references contribute to most of the misses. In a later paper,

Callahan and Porterfield [5] present techniques for prefetching to tolerate the latency
of instructions that miss. They investigate both complete prefetching where all array
accesses are prefetched, and selective prefetching where the compiler decides, based
on the size of the cache, what data to prefetch. McNiven and Davidson [6] evaluate
the reductions in memory traffic obtainable through compiler-directed cache manage-
ment. Klaiber and Levy [7] and Mowry et al [8] also investigate selective prefetching
using compiler techniques for scientific code. Mowry et al [8] combine prefetching
with software pipelining and further investigate the interaction between blocking
and prefetching. Chen and Baer [9] investigate hardware-based prefetching and mov-
ing loads within basic blocks statically to tolerate cache-miss latencies for some SPEC
benchmarks. Chen et al [10] reduce the effect of primary cache latency by preloading
all memory accesses for the SPEC benchmarks.

In this report, we describe a framework for software cache control that subsumes
prefetching. We illustrate the performance improvements obtainable through soft-
ware cache control using the matrix multiply program. Unlike Callahan and Porter-
field [4], we investigate the caching behavior of machine-level instructions for
irregular floating-point programs such as spice and integer programs such as gcc.
We also evaluate the costs and benefits of prefetching using load/store profiling.

Profile guided optimizations play an important role in code optimization. Branch
profiling has been used in scheduling multiple basic blocks together to increase
instruction level parallelism in VLIW and superscalar machines by Fisher [11] and
Hwu et al [12]. Fisher and Freudenberger [13] present a new measure for evaluating
branch predictability and demonstrate that branch profiling is largely insensitive to
a range of different input sets for the SPEC benchmarks. Krall [14] demonstrates
that branch profiling can be improved by using correlations between the behavior of
branches and replicating branches which have a few distinct patterns of behavior.
Profiling has also been used in instruction cache management by McFarling [15] and
by Hwu and Chang [16], register allocation by Chow and Hennessy [17], and inlining
by Chang et al [18]. This work proposes using load/store instruction profiling for
instruction scheduling and cache management. MemSpy [19] is a profiling tool that
can be used to identify source-level code segments and data structures with poor
memory system performance. Our work focuses on opportunities for optimization of
cache performance through profiling of machine-level load/store instructions.

The rest of the report is structured as follows. Section 3 develops the machine model.
Section 4 illustrates several concepts underlying our approach using a matrix multi-
ply program. Section 5 describes the profiling experiments and the results. Section 6
presents the results on profiling with multiple input data sets. Section 7 is the con-
clusion and future work.

3 Imstruction Extensions for Software Cache control

In this section, we review a comprehensive, orthogonal set of modifiers to loads/stores
originally described by Kathail et al [2] that can be used to specify the latency of loads
as well as to control the placement of data in the memory hierarchy.

In most systems, caches are entirely managed by the hardware. But in order to con-
trol the placement of data in hardware managed caches, the compiler ! must second-
guess the hardware. Furthermore, since the cache management decisions are not
directly evident to the software, the load/store latencies are non-deterministic. At
the other extreme, local or secondary memory is entirely managed by the program.
The main disadvantage of an explicitly managed local memory is that the software is
forced to make all management decisions.

We describe a mixed implicit-explicit managed cache that captures most of the
advantages of the two extremes. A mixed cache provides software mechanisms to
explicitly control the cache as well as simple default hardware policies. The software
mechanisms are utilized when the compiler has sufficient knowledge of the pro-
gram’s memory accessing behavior and when significant performance improvements
are obtainable through software control. Otherwise, the cache is managed using the
default hardware policies.

We now describe the load/store instructions in the HPL PlayDoh architecture 2 in
the remainder of this section [2]. In addition to the standard load/store operations,
the PlayDoh architecture provides explicit control over the memory hierarchy and
supports prefetching of data to any level in the hierarchy.

The PlayDoh memory system consists of the following: main memory, second-level
cache, first-level cache and a first-level data prefetch cache. The data prefetch cache
is used to prefetch large amounts of data having little or no temporal locality without
disturbing the conventional first-level cache. The first- and second-level caches may
either be a combined cache or be split into separate instruction and data caches. This
memory hierarchy can be extended to several levels. For the purposes of this report,
we are primarily interested in managing the first-level cache.

There are two modifiers associated with each load operation which are used to spec-
ify the load latency and to control the movement of data up and down the cache hier-
archy. The first modifier, the latency and source cache specifier, serves two purposes.
First, it is used to specify the load latency assumed by the compiler. Second, it is
used by the compiler to indicate its view of where the data is likely to be found. The
second modifier, the target cache specifier, is used by the compiler to indicate its view

1. In this section, when we say compiler we mean programmer/compiler.
2. HPL PlayDoh is a parametric architecture that has been defined to support research in instruction-
level parallel computing.

of the highest level in the cache hierarchy to which the loaded data should be pro-
moted for use by subsequent memory operations. (Note that the first-level cache is
the highest level in the hierarchy.) The second specifier is used by the compiler to
control the cache contents and manage cache replacement. Each of these specifiers
can be one of the following: V for data prefetch cache, C1 for first-level data cache, C2
for second-level data cache, C3 for main memory.

Non-binding loads cause the specified promotion of data in the memory hierarchy
without altering the state of the register file. In a non-binding load, the destination
of the load is specified as register 0. For convenience, we will use the terms pretouch
and prefetch to refer to non-binding loads that specify the target cache as CI and V
respectively. In contrast to regular loads, prefetches and pretouches bring the data
closer to the processor without tying up registers and thereby increasing register
pressure. Also, long-latency loads are binding loads that specify C2 as the source
cache. Other binding loads are short-latency loads.

A store operation has only a target cache specifier. As with the load operations, it is
used by the compiler to specify the highest level in the cache hierarchy at which the
stored data should be installed to be available for use by subsequent memory opera-
tions. In the rest of this report, we limit the discussion to a two-level memory hierar-
chy, consisting of a cache, C and a memory, M.

In a latency-stalled machine, there is no interlock or check for uses of the load.
Instead, each operation specifies its latency and if the result is not delivered within
the specified latency the entire processor stalls till the result is available. Since loads
have widely differing latencies (depending on the level of the memory hierarchy at
which the data is found), the specification of a latency consistent with the actual
latency has important performance implications. If a short-latency load consistently
misses the cache, then each such miss stalls the processor till the data is obtained
from some deeper level of the memory hierarchy. If a long-latency load consistently
hits the cache, then the compiler has extended the load to use distance at some
potential increase in schedule length and lifetimes, without a balancing gain in
reduced stall cycles. In an interlocked machine, where the processor stalls only on
the use of a result, the processor itself may not use the specification of load latencies.
However, the compiler may internally associate distinct latencies with operations to
suitably schedule load operations so that memory stall cycles associated with miss-
ing load operations are reduced.

4 Programmatic control of memory hierarchy: An example

Although our interest extends beyond regular programs, we illustrate the concepts
underlying this report using the familiar blocked matrix multiply example. The use-
fulness of the cache control instructions can be demonstrated concisely and effectively
on the matrix multiply example. Furthermore, the optimized blocked matrix multiply

with the cache control instructions exhibit ideal behavior in the sense that a few in-
structions consistently miss the cache and other instructions always hit the cache.
This information can be exploited to improve program performance by choosing the
right load instruction from the repertoire described in the previous section. In the ex-
perimental results section, the other benchmarks can be better understood by con-
trasting their behavior with that of blocked matrix multiply.

4.1 LRU statistics for blocked matrix multiply
For reasonable cache sizes, the regular unblocked matrix multiply incurs approxi-

mately 2n’ cache misses out of a total of 3n° data references. Figure 1 shows a
blocked version of the matrix multiply program with a block size of m=32. In general,

the block size m in the program is chosen so that m? + 3m < cache size. Satisfying this
inequality ensures that a square block of size m x m of B can be kept resident in cache
throughout its use. Compared to the regular matrix multiply, the misses due to re-
references to elements in the B array are eliminated and the overall number of misses

is reduced to approximately2n3/ m.

PROGRAM matmul
C constraint: n has to be an integer multiple of
C the block size m

parameter (n = 128, m = 32)

real A(n, n), B(n, n), C(n, n)

do 10 j3j =1, n, m

do 10 kk =1, n, m
do 10i =1, n
do 10 3 = jj, jj+m-1
do 10 k = kk, kk+m-1
C(i, j) =cC(i, j) + A(i, k)*B(k, J)
10 continue

Figure 1.Blocked matrix multiply

Blocking has been widely used by programmers for regular scientific applications and
has recently been incorporated as an automatic transformation in some research and
commercial compilers. Our objective is to illustrate the regularity of memory referenc-
es of load/store instructions and this objective can be realized using either the regular
or blocked matrix multiply. Since the validity of new optimization approaches is best
illustrated on programs that have already been optimized using existing techniques,
we choose the blocked version of matrix multiply for further consideration.

Table 1 shows the LRU stack distributions for the blocked matrix multiply. Each
entry in the LRU (Least Recently Used) stack is a data address. Each entry, e at a
depth j, occupies a position in the LRU stack below all other entries that have been

referenced after e Ina fully associative LRU data cache of size C lines, references
that access entries below C in the LRU stack are misses and the rest are hits. The
LRU stack distribution shows the number of times a static program access refer-
enced a data item within a range of depths in the LRU stack. Besides showing the
actual LRU stack distribution when n=128, m=32, Table 1 also shows a general
expression for the stack depth distribution and the values of the loop indices in the
program for which these stack depths are encountered. Of the n? references made by
each static source-level reference, n? are the initial references to the array of size n®.
These initial references are characterized as compulsory misses. The remaining n®-

n? references are made at different depths for different references.

4.2 Multi-issue machine model

In the remaining subsections of this section, we illustrate the performance improve-
ments obtainable through the use of level-directed, latency-specifying loads/stores on
a blocked matrix multiply. In order to quantify the performance improvements, we
use the following multi-issue machine model. Except for this section, the rest of the
report is independent of the following machine model.

Our multi-issue model issues a total of seven operations per cycle: two memory
loads/stores, two address computations, one add, one multiply, and one branch.
Table 2 lists the types of operations and their latencies. The latency of loads is 1 if it
is in the first-level cache or buffer and 20 otherwise.

4.3 No Data Cache

Now, we examine the performance of the blocked program in Figure 1 on a range of
architectural alternatives. Table 3 shows four metrics of interest for five different ar-
chitectural alternatives. The ideal execution time is the execution time on our sample
machine ignoring loop and memory overheads of a matrix multiply code scheduled ei-
ther with a load latency of 1 or 20 cycles. The cache miss penalty is the number of cy-
cles spent stalling for cache misses. The actual execution time is the sum of the first
two times. The memory traffic is the total number of non-cached accesses. In each
case, we present a general expression and a number for the particular choice of n=128
and m=32.

First, consider a machine without a data cache representative of VLIW machines
such as the Cydrome Cydra 5 [20, 21] or Multiflow TRACE family [22]. The ideal exe-
cution time assumes a schedule with a memory latency of 20 cycles. Since there is no
cache, the cache miss penalty is zero and every reference is satisfied by main mem-
ory. This example illustrates that in regular scientific applications there is usually
sufficient parallelism to schedule loads to hide the memory latency. However, one
memory access is required per floating-point operation and this level of memory traf-
fic can be sustained only by expensive memory systems.

Table 1. LRU stack depth distributions for blocked matrix multiply

A(,k) B(k,j) C@,j) CGa,j)
Depth Load Load Load Store
1-16 0 0 2.03M 2.1M
(n3*(m-1)/m (n3
at depth 3) at depth 1)
[k#kk]
17-64 0 0 0 0
65-1K 2.03M 0 0
(ns*(m-l)/m
at depth
2m+2)
L #jjl
1K-4K 0 2.1M 0 0
(n3-n2 at
depth m? + 3m)
[i#1]
4K-16K 0 0 49,152 0
(n®*(n/m-1)
at2depth
2m +2nm)
[k#1k = kk],
16K-64K 49,152 0 0 0
(n®*(n/m-1)
at depth
(n"+3nm+m")
U#1,j=Jjjl
Compulsory 16,384 16,384 16,384 0
misses n? misses n? misses n? misses
=11 [i = 1] k =11

4.4 Conventional data cache
Secondly, consider a machine with a first-level data cache which is larger than 2n + 1

and m” + 3m words and is smaller than n” + 2n. The cache stalls the processor on a
cache miss till the miss is serviced and the cache-miss latency is 20 cycles. Loads are
scheduled by the compiler with the cache-hit latency. Most current RISC systems
have a cache organization and scheduling approach similar to this machine. Com-

Table 2. Instruction latencies

Pipeline Number | Operation | Latency
s
Memory 2 Load 1/20
port
Store 1
Address 2 Address 1
ALU add/sub-
tract
Adder 1 Floating- 2
point add/
subtract
Integer 1
add/sub-
tract
Multiplier 1 Floating- 4
point mul-
tiply
Integer 2
multiply
Instruc- 1 Branch 2
tion

pared to the earlier alternative, the combination of caching and blocking transforma-
tions reduces memory traffic by a factor of m. This machine has an ideal execution
time that is lower and has a significantly less expensive memory system. However,
the overall execution time is significantly degraded by the cache miss penalty.

4.5 Lockup-free cache with out-of-order execution

Consider a lockup-free cache in conjunction with a dynamically-scheduled processor
that supports out-of-order execution and is similar to our model processor in issuing
capabilities. Assume that the blocked matrix-multiply is scheduled for such a ma-
chine with a nominal load latency of one. Assuming the system is effective at hiding
the cache miss latency, the cache miss penalty is zero. Compared to the “no data
cache” system, the lockup-free cache system has greatly reduced memory traffic re-
quirements and compared to the previous cache alternative, the current system ap-
pears to have better overall execution times. But, in order to hide the cache miss la-

Table 3. Performance metrics on architectural alternatives

Idea_l Caf:he Actual Memory
execution miss .
. exec. time traffic
time penalty
No data -
cache ,3mt26 3+ 26 ,
m m 23+ 2
m
3.80M 3.80M 4.26M
Data cache ~ ~
n3mT+7 40','—:- am+47 23, 2
m m
2.56M 2.62M ' 5.18M 0.147M
Lockup-free -
cache +7 .7
+ dyn. schedul- G ”3mm 27’13 +n?
1ng 2.56M 256M | 0.147M
Labeled loads ~ - ~
p3mt8 pamt8 LS
m m m
2.60M 2.60M 0.147TM
Ideal data cache -
pamt7 pmt 3n2
m m
2.56M 2.56M 0.049M

tency, the hardware must be capable of dynamically scheduling from a window of 140
instructions (7 instrs./cycle x 20 cycles) which may impact the processor cycle time.
Though dynamically-scheduled systems with lockup-free caches have the potential
for eliminating the cache miss penalty, the large scale schedule reorganization re-
quired for overlapping the relatively high cache miss latency makes their practicality
somewhat suspect.

4.6 Conventional system scheduled using miss latencies

A solution to the above problem is to statically-schedule the code with a nominal load
latency equal to the cache-miss latency instead of the cache-hit latency. This solution
is effective for the matrix multiply example but is not likely to be as effective in gen-
eral. For programs with a modest amount of instruction level parallelism, scheduling

10

loads with the cache-miss latency increases the critical path, creates empty slots in
the schedule and reduces overall performance.

4.7 Labeled loads/stores

We consider the use of level-directed, latency-specifying loads/stores that were de-
scribed in Section 3. For each load instruction, the latency specifier is determined
through compile-time analysis (possible for dense matrix computations) or through
cache-simulation based profiling. Assuming that each source program access is trans-
lated into one machine-level load instruction, there are three loads, one each for the
arrays A, B, C. Since the miss ratio for all these loads is fairly low: 0.031, 0.008, and
0.031 respectively for A, B, C, any general scheme would label all these loads as short
latency loads and schedule the entire program using cache-hit latencies. Thus, there
is no difference between this scheme and the “Conventional data cache” scheme.

Though it is clear from Table 1 that each load instruction has two or three distinct
cache behavior, the simple labeling scheme above does not have sufficient resolution
to discriminate between these behavioral patterns.

4.8 Labeled loads/stores after peeling

Loop peeling is a simple compiler transformation where a specific iteration of the loop
is “peeled off” from the rest of the loop and replicated separately. In many situations,
the accesses in the first iteration bring data into the cache, tending to miss, and the
last iteration references data for the last time without subsequent useful reuse.
Therefore, peeling the first and last iterations of the loop, enables the identification
of loads/stores with a high miss rate or without reuse.

Consider peeling the first iterations of the i and j loop from the program in Figure 1,
so that the loop body is replicated a total of four times. Table 4 gives the miss ratio
(when n=128, m=32) for the four distinct accesses to each of the arrays in the peeled
code. From Table 4, each of the references in the peeled program have very regular
caching behavior, i.e., either a reference always hits or always misses in an LRU
fully-associative cache. Each reference in the program is annotated with the number
of times it hits or misses and the corresponding depths in the LRU stack. If the refer-
ence always hits, its latency is specified as short latency; otherwise, it is labeled as a
long latency reference.

Also, if a reference brings in data that is not reused before being replaced from the
LRU cache, the data is bypassed and not installed in cache. Though there is reuse on
data brought in by references to C, this reuse occurs at a large depth in the LRU
stack and therefore all references to C miss the cache. Therefore, data brought in by
C is not installed and is bypassed. Bypassing the cache prevents the data from pol-
luting the cache by displacing other useful data. In this example, data brought in by
a reference to A and B is generally reused and therefore all references to A and B are
directed to the first-level cache.

11

Table 4. Misses of individual loads/stores in peeled program

1 J Description A B C
1 | 5 Compulsory n n%/m n/m
misses
Other misses n(n/m-1) 0 (n/m) (n/m-1)
Hits 0 0 0
Overall Miss ratio 1.0 1.0 1.0
Short/long latency Long Long Long
Cache install Yes Yes No
1| != Compulsory 0 (n2- (m-1) (n/m) - (m-1)
] misses - m
Other misses 0 0 (n/m) - ((n/m) -1)
) S(m=1)
Hits (n” (m-1)) 0 0
m
Overall Miss ratio 0.0 1.0 1.0
Short/long latency Short Long Long
Cache install Yes Yes No
=11 jj Compulsory n-(n-1) 0 (n/m) - (n-1)
misses
Other misses n-(n-1) 0 n
- ((n/m) -1)) 1
Hits 0 ’-’-%-‘-l (n-1) - ((n/m) - 1)
Overall Miss ratio 1.0 0 1.0
Short/long latency Long Short Long
Cache install Yes Yes Yes
=1 != Compulsory 0 0 (n/m) - (n-1)
ji misses - (m-1)
Other misses 0 0 (n/m) - ((n/m) -1)
2(n-1 Dl n2(n-1 | b m=D)
HltS h (n_) (m") n (n_) (m_) O
m m
Overall Miss ratio 0.0 0.0 1.0
Short/long latency Short Short Long
Cache install Yes Yes No

The compiler analysis required for the blocking transformation determines that the
i=1 and j=1 iterations bring data initially into the cache and that the reuse of data

12

occurs on i # 1 and j # literations for the arrays B and A respectively. This analysis
will therefore suggest peeling to clone the accesses to these arrays.

Just as peeling enabled us to isolate references that miss in cache, peeling can also
be used to identify references on which there is no reuse. Generally, the first itera-
tion brings in data and the last iteration accesses data without any subsequent use-
ful reuse. In our running example, there is no reuse of data accessed in the last
iterations of the i and j loops by the arrays B and A respectively. Therefore, once the
last iterations of i and j are peeled off, the references that have no reuse are exposed.
These A and B references will be labeled short latency but will be directed to a lower
level of the cache.

The above discussion demonstrates that compiler transformations such as peeling
can be useful prior to profiling in order to improve the resolution of the profiling.
Similarly, loop unrolling by a factor equal to the cache line size is useful in identify-
ing the references that miss in a stride-one access pattern. In practice, peeling and
loop unrolling prior to profiling are not necessary. Instead, profiling information on
each load is gathered at a finer level of granularity that is trajectory sensitive. More
precisely, a range of bins are maintained for accumulating hit-miss information for
each static load access. The actual bin that is chosen depends on the sequence of
basic blocks through which control arrives at a load. For instance, two bins can be
maintained for each load, one that is updated when the control reaches a load in a
loop for the first time and the other that is updated when the loop iterates. The tech-
niques employed may be similar to those used to improve static branch profiling
results [14].

In the case of regular scientific programs such as matrix multiply, extensions to cur-
rent compiler technology are sufficient to characterize loads as short or long latency
and to label them as cache install or bypass. Current compiler techniques are
unlikely to be successful at characterizing load instructions in a more general class
of programs. We propose the use of cache profiling to study the regularity of the
memory referencing behavior of load instructions in such programs. We study the
effectiveness of using this profiling information to specify the latency of load instruc-
tions. Our objective is not to advocate a specific scheme such as a profile-driven
scheme for labeling loads but is targeted rather at developing a deeper understand-
ing of useful program behavior that can be eventually employed at optimizing pro-
grams and at motivating architectural features aimed at improving the efficacy of
memory hierarchies. For instance, the profiling experiments in the next section may
motivate the development of compiling techniques that can identify latency and
reuse of memory references in a broader class of programs. These compiling tech-
niques may in turn be superior to profile-driven labeling of loads for a broad class of
programs in certain situations.

13

5 Simulation Experiments

In this section, we characterize the cache behavior of loads by performing cache sim-
ulations. Our goal is limited to evaluating the potential benefit of profile-driven
source-cache specification of loads; we do not discuss target-cache specification fur-

ther in this report.1 We first describe the simulation environment and the bench-
marks. We investigate the regularity of the caching behavior of loads both with re-
spect to the distribution in misses among loads and the distribution of miss ratios. We
statically annotate the load/store instructions with prefetches using the profiling in-
formation and present two performance metrics related to the cost and benefit of pro-
file based annotation.

5.1 Environment

We use four-word line size fully-associative 16KB caches in our program character-
ization, because the results are obtained at a higher level of abstraction without the
artifacts introduced by limited associativity. We have confirmed that the general na-
ture of the results apply for two-way set-associative caches [23]. We simulated the
caches either for 100 million addresses or till completion of the program. We use the
stack processing technique of Mattson et al [24] to simulate fully-associative caches
under LRU and MIN replacements and we use tree implementations of the stack for
efficiency. The stack represents the state of a range of cache sizes, with the top C lines
being contained in a cache of size C lines. The initial program characterization in
Section 5.3 is based on normal LRU replacement because it is commonly used in prac-
tical caches. In the remainder of the section, the objective is to do better than hard-
ware schemes by utilizing future program accessing information. Therefore, we use
MIN in the profiling step to capture future program behavior and we then use soft-
ware control and default LRU replacement to measure performance improvements. A
cache of size C using the MIN replacement scheme prefetches data into the cache to
always maintain the next C distinct lines that will be referenced. Since the depth at
which a reference is inserted in the MIN stack is the depth at which it is rereferenced
in the LRU stack, the distribution of insertion depths in the MIN stack is actually ob-
tained using a modified LRU stack simulator.

We define some relevant terms and measures in the following. The global miss ratio
is the fraction of references that miss the data cache over the entire program. The
miss ratio of a single static load is the number of times the references generated by a
load misses over the total number of references generated by that load. The miss frac-
tion of a load is the number of misses generated by that load over the total number of
misses in the program. Similarly, the reference fraction of a load is the number of ref-
erences generated by that load over the total references generated by the entire pro-

1. Cache replacement can be managed using the target cache specifiers described in Section 2 to reduce traffic
between levels of the memory hierarchy. Initial results on using profiling to manage cache contents show a
reduction in traffic of less than 10% [23].

14

gram. The cumulative miss fraction is the sum of the miss fraction of a set of loads
and similarly, the cumulative reference fraction is the sum of the reference fractions
of a set of loads. The load fraction is the number of dynamic load operations executed
over total number of operations executed in the program.

5.2 Benchmarks

We present results on a limited number of programs consisting of seven SPEC89
benchmarks and matrix, which is the peeled blocked matrix multiply example that
was described in detail in the previous section. In this section, we present detailed re-
sults on four benchmarks for our experiments: matrix, dnasa, tomcatv and eqn. In
the next section, we will present similiar results on four other SPEC89 benchmarks:
gce, xlisp, espresso, and spice. For the second set of benchmarks, multiple
data sets were available and we present the results of profiling with one data set and
measuring the results on another distinct data set.

5.3 Distribution of references and misses

In this subsection, we investigate the distribution of references and misses among the
loads in a program. It is widely known that, in most programs, a relatively small part
of the program accounts for most of the execution time. Consequently, we expect that
most references are due to a few loads in most programs. We examine whether the
misses in a program are also concentrated among a few static loads.

We sort the loads in a program by decreasing reference ratios and form a list of all
loads with the load responsible for most references at the head of the list. The graphs
in Figure 2 plot the cumulative reference fraction of a set of load instructions on the
y-axis and the number of loads in the set on the x-axis. The x-axis is on a log scale in
order to magnify the left hand region showing the behavior of instructions with high
reference coverage. We also form a separate list of loads sorted by decreasing miss ra-
tios. In the second curve, we plot the cumulative miss fraction of a set of load instruc-
tions versus the number of loads in that set. Now, the loads are ordered with the load
accounting for the most misses at the head of the list. For eqn, 10 instructions account
for almost 90% of the dynamic references and a possibly different set of 10 instruc-
tions accounts for 94% of all misses.

For programs such as tomcatv, 100 instructions account for almost all the misses but
the 100 most frequently referenced instructions only account for 70% of the referenc-
es. The fact that a certain number of instructions account for a much larger fraction
of cache misses than overall references demonstrates that the concentration of cache
misses among a few instructions is not merely due to a concentration of references
among a few instructions. Because a few instructions account for most cache misses,
it is more likely that manual or compiler intervention techniques can be developed to
handle cache misses.

15

matrix dnasa
1 T 1 []
/ ' r_____/ ’
- [
0.8 0.9
) 1)
’ L]
’ '
0.8 / 3 0.8 / 7
’ []
’ [
§07 §o7 -
i/ 1 L :
$06 i % 0.6 .
E ,' -~ / l'
§05 §o0s / "
, r
§ 0.4 , g 0.4 -
o ’) .
] .) .
Zoa - goa -
L4 L4
4
0.2 = = Ref. fraction 0.2 " ‘ ~ = Ref. fraction
P = Miss fraction .’ ‘ = Miss fraction
01F—=—== 0.4 .
0 of
1 10 100 1 10 100
Number of instructions Number of instructions
tomcatv eqn
1 1 —
’ /"
[- .
0.9 L 0.9 .
.
, . d
’ A . e
0.8 0.8 i
/L /
’
507 d 507 .
4 L}
806 " $086 ,
E /] E /' ’
505 - §05
4 a1
g 04 7 R g 0.4 0
5 /] . 5
Soa - So3
'l
0.2 5L = = Reference fraction |— 0.2 - = Reference fraction —]
/ 0" - Miss fraction — Miss fraction
0.1 / 0.1
o=~ 0
1 10 100 1000 1 10 100 1000

Number of instructions Number of instructions

Figure 2.Cumulative reference and miss fractions vs. sorted loads

5.4 Distribution of dynamic trace annotations

In this subsection, we consider annotating each reference using fully-associative
cache simulation under MIN. For a cache with C lines, a reference is annotated with
‘was replaced’ if it is the first reference to access a cache line after it has crossed a
depth of C in the MIN stack, i.e. after it has been replaced; otherwise, it is annotated

16

with ‘was retained’. We examine the distribution of annotations on references made
by individual instructions. For each static instruction, we maintain a count of the
number of times it accesses references annotated with ‘was replaced’, i.e. count of
misses per instruction.

Branch profiling is useful because certain branches tend to be taken and others tend
to be not taken and profiling classifies branches into these two types. Each branch
type can be optimized for its predicted behavior. In this section, we examine a simi-
lar issue with respect to the cache behavior of loads using the annotation counts per
instruction. We can classify loads into two categories through profiling based on
cache simulation: hit-instructions that tend to hit and miss-instructions that tend to
miss while accessing the data cache. As in branch profiling, the value of such a clas-
sification depends on how closely the observed behavior matches the predicted
behavior.

To determine how often the observed behavior is different from the predicted behav-
ior, we sort the individual loads by their miss ratios. In Figure 3, the cumulative ref-
erence fraction on the x-axis is the fraction of the total references made by some
number of instructions starting from the head of the sorted list. Again, the x-axis is
on a log scale to magnify the interesting regions of the four graphs. The y-axis shows
the miss ratio of the last instruction removed from the sorted list to reach a certain
cumulative reference fraction. The shape of the curves for matrix and dnasa sug-
gests that the miss ratio of instructions is either large or close to zero. For the three
programs, matrix, dnasa, and tomcatv, a large fraction of references are accounted
for by instructions with a miss ratio of zero and relatively few references are
accounted for by instructions in the transitional region. The exception among these
four programs is eqn where almost all references are made by instructions with a
non-zero but small miss ratio.

Though the instructions that hit tend to have a hit ratio close to one, the instructions
that miss do not tend to have a miss ratio of one. Thus, the predictability of miss-
instructions is not as good as hit-instructions. Firstly, there are many more hits than
misses globally and secondly, our cache model assumes a line size of four words.
Unit-stride reference streams that always miss in a cache with a line size of one
word will tend to hit with 0.75 probability in our cache. For instance, the instruc-
tions that miss in tomcatv have a miss ratio of 0.5. The predictably of these types of
instructions can be improved by loop unrolling by the cache line size parameter.
Regardless, instructions that account for a small fraction of dynamic references are
responsible for a large fraction of the overall misses and have a hit ratio significantly
less than the global hit ratio.

17

matrix
dnasa

== Miss ratio of last instruction

- Miss ratio of last instruction

1
] 1+
0.9 3
. 0.9
S 0.8 c :
CASE S 0.8
S0.7- N
=] S 0.7
Z 5 g
: 0'6 b £ 0.6 :
[2]] 7 3
8 0.5 8 0.5
0.4 043
-— 1 "(a' B
= 0.34 g 037
7}] 0]
S 0.2 = 0.2
3 0.1
0.1 3
3 0 ——rrr
0 T — 0.01 0.1
0.01 0.1 1 Cumulative reference fraction
Cumulative reference fraction
tomcatv eqn
— Miss ratio of last instruction — Miss ratio of last instruction
0.6 0.7 \
c 05] — c 0.6 \
o] Q]
g] ELER
7 047 5] \
e _ = J
-] = 0.4
80.3- 8] \
S] 5 0.3
=] .0
® 0.2 © \
@ 0.2
9] R \
= 0.1] =
U 0.1
0 1 T T T T LIELELERS T T T T LA A O 1 T Ll T LIS T
0.01 0.1 1 0.01 0.1
Cumulative reference fraction Cumulative reference fraction

Figure 3.Miss ratio of last load instruction versus cumulative reference fraction
(loads sorted by decreasing miss ratio)

18

5.5 Performance comparisons after static annotation

Since distinct annotations for each reference in the trace is not feasible, we investi-
gate the performance improvements possible through a static annotation of instruc-
tions. In a static annotation, each static load is annotated with 'was replaced’ or ’'was
retained’. A prefetch/pretouch is associated with all dynamic references generated by
a load annotated with ‘was replaced’. An unprefetched or residual miss is associated
with each dynamic reference generated by a load annotated with *was retained’ that
misses the cache. Control and data dependencies may constrain the scheduling free-
dom associated with a static load annotated with 'was replaced’. Consequently, it
may not be possible to schedule prefetches/pretouches sufficiently in advance to hide
the entire cache miss latency. We do not address this issue in this subsection and we
assume that all loads annotated with 'was replaced’ are prefetched.

Load/store profiling information is obtained through cache simulations and is used
to annotate the static instructions in the program based on a threshold. All instruc-
tions that have a miss ratio greater than the threshold are labeled as long latency or
prefetch/pretouch instructions and the rest are labeled short latency. This scheme
can be successful if it reduces the miss ratio sufficiently without greatly increasing
the number of prefetches. We characterize these two factors by two metrics repre-
senting the benefit and cost of prefetching: residual miss ratio which is the ratio of
unprefetched cache misses over total references and prefetch ratio which is the ratio
of prefetches to the total references in the original unannotated program.

In Figure 4, we plot these two metrics versus threshold for the four benchmark pro-
grams. The shape of all four curves are similar; when the threshold is reduced below
a critical value there is an abrupt reduction in residual miss ratio and a correspond-
ing increase in prefetch ratio. However, note that the y-axis scales for prefetch ratio
and residual miss ratio are different for each benchmark. Thus, in the case of
matrix, the scales for prefetch ratio and residual miss ratio are identical and for a
suitable threshold the residual miss ratio falls to zero even though the prefetch ratio
does not exceed the initial miss ratio. Thus, the residual miss ratio can be reduced to
zero without incurring any unnecessary prefetches (prefetches that hit in the cache).
The behavior of dnasa is also close to ideal. For a threshold below 0.8, the residual
miss ratio drops to 0.004 and the prefetch ratio does not exceed the initial miss ratio.
In contrast, egn has a prefetch scale extending to 0.5 while the residual miss ratio
scale extends only to 0.07. Only at a comparatively low threshold does the residual
miss ratio does drop significantly below the initial miss ratio; even then the prefetch
ratio increases to more than 0.4. Thus, in egn and to a lesser extent in tomcatv, the
residual miss ratio drops significantly only when the threshold is small and the
prefetch ratio is high.

Overall, the static annotation scheme has the potential for reducing miss ratios
appreciably at the expense of issuing only a small number of prefetches relative to

19

matrix dnasa

0.14 7 i 0.14 0.08 - T T T T] - 0.06
| [N [- - Residual miss ratio !
0.12 1012 °'°7:\ 1£0.05
- - - i 0.06] —— Prefetch ratio [
0.1 - - Residual miss ratio Jo1 o Uo7 | o
o , \ I 0005:\ + Fo.045
i 0osdl — Prefetch ratio ': [0.08 3 e E , 2
S \: E §0.04] 0.03 g
(3] 1 2] [5} h
® 0.06 - 0.06 3 0.03] \ - _3
a 1 ' ¥ w o v] :\ o 7}
0.04 N Toosd] A\ 002 §
T , \ - 0.024 . i
E 5 3 ["
0.02 002 0.01 . \ 001
4 1 a 1L o2l dod oL o) _l :
0 e O e e S T B e e !
0 0102030405060.70809 1 0 0102030405060.70809 1
Threshold Threshold
tomcatv
eqn
- - Residual miss ratio 05 0.08
0.4+ 0.14] l :
1| — Prefetch ratio [0.45 _ T=%0.07
035 - o2 0.4 — j
] : [] T 0.06
0.3 0.35 F 2
] F0.1 2 o] - 0.05]
] i =] ! 0.
20254 :ooag g 034 3
©] 008 0 £ 3 i £
E [= 0.25 - - i i in H-0.04
€ 0.2 \ E 3] | Residual miss ratio [T 5
-] 1 d © "6 4 ———
"3 015 \, -0.06 3 & 0.2) — Prefetch ratio -0.03 2
a0 R A LE - 002
I - [~ V.
0.1 . e R S Z
] [0.02 0.05 -0.01
0.05 . ,’ ! L N i
: [- 0 f"'""""""llllllllllll|llll||l T 0
0 ~prrrrrrrrtrer - 0 0 0102030405060.70809 1
0 010203040506070809 1 Threshold

Threshold
Figure 4.Effectiveness of prefetch annotations

total references. As discussed earlier, in order to prefetch successfully, we also need
to move a load up in the schedule so that the distance between the long latency load
(or prefetch) and its use covers the miss penalty. In general, control and data depen-
dencies will limit the distance by which a load can be moved ahead of its use. But,
since the experiments indicate that the prefetch ratio is usually low, the fraction of
loads that have to be scheduled as misses is also low.

The choice of a threshold should be governed by a tradeoff between the cost of
prefetches and the benefit arising from a lower miss ratio [25]. Lower residual miss

20

ratios reduce overall cache miss stalls. The cost of prefetches is a function of both the
number of prefetches and the amount of instruction level parallelism in the program.
In a program with low instruction level parallelism, unnecessary prefetches con-
strain scheduling decisions and increase critical path lengths. On the other hand, in
a program such as matrix, the instruction level parallelism is very large and a large
prefetch ratio does not affect the schedule length significantly. Therefore, a low
threshold is desirable because it can potentially reduce the residual miss ratio and
the costs due to prefetches are not significant. In this subsection, we presented the
costs and benefits as two separate measures; in the next subsection, we combine the
costs and benefits into a single performance measure.

5.6 Characterizing net benefits of profile-driven prefetching

In this subsection, we propose the effective data cache miss metric to characterize
the performance impact of caches in systems with lock-up free caches and/or execut-
ing selective load-scheduled programs. Under a simple machine model, this metric
can be evaluated using the cache hit-miss data obtained through our cache simula-
tion. The results demonstrate that the effective miss ratio can be reduced consider-
ably using cache profiling over a fairly large parameter space.

Consider systems in which a cache miss stalls the entire processor till the data is
available and in which all loads are scheduled using hit latencies. For such systems,
the cache miss ratio is a simple and effective metric for characterizing the impact of
data caches. The cache miss ratio metric can be easily obtained through trace-driven
simulation. The performance impact due to data cache misses is proportional to the
cache miss ratio, since the stall cycles introduced by the data cache is the product of
the cache miss ratio, m, cache miss penalty, /, and the load fraction, f. However, this
metric is not as accurate in a modern system with a lock-up free cache where cache
misses do not necessarily stall the processor. Even a count of stall cycles may not
accurately measure the impact of caches, because the compiler may have inserted
prefetches to avoid stall cycles but the performance impact of prefetch-associated
operations may not be accounted by stall cycle counts. In selective load scheduled
lock-up free systems, a more sophisticated measure is required to estimate the
impact of caches. A useful measure should reflect the actual performance impact of
caches while being as simple to obtain as possible. Before introducing the effective
miss ratio measure, we introduce the data cache Cycles Per Operation (CPO) mea-
sure because the link between data cache CPO and performance is clearer.

Let E(C,,C) be the execution time of a program compiled for a system with a
cache, C' and executed on a system with a cache C . Let C_ represent a perfect
cache that never misses. The data cache Cycles Per Operatlon (CPO) of a program
with O useful operations is

21

DataCacheCPO = (E(C,C)-E(C_,C_))/0

1
((E(C,C) -E(C,,C)) + (E(C,,C)-E(C,C,)))/0 @

The first line of the above equation defines DataCacheCPO as the difference between
E(C, C) , the execution time of a program compiled for a finite size cache, C and exe-
cuted on the same cache, C, and E(C_, C_) , the execution time of the same program
when compiled for and executed on a perfect cache, C_ . Since a perfect cache never
misses, the schedule for the second case, E(C_, C_) , corresponds to an all-hit sched-
ule. The second line of the above equation shows that the DataCacheCPO can be sub-
divided into two components: E (C, C) —E(C_, C) the increase in execution time of a
program scheduled for a cache, C, when executed on a finite cache, C, as opposed to a
perfect cache and E(C_,C) —-E(C_,C_) the increase in execution time between
compiling for a finite cache, C, over a perfect cache, C_, when both schedules are
executed on a perfect cache, C. The first component contains stall cycles introduced
by executing on a finite cache, C, and the second component contains increases in
schedule length due to compiling for a finite cache, C. The effective data cache miss
ratio, EffMissRatio, is defined as

EffMissRatio = DataCacheCPO/ (f-1) (2)

where f, the load fraction, is the ratio of useful load operations to total useful opera-
tions in the program and [, the cache miss latency, is the miss penalty of missing in
cache, C. For a conventional system, where the processor stalls on each cache miss
and where all loads are scheduled with the cache hit latency, DataCacheCPO is the
product, f- m - | and EffMissRatio is just m, the conventional data cache miss ratio.

Selective load scheduling can improve DataCacheCPO and consequently EffMissRatio
by reducing the first component in equation (1) (stall cycles) but at the expense of
increasing the second component in (1) (schedule length). Thus, in contrast to all-hit
scheduling, profile-driven annotation and scheduling of loads as long latency has cer-
tain benefits and costs. The benefits can be characterized clearly in a statically-
scheduled latency-stalled machine. In such a machine, loads are scheduled either
with the hit latency or the miss latency and the processor stalls for miss-penalty
cycles if a short latency load misses. The processor does not stall on loads that are
annotated and scheduled as long latency. Therefore, if the cache miss penalty is [
cycles, the benefit of scheduling a load as a long latency is [cycles each dynamic
instance that the load would have otherwise missed the cache. In a dynamically-
scheduled machine, the benefits cannot be characterized as easily. The stall cycles
may be reduced but the reduction in stalls may range between zero and [cycles for
each missing load. Furthermore, the processor may not entirely stall but the sus-
tained issue rate may be reduced. In contrast to the benefits, the costs are even more
difficult to characterize, since they are a function of the actual schedule generated.
In a highly parallel application, there is likely to be sufficient flexibility to schedule a

22

load with the miss latency without lengthening the critical path and hence the
schedule length. Aspects of the compiler such as the size of scheduling regions and of
the architecture such as the number of registers available, influence the increase in
schedule length. The costs associated with scheduling a load with miss latency is a
function of the application, compiler, and architecture and is distributed over many
parts of the system, such as increase in schedule length, increased register pressure,
and cache effects.

Regardless of the difficulty in precisely identifying costs and benefits, it is important
to form an initial estimate of the likely benefit of cache profiling. Since the compiler
infrastructure required to selectively schedule loads using cache profile information
is not yet in place, we form an initial estimate of the potential usefulness of cache
profiling using cache simulation data as follows. Since the characterization of the
costs is not within the scope of this report, we lump all these costs in a single param-
eter which we call schedule length expansion, s. The value of s ranges from 0 through
I, the miss latency and is typically smaller for highly parallel programs, compilers
with large scheduling regions and architectures with a large number of registers.
This cost is incurred on each dynamic execution of a load. Since we do not have addi-
tional information about the cost associated with individual loads, we will assume
that all loads have a uniform cost of s cycles per dynamic execution. In practice, the
cost may be lower for loads in highly parallel regions of the program and higher in
other regions. Furthermore, we assume that every short latency load that misses the
cache stalls the processor for / cycles. This assumption is consistent with a latency-
stalled processor in which the handling of short latency misses is not overlapped.

In the following discussion, we will consider a code scheduled with hit latencies run-
ning on a perfect cache (which always hits) as the base case. Consider a load with a
miss ratio of m,. This load can either be predicted to hit or predicted to miss and in
each case scheduled accordingly. If the load is hit-scheduled, then a cost of I cycles is
incurred on each cache miss. The net increase in cycle length over the base case is
m;- 1. On the other hand, if the load is miss-scheduled, then a cost of s cycles is
incurred on each dynamic executionof the load. The net increase in cycle length is s
cycles. Therefore, it is beneficial to schedule a load with the miss latency only if
m;-1>s or equivalently m;,>s/l. In order to verify this statement, consider each of
the two extremes (i.e. s = 0 and s = 1). In the first case, the scheduling cost of a
long latency load is zero, as for instance inside a software pipelined loop with no reg-
ister pressure. In such cases, where there is sufficient parallelism, the above state-
ment says that all loads should be scheduled as long latency because s/! is zero. At
the opposite extreme, when s = [, the expression states that all loads should be
scheduled as hits. When the computation is dependence constrained and any
increase in latency for a load results in an equivalent increase in schedule length,
there is no benefit in miss-scheduling a load. This statement agrees with intuition at
the two extremes.

23

In order to characterize the net benefit of profile-driven load scheduling, we consider
the following schedules and executions of a program.

1. Schedule with all loads hit-scheduled running on a perfect cache. The execution
time of this schedule, E(C_, C_) , is the execution time of the program in the

absence of data cache effects.

2. Schedule with dynamically annotated loads, so that the long latency scheduling
cost of s cycles is incurred only on dynamic loads that actually miss. The
execution time of this program represents the best achievable for a non-zero
scheduling cost, s. This schedule represents an ideal usually unachievable
bound.

3. Schedule with all loads scheduled as hits. The execution time, E(C, C_),

represents current practice because most RISC compilers assume cache hit
latencies for all references.

4. Schedule with all loads miss-scheduled. This represents a feasible strategy on
software pipelinable loops.

5. Profile-driven scheduling of loads. All loads with a miss ratio greater than s/1
are scheduled as misses, rest as hits.

Now, we compare the execution time of the above schedules for a range of values of s.
The ratio s/! can range from 0 through [/, where 0 corresponds to highly parallel,
latency insensitive code and 1 to highly sequential, latency tolerant code. We will use
the difference between the CPO (Cycles Per Operation) of a schedule and the CPO of
the base Schedule 1 as a measure of data cache effects on execution time. As shown
in Figure 5, the CPO contribution due to data cache effects for the perfectly anno-
tated Schedule 2 is f- m - s, because a dynamic load reference is annotated only if it
misses and every such load reference incurs a scheduling cost of s. For Schedule 3
with all loads scheduled as hits, the CPO contribution is f- m - I, because every load
that misses incurs a cost of / cycles. For Schedule 4 with all loads scheduled as
misses, the CPO contribution is f- s, because every load incurs a cost of s cycles.
Finally, the CPO contribution of Schedule 5 depends on the fraction of loads sched-
uled with miss latency (having a miss ratio greater than s/!/) and the fraction of
loads scheduled with hit latency (those with a miss rate less than s//) that miss.
Representing these two fractions by p, and p, respectively, the CPO contribution
is f(p,, s +p,, 1) - For a given program scheduled using profile information from
one input data set and subsequently running on the same data set, the CPO contri-
bution of Schedule 5 will always be upper bounded by Schedules 3 and 4.

Figure 5 illustrates that at the two extremes, the current practice of either schedul-
ing all loads as cache hits or as cache misses achieves the ideal bound and thus no
additional improvement is available through profiling. If the cost of scheduling loads
with miss latency is zero, as may be the case when the program is highly parallel,

24

Schedule 4

fs
Schedule 3
fm.l

improvemgnf achievable through
pased scheduling

l
ow far profile-based
scheduling is from optimu’n

‘\ best achievable

CPI contribution
(due to data cache)

0 s/l : perfect cache 1

highly no memory hierarchy highly
paraliel effects sequential
(latency (latency
tolerant) sensitive)

Figure 5.CPI contribution due to data cache effects
(curves are illustrative and not based on actual data)

Schedules 2, 4, and 5 all schedule all loads with the miss latency. The CPO contribu-
tion due to data cache effects is zero because all loads are scheduled with miss laten-
cies. Note that even if the program is highly parallel, the cost associated with
scheduling loads as long latency may not be zero because of the resource require-
ments of long latency loads such as additional register pressure At the other
extreme, if the scheduling cost is [as may be the case when the program is highly
sequential, Schedules 2, 3, and 5 will all schedule all loads as hits.

The traditional measure of cache performance is the miss ratio, the fraction of
accesses that miss the cache and are satisfied from the next level of the memory hier-
archy. This measure is inadequate for a machine with a lockup-free cache, which
supports non-blocking requests. An optimized program may have a relatively large
cache miss ratio but by suitable prefetching the processor may hardly be stalled by

25

the cache. In this case, the cache miss ratio indicates a large performance degrada-
tion due to the cache, even though the cache has little overall performance impact.
However, if the scheduling of the prefetches was achieved at the expense of stall
cycles or additional operations, the overall performance is reduced relative to a per-
fect cache system where such scheduling was unnecessary. In the following experi-
mental results, we present the effective cache miss ratio which is the CPO
contribution scaled down by the product of the miss latency, /, and the fraction of
load references, f, as indicated in equation (2). Thus, for Schedule 3, the effective
miss ratiois (f-m-1) (f- 1) = m, the traditional miss ratio. But, for other schedules,
the effective miss ratio accounts for both the misses on hit-scheduled loads and the
costs of miss-scheduling loads.

In Figure 6, we show the effective miss ratio of four programs for the four schedules
described earlier. The profile driven behavior of matrix is very close to the ideal.
The programs dnasa and to a lesser extent tomcatv also have very good profile
behavior. But, eqn does not perform much better than the traditional all-miss sched-
uling or all-hit scheduling. In the absence of results from a selective load scheduler,
we cannot comment on the precise range of values of s. But, for matrix and eqn,
regardless of the value of s, the performance of the profile based curve is close to
ideal. Thus, for these two programs, profile based optimization is likely to reduce the
impact of data caches to the minimum regardless of the precise value of s.

5.7 Relationships between results

In Subsections 5.3 and 5.4, our emphasis was on presenting the caching behavior of
loads. Subsection 5.3 demonstrated that few loads account for most cache misses and
Subsection 5.4 showed that loads generally tend to have a high miss ratio or a miss
ratio close to zero. In Subsections 5.5 and 5.6, our emphasis was on the potential
costs and benefits associated with attempting to exploit these properties. In Subsec-
tion 5.5, we presented two measures: the prefetch ratio estimating the cost and the
residual miss ratio estimating the potential benefit. In Subsection 5.6, we combined
the costs and benefits into a single performance measure, the effective miss ratio.

In this subsection, we demonstrate that there is a strong interrelationship between
the properties presented in Subsection 5.4 and the performance estimates obtained
in Subsections 5.5 and 5.6. Figure 7 shows an illustrative plot of the miss ratio of last
instruction versus cumulative reference fraction. As in Subsection 5.4, we assume
that the instructions are sorted by decreasing miss ratio. For each subset of loads
taken from the head of this sorted list, we plot the miss ratio of the last load versus
the cumulative reference fraction of all loads in the subset. Unlike Subsection 5.4,
we assume that the axes of the plots are linear. The performance results in Subsec-
tion 5.5 can be derived from this plot as follows. For each threshold value, locate the
corresponding point on the y-axis. Draw a horizontal line to the curve and drop a ver-
tical line to the x-axis. The intercept on the x-axis is the prefetch ratio because all

26

mat dna

0.14 0.06
I .
0.12 / 0.05 I v
7 e
o o ' 7 o 1 /»*’
5 L/ 8004 v
E 7 i] .
@ 0.08 / £ .
g 4 § 0.03 =7
o 4 a A7
Booe # g5 Y
% / g] A7
3 7 2002 E—
i0 0.04 w4 carent |1 bl 17
/ . / — Curren S e Current
s Ideal 17
- = — Ideal
0.02 L | 0.01 g —
/ Profile 0 I [S R N (N Profile
0 01 02 03 04 05 06 07 08 09 1 0 o1 02 03 04 05 06 07 08 09 1
Schedule Expansion / Miss penalty (s/l) Schedule Expansion / Miss penaity (s/1)
tomcatv eqn
0.14 0.08
] 007 +——FF—F—FT— 1= = =
0.12 ! /)‘ %
250 S T B S o /|
/7 0.06 = /
o / e Y
= 0.1 [} 7
] / @ 7/
2 7/ 2 0.05
£ Vd £ V4
0.08 l £ 7
2 V4] /
§ / 80.04 7
7/ o] "4
g & v g] e
F0.06 # °] /
o Ve g 0.03 "4
.E 3 , Y g /
Vs
i 0.04 S ,/ Current & rd Current
; 0.02 7 ——— 1deal
// o —— ideal 4 N
X A |] e Profile
0.02 :'. "/ Profile 0.01 b | //
4 /
/ 7 V4
8 2L A e o 1 o o o Toa 08 08 05 os o i
0 01 02 03 04 05 06 07 08 09 1 Schedule expansion / Miss penalty (s/)

Schedule expansion / Miss penalty (s/l)

Figure 6.Effective miss ratio vs. scheduling cost

loads to the left of the intercept point are prefetched. All loads to the right are not
prefetched and any misses from these loads contribute to the residual miss ratio.
Therefore, the residual miss ratio is the area under the curve beyond the x-axis
intercept. Thus, the performance results in Subsection 5.5 which plot prefetch ratio
and residual miss ratio can be derived directly from the plots in Subsection 5.4. Sim-

27

ilarly, the performance results in Subsection 5.6 can be derived from the results in
Subsection 5.4 as follows. In this case, use s/ to obtain the x-axis intercept as before.
Since all loads to the left are prefetched at a cost of s and since the loads to the right
incur cache misses, the effective miss ratio is obtained by summing the area denoted
by residual miss ratio and the rectangular region denoted by Prefetch Ratio * s/l in
the figure.

[y

=
S
3t
5
threshold_i+ ———————

sl g |
% Prefetch ratio * (s/]) |
o
.5 I
g | Residu
z miss ratio
p>

0

=)]

% Cumulative Reference fraction 1
S

[

Figure 7.Derivation of performance curves from property curve

This relationship shows that the potential performance benefits of cache profiling
stem from the dichotomous caching behavior of loads, i.e., some loads have high miss
ratios and others very low miss ratio. For instance, if all loads had the same miss
ratio, the curve in Figure 7 would be a straight horizontal line. If the threshold is
less than the global miss ratio, no loads are prefetched; otherwise, all loads are
prefetched. In one case, the labeling of loads corresponds to all-hit scheduling; in the
other case, to all-miss scheduling. Thus, profiling offers no advantage when all loads
behave identically.

28

6 Effect of different data sets

Optimizations based on profile information from one input set may lead to poor per-
formance for some other input sets. In order to evaluate the viability of cache profil-
ing, we investigate the effect of using distinct data sets for profiling and executing
the program. In the previous section, we presented several performance measures
when the same program is used for profiling as for running. In this section, we
present similar performance measures using various input sets for profiling and a
single input set for rerunning the program. We refer to the various input data sets
used for profiling as the training data set (TDS) and the input set used for re-execut-
ing the program as the running data set (RDS).

6.1 Methodology

An earlier study by Yeh and Patt on branch profiling collected several data sets for
most of the SPEC 89 benchmarks. Our study uses a subset of this collection of data
sets. Table 5 gives a list of SPEC benchmarks and their datasets that we used. The
other SPEC programs such as tomcatv, nasa and matrix do not read a dataset.
Each of the SPEC89 programs was simulated on each of the available data sets for
that benchmark. Recall that the performance figures presented in the earlier section
firstly order all the loads (e.g. decreasing cache miss ratio) and then determine per-
formance statistics. In contrast to the previous section, we use the cache simulation
results on one data set (training data set) to order loads and the results on another
data set (running data set) for determining performance statistics. Thus, the number
of cache simulation runs required for the results presented here on a benchmark
with n data sets is only n not n”. Even though we obtained results on all the bench-
marks listed in Table 5, we only present the results for gcc, 1i, espresso, and
spice. Since we do not present results on the benchmarks doduc and egntott in
this section, we do not identify the datasets used for running and training. For the
four benchmarks for which we present results, Table 5 lists the keyword RDS fol-
lowed by a parenthesized list of data set(s) that we used as the running data set and
similarly, lists the keyword TDS followed by a parenthesized list of data set(s) that
we used as the training data set. For gcc, we used two training data sets identified
by TDS 1 and TDS 2 in Table 5 and in subsequent figures. The annotation 'ref’ asso-
ciated with a data set indicates that this data set is the reference data set used for
SPEC benchmarking. The simulation environment is otherwise identical to that
described in Section 5.1. The caches were simulated for 100 million references.

6.2 Distribution of references and misses

The analysis and results presented in this subsection are similar to those in
Section 5.3. The graphs in Figure 8 plot the fraction of dynamic references made by a
certain number of load instructions when a benchmark is executed on the running
data set. The x-axis is on a log scale in order to magnify the left hand region showing

29

Table 5. Datasets used for benchmarks

Programs Datasets
spice RDS (greybiglrefl), TDS (grey short)
doduc tiny, small, large[ref]
espresso RDS (bca, esp [ref], ti), TDS (cps, tial)
eqntott ex0, ref
li RDS (div2, li-input(ref], sort),
TDS (hanoi, power)
gce RDS (cexp, dbxout, emit-rtl),
TDS 1(explow, gcc, genrecog),
TDS 2(jump, recog, toplev)

the behavior of instructions with high reference coverage. For gcc, approximately
3000 out of 25395 loads account for 90% of the dynamic references. In addition, for
each training data set, the load instructions are sorted by their individual miss
ratios on that training set. Then, the cumulative miss fraction in the running data
set accounted by a certain number of load instructions is plotted, with one curve for
each of the training data sets. As the graph for gcc and 1i indicates, a certain num-
ber of loads account for a much larger fraction of the misses than references, even
when the training data set is different from the running data set. However, the
training data sets are not good predictors of which loads have large miss fractions, in
the other two programs. In spice, just four loads account for half the misses and
nine instructions account for 90% of the misses. However, the twelve loads with the
highest miss fractions in the training data set account for hardly any misses in the
running data set. In the case of spice, this behavior is explained by the fact that the
training data set exercises a considerably different part of the program than the run-
ning data set.

6.3 Distribution of dynamic trace annotations

Figure 9 is similar to Figure 3 in Section 5.4. For each training data set, we sort the
instructions by decreasing miss ratio on the training data set. We divide the list into
two segments, the segment containing the head of the list having high miss ratio and
the tail segment having low miss ratios. We plot the average miss ratio of the head
segment versus the reference fraction of this segment on the running data set. Simi-
larly we plot the hit ratio of the tail segment versus the reference fraction of the head
segment. Note that in contrast to Section 5.4 where we plotted the miss ratio of the
last instruction, in this subsection we plot the average miss ratio. If we plot the miss
ratio of the last instruction when profiling and running on different data sets, the plot
will tend to be highly irregular and non-monotonic. The average miss ratio plot is

30

gcc li

! = = Reference fraction /?' ,’ ! ——t -
|| = Miss fraction - Same TDS r.r' ',' 09 Pt ',’
- - Miss fraction - Different TDS 1 / K / S
------- Miss fraction - Different TDS 2 /v . 08 / -+
q L4 .
" . v

o
©
1

o
i

o
N
b -~
.

° o
@» ~
'w

.l

4
o
r

g
©n

o
w
3
-~
-~
-~

Reference fraction / Miss fraction
o o
S «n
S
...
Reference fraction / Miss fraction
o
-y
=
~ -
.

0.3 v
. 4
4 4 ’
,.’ . 4
0.2 f -+ 0.2 2
R L’ ‘ = = Reference fraction
7 0.1 .t — Miss fraction - Same TDS N
. .
¢ — Miss fraction - Different TDS
0 T
100 1000 10000 1 10 100 1000
Number of instructions Number of instructions
espresso spice
1 —rr 1 —
et / — .- -F "
. / - !
09 : ! 09 .

08 r . +
/ ' , / 1 1
‘ .
. . 1

§o07 5 7 5§07 - |
Q Q

g / " - - g / ’

806 — 1 806 .
S i IE

~ ~ *

8os - Eos : L
i/ ; LS E |
8 0.4 v - 804 . L
g / i 5 . |
8 . 2 . /
203 L4 2o3 .

(=]
XY
*
Y
(€Y
-
.
o
N
-~
-
~
~
~

o7 = = Reference fraction /, ‘ II - « Refaerence fraction
o4 .
0.1 —— Miss fraction - Same TDS 0.1 1 — Miss fraction - Same TDS [
— . Miss fraction - Different TDS J — - Miss fraction - Different TDS
c T T o T U
1 10 100 1000 10000 1 10 100 1000 10000
Number of instructions Number of instructions

Figure 8.Cumulative reference and miss fraction

much smoother. In the ideal case, where some loads identified through profiling on
the training data set always misses the cache in the running data set and other loads
always hit the cache, the two curves are almost step functions. The average miss ratio
curve starts at one, and then exponentially decays to the global miss ratio. The aver-
age hit ratio starts at one on the right-side and then decays to the global hit ratio on
the left-axis. The plot for gcc and 1i exhibits near ideal behavior. In the case of

31

espresso and especially spice, the cumulative miss ratio curve is quite different
when the training is performed on a different data set.

gce li
1 1
09 09
08 08
0.7 0.7
2 °
® s
2 0.6 2 0.6
s \; S
% 0.5 E 0.5
g e Miss - Same TDS ? \ —— Miss - Same TDS
S04 - Ht-Sametos | L S, --. Ht-SameTDs | |
§ — - Miss - Difterent TDS 1 § \ — - Miss - Different TDS
03 T c Hi-DifferentTDS 1 L 0.3 — - Hit- Different TDS
—— Miss - Different TDS 2 \
0.2 —— Hit-Different TDS2 | 0.2 \
o \ " \\
0 [}
0.01 0.1 1 0.01 0.1 1
Reference ratio Reference ratio
€spresso spice
1 v 1 =
-—-=a _\- - / Y2 e \
Nzt IR R J =’
09 - N 0.9 N\ > e

&
e
A
e
i
'
B
N
[
[}
[

-
”~
/
o
~
N\
AN
/
/

o
u
-1
L
(=]
o
~
~
P
o

(=] o
] -
1
b
o
N
~
~
“
~,
7

Cumulative hit / miss ratio
=3 o
w >
1
e
”~
-~
7 /
Cumulative hit / miss ratio
o (=]
g < < <
!
|
{
|
~
~
4

o
w

3T = Miss - Same TDS * N - — Miss - Same TDS
- = . Hit- Same TDS N \ - = . Hit-Same TDS \

0.24+— 0.2
~ - Miss - Ditferent TDS S /\ — - Miss - Different TDS N
0.43—| — -- Hit-Ditferent TDS 01 — - Hit - Different TDS
0 0 T e
0.01 0.1 1 0.01 0.1 1
Reference ratio Reference ratio

Figure 9.Cumulative hit/miss ratios for multiple data sets

6.4 Performance comparisons after static annotation

In this subsection, we present results similar to Section 5.5, but on benchmarks with

32

multiple data sets. In Figure 10, we plot the residual miss ratio and the prefetch ratio
versus threshold for the four benchmark programs. In gcc, the residual miss ratio de-
creases gradually as the threshold is decreased, with an accompanying increase in the
prefetch ratio. In 11, there is steep decrease in the residual miss ratio at a threshold
of 0.4. In both cases, the behavior when the profiling is done with a different training
data set is not significantly worse. In contrast, for espresso and spice, the residual
miss ratio curve when profiling with a different data set is significantly higher than
when profiling with the same data set.

6.5 Modeling net benefit of cache profiling.

In this subsection, we present results similar to Section 5.6. As before, we plot the ef-
fective miss ratio when ideal dynamic annotations are used (Ideal) and when current
all-hit or all-miss scheduling is employed (Current). For each training data set, the
miss ratio of each instruction is determined through cache simulation. Depending on
whether the miss ratio of an instruction is greater than s/I, each load is tagged as
scheduled with hit or miss latency. We plot the effective miss ratio using cache profil-
ing for the full range of values of s/1, presenting one curve for each training data set.
For gcc and 11i, the performance when profiling is done with a different data set ap-
proaches the performance achieved through the same data set. Thus, gcc and 11 are
relatively insensitive to the two training data sets that we used with respect to the
performance benefit of cache profiling. In the case of the other two programs,
espresso and spice, the performance when a different training data set is used is
significantly worse than when the same data set is used both for training and run-
ning. Under self-profiling, the effective miss ratio is guaranteed to never exceed the
Current curve, but there are no such bounds when a different data set is used for
training. In both espresso and spice, the effective miss rate under different TDS pro-

filing is more than all-miss scheduling when s// is small.
6.6 Correlation between miss ratios on different data sets

In the previous subsection, we evaluated the potential benefit of profiling. In this
subsection, we investigate some fundamental properties that determine whether a
program’s cache behavior is sensitive to a range of data sets. Using the results of
cache profiling on one data set to optimize a program for other data sets will be effec-
tive only if the miss ratio of loads is similar on a range of data sets. The miss ratios
on different data sets must be well-correlated. Additionally, loads that account for a
large miss fraction are more important. In the graphs in Figure 11, we represent
each load with a miss fraction of at least 0.1% on the running data set with a circle
located at the coordinates formed by the miss rate on the running and training data
sets respectively. If the cache behavior of loads in the training and running data sets
were identical, the plot would contain a series of circles located on a diagonal across
the plot. The size of the circle represents the importance of a particular load and we
consider the miss fraction of a load as the measure of its importance. Again, the cir-

33

gcc

- Prefetch ratio - Same TDS
- - Prefetch ratio - Different TDS 1

------- Prefetch ratio - Different TDS 2

- -~ R@s. miss ratio - Same TDS

----- Res. miss ratio - Different TDS 1

----------------- Res. miss ratio - Different TDS 2

0.35 -0.025
] — P
0.3 4 .c [
; A [0.02
0.25- o S
-]] A, s o
€ 02 Lo r0.015 g
= y 3 ! E
2] A i ®
015 vadb L0.01 3
a 4 [2
0.1 A ! (v d
] L 0.005
0.05 7 = [
0 Frrrbrrrrt e P e O
0 0.10203040506070809 1
Threshold
€Spresso
- Prefetch ratio - Same TDS
- - Prefetch ratio - Different TDS
- — = Res. miss ratio - Same TDS
----------------- Res. miss ratio - Different TDS
0.6 0.12
] i
0.5 0.1

Prefetch ratio
=)
w

I

]

!
[
—

]
o
o
(o))
esidual miss ratio

o©
=)
®

H 17 | ;
0.2 7 0.04
::L / E
0.1 ~— -0.02
] _,___\..-—-—' -
oY 7. R il A A B S I B,)
0 0.10.20.30.4 0506070809 1

Threshold

li

— Prefetch ratio - Same TDS
- - Prefetch ratio - Different TDS

w— = == Res. miss ratio - Same TDS

----------------- Res. miss ratio - Different TDS

0.1 . ~0.018
0.094 : E0.016
0.08 H 0,014

] i : Ie)
o 2973 iy L0012
% 0.06 : ; @
- E ! [0.01 @
5 0.05 4 ! £
o R ; -0.008 §
g 0.04 5 - [°
] - [72]
0.03 T : 0.006 &’
]] -0.004
0.025—— \ -0.00
0.01 _% = L -0.002
0 T rrrr e b - O
0 0.1020.3040506070809 1
Threshold
spice
—= Prefetch ratio - Same TDS
- - Prefetch ratio - Different TDS
- — = Res. miss ratio - Same TDS
----------------- Res. miss ratio - Different TDS
0.6 -0.18
] £ 0.16
0.54—4— V&S
] / Fo0.14
] Y 9
0.4 : / 012 @
o] e e o N [
g 1 ! Fo1 8
£ 03—t == - E
8 1 r= -0.08 S
g i] . g
& 0.2+ -0.06 3
1, | s o
1 \ - L :0.04
0.1 ~1 1
P [0.02
P OV] il i N N NN N ..j..,.:o
0 0102030405060.70809 1
Threshold

Figure 10.Residual miss ratio and prefetch ratio versus threshold

34

gce li

0.025 0.018
] 6 P > 0.016 /— /"J
0.02 il ¥ /]
: A 7 0.014 va ya
Y ; 4
£ 1 & 7] £ / 4
2 4 20012 £
» 4 v 4 @ 4 4
a2 4 Y 2 / Vs
E 0.015 E K /
@ 7] y
5 /] £ 001
] 7 5] /7
8 Vs 8 f '/
2 f /7 § 0.008 / o
©
g 001 7 2 !/ »
g / g 0.006 r e
= 4 Current E ¢ 4 Current
/ ——— Ideal 0.004 -} ¥ -——— ideal
0.005 » B ¥ 4
71] e Profile - Same TDS [V< E N [[Same TDS
4 o002} 7L
& — « = Profile - Different TDS 1 . / 4 —— - —= Different TDS
7/
7/ Profile - Different TDS 2 7
0 Prrrrt IBRARES LASRBUAREDAARSA RREIUN 0 -ferrrrtrs T llrlj‘!ilﬁ
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Schedule expansion / Miss penality (s/1) Schedule expansion / Miss penalty (s/1)
espresso spice
0.12 ;l 0.18
] —]]
] = | | .4 7 "1 1 | [Je1
- LV 0.16] [R
0.1 1 1 j I _____________ /|
{ Ry // 0.14 = 24
2] R 4 2 L/ """""" /7
€ 0.08 P -4 €012 :
2 J i 2 r /
€] 7 € ’ /
o / / 2 04 /) y
5 1 V4 S E 7/
8006] 8 [L’
8 / 8 d G
3 N 4 3 0081 /'
o 4' @ . i
> V / 2] i /
‘g 0.04 17 ‘g‘ 0.06 ; - "
& 4 /4' e CuirTONt 5 | / // Current
Vs —— ideal 0.04 S Ve ——— Ideal
0.02 T 7 4 Same TDS / | |] e Same TDS
1 V4 0.02 i ‘/
Y — - = Different TDS . i P — - — Different TDS
i, 4
% I ‘ |
0 e ey Ty LA R AR 0I" LML B LML MRLEEEE] ML
0 01 02 03 04 05 06 07 08 09 1 0 01t 02 03 04 05 06 07 08 09 1
Schedule expansion / Miss penalty (s/1) Schedule expansion / Miss penalty (s/l)

Figure 11.Effective miss ratio for multiple data sets

cles are clustered along the diagonal for gcc and 1i, but widely distributed for the
other two programs. Also, gcc being a large program has many more loads that have
a miss fraction of 0.1%, unlike the other programs that appear to be dominated by a

few missing loads.

35

gcc li

1 I I I 0.8
‘ Data set 2] | |
09 o7l [hd
Q Data set 3 ..' -] 0 0.5
0.8 — ° ”)
() Miss fraction
]] 0.5 1 . ° 0.6 ‘ |
0.7
3 1 . o
Soe ° p N Nos
iR
205 I '504
° L . lecgte. g
o) E
Fos ARl - 8,
3 203
=903 . o
0.2
0.2
01 0.1 -
» @
03 04 05 06 07 08 09 1 0 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8
Miss ratio - Data set 1 Miss ratio - Data set 1
espresso spice
0.8 0.35
| ® 7
o 1{ @ 0} @
0.6 : f AAN 1 : !
¥ 31 |o o204 N 0.25- 0 05
)] Q
n 05 7]]
[I g]
g 1 5 0.2
v 0.4]]
] (o}]
2] £0.15
= 0.3 =]
=] 2 0.1
0.2 ¢
] .
0.1 ®
] o, ﬂ q
o wprrrrprerebren S SN N) S

0 010203040506 07 0.8 B .6 07 08 09 1
Miss ratio - Data set 1 Miss ratio - Data set 1

Figure 12.Correlation between miss ratios on different data sets

7 Conclusion and Future Work

Cache control instruction are being implemented in most future systems. However,
there has been little attempt at quantifying the gains that these instructions can pro-
vide for irregular applications. In this report, we motivate cache control instructions
using a blocked matrix multiply example. A system with cache-control instructions is

36

superior to other common architectural alternatives for this example program.

We characterize the misses for several SPEC benchmark programs. For typical first-
level cache sizes, the miss ratio is significant when combined with the large and
increasing miss penalty, motivating the need for better schemes to reduce cache miss
effects on overal performance. We present annotation statistics for the dynamic
trace. We demonstrate that hit-instructions accounting for a large fraction of total
references almost never miss and that the miss-instructions have a hit ratio less
than half the global hit ratio. Under a thresholding scheme that partitions loads into
short and long latency, the residual miss ratio due to non-prefetched references can
be kept low while not greatly increasing the fraction of references prefetches.

In the future, we plan to integrate the profile-based labeling scheme with a compiler
that can use latency-specification to perform better instruction scheduling. A range
of scheduling heuristics that employ cache profiling information will be imple-
mented. Our current scheduling framework requires the specification of latencies
prior to scheduling. Thus, we initially plan to use a fixed miss threshold to label
loads prior to scheduling. In the next phase, the choice of threshold for labeling loads
in a scheduling region will be based on an estimate of available parallelism and
scheduling flexibility in that region. In the final framework, the labeling decision
will be made at the time that each operation is chosen for scheduling. We also plan to
account for machine features such as the maximum number of outstanding misses
and register constraints.

We plan to improve cache profiling by using some ideas that have been exploited
recently in branch profiling. For instance, we plan to implement a path-sensitive
cache profiler that collects profiling information for each load in several bins, each
bin representing a set of control flow paths. Such profiling is likely to be more accu-
rate and will suggest unrolling or peeling where appropriate. Path-sensitive profil-
ing has improved branch profiling by up to a factor of two and we expect significant
improvements in cache profiling. We also plan to identify heuristics that can be
employed by a compiler to identify missing references at the source-level. Profiling
can also be used for gathering other information regarding the expected behavior of
the memory hierarchy. In memory dependence profiling, we determine the dynamic
dependencies between stores and later loads. This information can be used by a com-
piler to move loads ahead of stores, in a system that supports a mechanism to detect
and handle cases where the reordered loads aliased into the same location as an ear-
lier store. Memory dependence profiling also provides an useful upper bound on the
benefit obtainable using static memory disambiguation algorithms. Reuse profiling
determines whether a location accessed by a load/store is subsequently accessed
before being replaced from the cache. Cache replacement can be managed using the
target cache specifiers described in Section 2 and such reuse profiling information
can be used to reduce traffic between levels of the memory hierarchy. Our initial

37

results on using profiling to manage cache contents show a reduction in traffic of less
than 10% [23].

The hit-miss behavior of loads is often sensitive to the input data set. Techniques to
reduce the sensitivity of cache profiling information to input data sets are required.
A straightforward approach is to average the hit-miss statistics over several data
sets. In our work, we found that training using two or three input files yielded signif-
icantly better results than training with one data set. Also, techniques to weight a
load annotation based on the frequency of execution of a load on a particular bench-
mark may be useful. Currently, a load may be miss-scheduled even if it was executed
only once when running on a particular training data set. Further experimentation
is necessary to determine the sensitivity of the partitioning of loads into short and
long latency to changes in cache configuration. Finally, techniques to reduce the cost
of cache profiling are also being investigated.

Acknowledgments

The original idea of cache profiling emerged in discussions between the authors and
Michael Schlansker and Rajiv Gupta. Rabin Sugumar implemented the initial set of
tools to gather and analyze miss ratios of individual instructions. Jai Menon and
Lapyip Tsang conducted the cache simulation experiments and gathered the raw
performance data.

References
(1] Alpha Architecture Handbook — Preliminary Edition. Digital Equipment Corporation,
Maynard, MA, 1992.

[2] V. Kathail, M. S. Schlansker, and B. R. Rau. “HPL PlayDoh architecture specification:
Version 1.0.” Technical Report HPL-93-80, Hewlett-Packard Laboratories, Feb. 1994.

[8] S.G.Abraham, R. A. Sugumar, D. Windheiser, B. R. Rau, and R. Gupta. “Predictability
of load/store instruction latencies.” Proc. 26th Ann. Int. Symp. Microarchitecture, pages
139-152, 1993.

[4] D. Callahan and A. Porterfield. “Data cache performance of supercomputer applica-
tions.” In Supercomputing ’90, pages 564-572, 1990.

[5] D. Callahan, K. Kennedy, and A. Porterfield. “Software prefetching.” In Proc. of ASP-
LOS IV, pages 40-52, 1991.

[6] D.M. McNiven. Reduction in Main Memory Traffic through the Efficient use of Local
Memory. Ph.D. thesis, University of Illinois, 1988.

[71 A. C. Klaiber and H. M. Levy. “Architecture for software controlled data prefetching.”
In Proc. of 18th Intl. Symp. on Computer Architecture, pages 43-63, 1991.

(8] T.C.Mowry, M. S. Lam, and A. Gupta. “Design and evaluation of a compiler algorithm
for prefetching.” In Proc. of ASPLOS V, pages 62-73, 1992.

38

(9

[10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

T.-F. Chen and J.-L. Baer. “Reducing memory latency via non-blocking and prefetching
caches.” In Proc. of ASPLOS V, pages 51-61, 1992.

W. Y. Chen, S. A. Mahlke, and W. Hwu. “Tolerating first level memory access latency
in high-performance systems.” In Intl. Conf. on Parallel Processing, pages 1-36 — 143,
1992,

dJ. A. Fisher. “Trace scheduling: A technique for global microcode compaction.” IEEE
Trans. on Computers, C-30(7):478-490, July 1981.

W.W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann,
R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery.
“The superblock: An effective technique for flaw and superscalar compilation.” J. of Su-
percomputing, 7(1/2):229-248, 1993.

J. A. Fisher and S. M. Freudenberger. “Predicting conditional branch directions from
previous runs of a program.” Proc. of ASPLOS, pages 85-94, October 1992.

A. Krall. “Improving semi-static branch prediction by code replication.” Proc. ACM SIG-
PLAN Conf. Prog. Lang. Des.& Impl., pages 97-106, 1994.

S. McFarling. “Program optimization for instruction caches.” In Proc. of ASPLOS III,
1989.

W. W. Hwu and P. P. Chang. “Achieving high instruction cache performance with an op-
timizing compiler.” In Proc. of 16th Intl. Symp. on Computer Architecture, pages 242—
251, 1989.

F. Chow and J. Hennessy. “Register allocation by priority-based coloring.” In Proc. of
the 1984 Symp. on Compiler Construction, pages 222—-232, 1984.

P. Chang, S. Mahlke, W. Chen, and W. Hwu. “Profile-guided automatic inline expan-
sion for C programs.” Software-Practice and Experience, 22(5).349—-369, 1992.

M. Martonosi, A. Gupta, and T. Anderson. “Effectiveness of trace sampling for perfor-
mance debugging tools.” In Proc. ACM SIGMETRICS Conf., pages 248259, 1993.

G. R. Beck, D. W. L. Yen, and T. L. Anderson. “The Cydra 5 mini-supercomputer: archi-
tecture and implementation.” The Journal of Supercomputing, 7(1/2):143-180, 1992.

B.R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle. “The Cydra 5 departmental super-
computer: Design philosophies, decisions and trade-offs.” IEEE Computer, 22(1):12-35,
1989.

R. P. Colwell, R. P. Nix, J. J. O’Donnell, D. B. Papworth, and P. K. Rodman. “A VLIW
architecture for a trace scheduling compiler.” IEEE Transactions on Computers, C-
37(8):967-979, 1988.

R. A. Sugumar and S. G. Abraham. “Multi-configuration simulation algorithms for the
evaluation of computer architecture designs.” Technical Report CSE-TR-173-93, CSE
Division, University of Michigan, 1993.

R. L. Mattson, J. Gecsei, D. R. Slutz, and 1. L. Traiger. “Evaluation techniques for stor-
age hierarchies.” IBM Systems Journal, 9(2):78-117, 1970.

39

[25] D. R. Kerns and S. J. Eggers. “Balanced scheduling: Instruction scheduling when mem-
ory latency is uncertain.” In Proc. of the SIGPLAN °93 Conf. on Prog. Lang. Design and
Implementation, pages 278-289, 1993.

40

