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Abstract. Discrete-event simulation is the most common method of performance analysis

because it allows the modeling of arbitrarily complex systems with a minimum of assumptions.

Unfortunately, programming errors, improper statistical methods, and runs that are too short

can yield inaccurate results. The numerical analysis of Markovian models can supplement

discrete-event simulation, but only if the system can be simpli�ed to reduce its state space

to a manageable level. The approximations introduced through such simpli�cation can also

cause a signi�cant amount of error. Recent advances in stochastic Petri nets and Markov

chain analysis, and the availability of fast workstations with large amounts of memory, allow

the numerical solution of much larger and more complex Markov models. In this report we

discuss the analysis of a complex packet switch through both discrete-event simulation and

�xed-point approximate numerical solution of Markovian stochastic Petri net models. We

compare the results obtained from them and identify the error in the various approximations.

We conclude that stochastic Petri net analysis can be a useful technique even for complex

systems.
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1 Introduction

As computing systems become increasingly complex and concurrent, performance anal-
ysis, especially in the architectural design phase, becomes more important. Many di�er-
ent techniques are used in performance analysis. Back-of-the-envelope calculations and
simple numerical approximations can often generate bounds on performance. Queueing
theory and Markovian analysis can provide insight into the steady-state performance
of the system. Discrete-event simulation can provide a view of the system behavior at
any level of detail, provided enough modeling manpower is available.

Each of these techniques involves di�erent types of approximations, and building a
model for each of these techniques requires di�erent types of skills. Back-of-the-envelope
calculations require the intuitive identi�cation of the major bottlenecks | usually this
technique provides only an upper bound on the possible performance. Queueing theory
and Markovian analysis require extensive knowledge of probability theory and skill at
approximating discrete-state systems with simpli�ed mathematical models. Such ap-
proximations are error-prone and di�cult to check. Usually the approximations must
be signi�cant in order to make the state-space manageable; for example, they may re-
quire to ignore speci�c types of interactions, which can signi�cantly compromise the
results. Discrete-event simulation requires programming skills and signi�cant amounts
of computer power. Because programming is still mostly an empirical art, subtle im-
plementation errors in the simulation can yield incorrect performance results. Such
problems might go undetected because the simulation `works', just like an incorrect
implementation in a sort routine can cause it to correctly sort the data, just not as
fast as it should. In addition, using discrete-event simulations, especially for reactive
systems, requires waiting for steady state and then collecting enough sample points to
obtain statistically signi�cant results.

Because the set of skills for each technique is so di�erent, many practitioners limit
themselves to only one technique. Yet, when carrying on the performance evaluation of
a system in an industrial setting, di�erent phases of the design require di�erent types
of analysis. Initially, back-of-the-envelope calculations can give some initial guidance
in early design decisions. When a basic overall architecture is selected, analytic or
Markovian models can provide more accurate results. As the design proceeds and more
system parameters become known, more elaborate and accurate simulation models are
needed to evaluate further alternatives.

As a result, the authors had to use all of the above performance analysis techniques
in their modeling e�orts. This paper shows how, with stochastic Petri nets (SPNs),
the symmetry of the system and its behavior can be exploited to construct a tractable
approximate numerical model. In the paper, we point out the approximations used in
the SPN model and we discuss how much each approximation a�ected our �nal results.

To validate the correctness of the approach we used, and in order to show that by
folding the detailed Fibre Channel SPN model into an approximate SPN model, the
essential system behaviour remained the same, the SPN model results were compared
against the simulation model results.

The remainder of the paper presents our results in more detail. Section 3 describes the
structure and basic features of Fibre Channel switch. Section4 provides an overview of
our simulation model. Sections 5 and 6 present an approximate SPN model and the
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results obtained from its study, respectively. Finally, Section 7 contain some possible
directions for future work in this area.

A brief introduction to the basic terminology is given in the Section 2. For a complete
treatment of the class of SPNs used in this paper, see [7].

2 Basic SPN Notions and Denotations

A Petri net (PN) [15, 16] is a directed bipartite graph with two sets of nodes, places and
transitions. Input arcs connect a place to a transition, output arcs connect a transition
to a place. A multiplicity (positive integer) may label an arc. The input (output) bag
for a transition is the bag [15] constituted by the input (output) arcs, considered with
their multiplicity. Each place may contain any number of tokens. A marking is a bag
representing the con�guration of tokens in the places of the PN, it is the \state" of the
PN.

A transition is enabled if its input bag is a subbag of the (current) marking. When
a transition is enabled, it can �re, leading the PN into a di�erent marking, obtained
by subtracting its input bag from and adding its output bag to the current marking.
A marking is reachable if it is obtained by a sequence of �rings starting in the initial
marking. The reachability set (graph) is the set (graph) of all the reachable markings
(connected by arcs representing the transition �rings). If inhibitor arcs are used, the
enabling rules changes. A transition t is disbaled if there is an inhibitor arc with
multiplicity k from place p to t, and p contains k or more tokens.

A \generalized stochastic Petri net" (GSPN) [1] is a PN where each transition has
an associated �ring time, which can be zero (immediate transition) or exponentially
distributed with a parameter dependent on the marking (timed transition). If several
con
icting immediate transitions are enabled in a marking, a �ring probability is spec-
i�ed for each of them. A �ring probability for timed transitions does not need to be
speci�ed, since we assume a race model: the �rst �ring time to elapse determines which
transition �res �rst; contemporary elapsing of �ring times has probability zero.

If at least one immediate transition is enabled, the marking is said to be vanishing,
otherwise the marking is said to be tangible. Since the �ring time of an immediate
transition is zero, a GSPN does not remain in a particular vanishing marking for any
length of time. In other words, the probability of �nding the GSPN in a vanishing
marking is zero. A GSPN describes an underlying stochastic process, reducible to a
continuous-time Markov chain (CTMC) by eliminating the vanishing markings [1, 4, 7].

The GSPN model can be extended by allowing phase-type distribution [13] instead of
just simple exponential distributions. The underlying process is still a CTMC, but its
states now describe both the marking of the PN and the phase for the �ring times of the
transitions, hence the size of the state space is larger than that for a similar GSPN. This
is a problem, since the size of the state space is already the main obstacle to a numerical
analysis. Other distributions can also be used for the �ring times (e.g., constants). The
term \SPN" is often used as a generic indicator that the timing behavior of the net
is probabilistic, hence it is, surprisingly, more general than the term \GSPN". This is
due to historical reasons, since the �rst de�nition of SPNs allowed only exponentially
distributed, but not zero, �ring times.
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Figure 1: System structure.

Examples of output measures obtained from the analysis of a SPN are the expected
number (or probability distribution) of tokens in a given place or the throughput of
a given transition, in steady-state or at a speci�c point in time. They correspond
to reward functions on the markings or on the transitions among markings and they
are easily computed after solving for the steady-state or transient probability of each
marking [7].

3 System

We consider a switch with N ports, numbered from 0 to N�1 (see Figure 1). Each port
has an associated pool of B bu�ers to store incoming messages. When a message arrives
at a port, it starts being read into a bu�er as soon as one is available. A switch router
iteratively polls each port for new messages in a cyclical fashion. The router polls port
i to check whether it contains messages to be routed. If so, the router reads the header
information for the �rst of them and inserts it into a scheduler table, organized as N
FIFO queues, one for each possible message destination (we assume that a message
arriving from port p chooses any of the other N � 1 ports with uniform probability).
Then, it polls port (i+ 1) mod N , and so on. If there is no message to be routed, the
amount of time spent by the router at a port is negligible. Note that the router can start
routing a message even if the message has not been completely read into the bu�er. A
switch scheduler uses the scheduler table to control the use of a N �N crossbar switch.
The constraints that the scheduler must observe are:

� The crossbar switch can transfer at most one message from each source port at
any given time.

� The crossbar switch can transfer at most one message to each destination port at
any given time.
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Destination

0 1 2 3

First 1 2 1 0

Second 2 3 2

Third 1 1

. . .

Table 1: A possible scheduler table con�guration.

� A message can be transferred to its destination port only when it is at the top of
the queue for that destination.

For example, if N = 4 and the content of the scheduler table is as in Table 1, the
crossbar could be transferring the messages f1 7! 0; 2 7! 1; 0 7! 3g or the messages
f2 7! 1; 1 7! 2; 0 7! 3g. Note that, in the �rst case, the transfer 3 7! 2 is not possi-
ble, even if the source 3 and the destination 2 are idle, because the message from source
3 is not at the top of the queue for destination 2. In other words, source 1 blocks source
3.

As a case study, we considered a Fibre Channel switch with 16 ports and port bandwidth
of 26.6 Mbytes/sec. Each port has �fteen bu�ers, B = 15. The value of the bandwidth
a�ects the rate at which data moves through each of the components of the switch.
Hence, the time to transfer a message of length LMsg into a bu�er slot or through the
crossbar is TMsg = LMsg=26:6�sec. The amount of time required by the router to route
a message is TRtr, while the amount of time between the instant a message arrives in
the queue and the router can begin routing it is THdr.

4 Simulation model

We constructed a simulation model capturing the essential architectural features of the
switch. This simulation model was built with the CSIM C++ class library and consisted
of approximately 3,000 lines of code.

All simulation runs involved over 1,000,000 messages, and the 95% con�dence intervals
using the batch means approach were tighter than �1%. For low tra�c, the con�dence
intervals were signi�cantly better than this.

We used a variety of message length distributions, with the expected varying results.
One workload we considered was a bimodal distribution, with mostly short messages,
but most of the bandwidth taken by �xed-size long messages; we considered this to be a
typical workload. Another workload we considered was with a geometric message length
distribution. The di�erence between these two workloads was signi�cant, especially with

6



B

K

Gen Q PutHdr WtRtr Rtr InSch UseXbar

PutDataWtData

AvBuf

Figure 2: Approximate SPN model of the switch.

Transition Firing rate

Gen LF=TMsg

PutHdr 1=THdr

PutData 1=(TMsg � THdr)

Rtr 1=(TRtr(1 + (N � 1)�))

UseXbar 
(#(InSch))=TMsg

Table 2: Firing rates for the transitions of the approximate SPN model.

respect to the maximum attainable aggregate bandwidth. Under the bimodal message
length distribution, the switch was capable of about 60% aggregate utilization, while
under the exponential distribution, the switch was only capable of about 52% aggregate
utilization. This di�erence is explained by some classic papers on crossbar contention
[3, 17] which we will consider more carefully in the next section.

The results presented in this paper consider only the geometric message length distribu-
tion because this is the one most easily modeled by SPNs with exponentially distributed
�ring times.

5 Approximate model

In the following, we assume that all activities have exponentially distributed durations.
This is realistic if the arrival streams are roughly Poisson, and if the message length
has a geometric distribution. The duration of the router activities is constant, so this
implies an approximation. However, we will see that the router is not the bottleneck,
so the impact of using a di�ertent distribution is, in this case, minor.

An exact SPN model for the switch can be built, but its state space is exceedingly large
for practical values of N and B, rendering unfeasible a numerical solution approach
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based on the enumeration of the state space. Because of the extensive symmetries in
the system, and especially because of the FIFO policy used in the scheduler table, a
colored SPN [12, 5] greatly simpli�es the description of the model, at the cost of having
to read net inscriptions. However, discrete-event simulation must be used to study this
model.

Hence, we explore the use of an approximate model based on the idea of SPN decom-
position and �xed-point iteration [9]. It considers the switch from the point of view of
a particular source port, say source 0 (Fig 2).

A message arriving at source 0 (�ring of transition Gen) must wait (in place Q) for
a bu�er. The inhibitor arc from Q to Gen with multiplicity K enforces a truncation
of the state space. It is needed to ensure that the token population in Q is kept
between 0 and K. When a bu�er is available (place AvBuf is not empty), the message
header starts being copied into it (transition PutHdr). After this, the rest of the
message can be copied (transition PutData), but, concurrently, the header (in place
WtRtr) can start requesting service from the router (transition Rtr), which will put
the message header information in the appropriate queue the scheduler table (place
InSch). Given our assumptions, the message chooses a particular queue with uniform
probability over f1; 2; . . . ; N�1g, but the model does not represent this choice explicitly
(the tokens in InSch represent the total number of messages from source 0 queued for
any destination). When the message reaches the top of its queue, it starts using the
crossbar switch (transition UseXbar) and, when done, it leaves the switch and releases
the bu�er (arc from UseXbar to AvBuf).

The model just described observes the system at a rough level of detail:

� Transition PutData represents the copying of the remaining part of the message
into a bu�er, after an initial portion has been copied. This is done because the
router, if available, can start routing the header information (transition Rtr) in
parallel with this activity. However, this approach is correct only for deterministic
�ring times. Given our assumption of exponentially distributed �ring times, it is
possible for a \data" token to be still in place WtData after its corresponding
\header" token has been routed and the message to which they both refer has
actually left the system using the crossbar switch. This sequence of events cannot
happen in reality.

� In the real system, the router follows a cyclical polling pattern, checking whether
there is a message to be routed at port 0,1, . . . , N � 1, 0, and so on. In the
approximate model, messages to be routed simply wait for the �ring of transition
Rtr.

� In the real system, a header from source 0 waits in the queue for destination
i, competing with other headers from any source port other than i (including 0
itself) and destination port i. More speci�cally, its relative position in the queue
is relevant to the determination of the time it must wait before using the crossbar
switch. In the approximate model, message headers simply wait for the �ring of
transition UseXbar.

The impact of the modeling error described in the �rst point could be reduced by using
distributions with smaller variance, such as the Erlang distribution [11], for transitions
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PutHdr and PutData, since these transitions are the only ones corresponding to events
for which the system actually spends exactly the same amount of time, independent of
the state of the router, scheduler table, or crossbar switch.

5.1 Heuristic approximations

The last two observations, however, deserve particular attention. Indeed, the state of
the approximate model does not contain enough information to determine the timing
of transitions Rtr and UseXbar, so we must resort to a heuristic argument.

The heuristic for the rate of Rtr is fairly simple: if we knew the set of probabilities
f�n : n = 1; 2; . . . ; N � 1g that the router will route a message from each of the other
N �1 source ports during the current polling cycle, we could estimate the average time
between the �ring of one of Rtr as

TRtr �
 
1 +

N�1X
n=1

�n

!
:

In other words, we could say that a full polling cycle of the router, when there is message
header from port 0 to be routed, requires one TRtr with probability one, for source 0,
plus one TRtr from each port n, with probability �n, on average. This assumes that the
router is always in the worst position from the point of view of a header from 0: the
router has just �nished polling port 0. This is justi�ed under heavy load, that is, if it is
highly likely that a second header requires to be routed from port 0 while the previous
one has not be completely routed yet. Since the router is not the bottleneck for this
system, this will rarely be the case, but we nevertheless use this assumption, with the
knowledge that it is somewhat pessimistic.

The heuristic for the rate of UseXbar is more complex. The crossbar switch is used by
exactly one message from source 0 whenever at least one of the queues for destinations
1, . . . , N � 1 has a message header from source 0 in the top position. Hence, the
problem is to determine what is the probability 
(i) of this event, when the number
of tokens in place InSch, indicated by #(InSch), is i. The marking-dependent rate of
UseXbar can then be simply set to 
(#(InSch))=TMsg.

We now focus on the computation of 
. De�ne sn
k
to be the number of message headers

from source n in the queue for destination k in the scheduler table. If we knew the
steady-state probabilities

�n(i0; i1; . . . ; in�1; in+1 . . . ; iN�1) = Prfsn0 = i0; s
n

1 = i1; . . . ; s
n

n�1 = in�1; s
n

n+1 = in+1; . . . ; s
n

N�1 = iN�

for n 2 f1; . . . ; N � 1g and

�0(i1; . . . ; iN�1ji) = Prfs01 = i1; . . . ; s
0
N�1 = iN�1 j i1 + � � �+ iN�1 = ig;

we could, in principle, compute the conditional probability of each possible con�guration
of headers from all sources in each destination queue, given that #(InSch) = i, and
then obtain the conditional probability 
(i) that source 0 is using the crossbar switch
as the sum of the probabilities of the con�gurations having a header from source 0 at
the top of at least one queue. Unfortunately, there are (B +1)N possible header mixes
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in the scheduler (from 0 to B headers from each port i 2 f0; . . . ; N � 1g). Each mix
corresponds to many con�gurations, since the headers from port i can be distributed
over N � 1 possible ports and the relative position of the headers in each queue should
be considered as well. The resulting number of con�gurations for practical values of B
and N is unacceptably large, even taking into account symmetries to reduce the number
of con�gurations that need to be considered.

Hence, we must resort to a rougher approximation, based on the knowledge of just the
average number �n

k
of headers from source n in the queue for destination k, rather than

its distribution. We can de�ne the average number of headers from sources 1; . . . ; N�1
in competition with headers from source 0 for access to the output port of destination
k as

�k =
N�1X
n=1

�n
k
:

Given the values �k, we then compute an approximate value for 
(i) using a recursive
approach. De�ne �(i; j) to the be the probability that there is a header from source 0
at the top of at least one of the queue for destinations f1; . . . ; jg, given that there is a
total of i headers from source 0 waiting in these j queues. Clearly, 
(i) = �(i;N � 1).
The value of � can be de�ned recursively as:

� 8j 2 f1; . . . ; N � 1g;�(0; j) = 0.

� 8i 2 f1; . . . ; Bg;�(i; 1) = i

i+ �1
.

� 8i 2 f1; . . . ; Bg;8j 2 f2; . . . ; N�1g;�(i; j) =
iX

k=0

c(i; k; j)

 
k

k + �j
+

�j

k + �j
�(i� k; j � 1)

!
.

where c(i; k; j) is the probability that, when distributing i headers over j queues, queue
j contains exactly k headers, and is given by the binomial distribution:

c(i; k; j) =

0
@ i

j

1
A
 
1

j

!
k
 
j � 1

j

!
i�k

:

The computation of � can then be performed using a convolution-like tableau initialized
as in Table 3. In practice, columns f1; . . . ; j � 2g are not needed to compute columns
fj; . . . ; N � 1g, hence only two adjacent columns need to be stored at any time. At
the end, the last column contains the values of 
(i), for all possible values of i. This
computation, which has complexity O(B2N), can be performed before starting the
analytical solution of the SPN. Table 4 gives an example of the values of 
.

Unfortunately, this heuristic is overly optimistic under high tra�c. De�ne the set Sj,
j = 0; . . . ; N � 1 to be the set of destination queues having a message from source j at
the top. When the system is saturated, no destination queue is empty, hence

N�1X
j=0

jSjj = N:
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1 2 � � � N � 2 N � 1

0 0 0 � � � 0 0

1
1

1 + �1
� � �

2
2

2 + �1
� � �

� � � � � � � � � � � � � � � � � �

B � 1
B � 1

B � 1 + �1
� � �

B
B

B + �1
� � �

Table 3: The tableau for the computation of �.

Given the FIFO service restriction, only messages corresponding to these N elements
can use the crossbar switch. However, only one message from each source j can be
transferred at any time, hence, exactlyN transfers can occur only when Sj is a singleton
for each j. Whenever jSjj = k > 1, k � 1 source ports are being blocked by source j,
and the number of concurrent transfers is decreased by k � 1.

If we ignore that a source port cannot send to itself (for N = 16, we found that the
values of 
 computed using our heuristic with and without this restriction vary by less
than 1%) the problem is simply the classic crossbar contention analysis. Our heuristic
approach for estimating 
 assumes a uniform random selection of the possible sources,
given information about the number of packets from source 0 and the average queue
length. This would make evenly distributed sets jSjj more likely than largely skewed
ones. For instance, with N = 4, a total of four messages in the scheduler table, and a
uniform random assignment of sources, there is only one case out of 256 where jS0j = 4.
Yet, there are 4! = 24 possible cases where each packet comes from a distinct source
port, and thus the assignment jS0j = jS1j = jS2j = jS3j = 1 is 24 times more likely than
jS0j = 4.

This uniform random selection assumption fails as tra�c increases, as shown by Bhan-
darkar and Fuller [3], Rau [17], and others. Their results show that, for a saturated
system with N processors, N memories, and exponential service times, all assignments
of processors queued for the memories are equally likely. That is, with N = 4 and
jS0j+ jS1j+ jS2j+ jS3j = 4, the probability that jS0j = 4 is identical to the probability
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i 
(i); � = 0:5 
(i); � = 1 
(i); � = 2 
(i); � = 4 
(i); � = 8 
(i); � = 15

0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

1 0.6666667 0.5000000 0.3333333 0.2000000 0.1111111 0.0625000

2 0.8829630 0.7444444 0.5518519 0.3582222 0.2092181 0.1208640

3 0.9578748 0.8679506 0.6974705 0.4844110 0.2961889 0.1754802

4 0.9844816 0.9310583 0.7949471 0.5852167 0.3733311 0.2266003

5 0.9941552 0.9636429 0.8604649 0.6658582 0.4417846 0.2744544

6 0.9977517 0.9806392 0.9046797 0.7304590 0.5025543 0.3192574

7 0.9991176 0.9895923 0.9346361 0.7822814 0.5565257 0.3612096

8 0.9996470 0.9943538 0.9550110 0.8239096 0.6044798 0.4004977

9 0.9998561 0.9969096 0.9689216 0.8573941 0.6471053 0.4372958

10 0.9999403 0.9982939 0.9784541 0.8843637 0.6850104 0.4717666

11 0.9999748 0.9990502 0.9850103 0.9061145 0.7187317 0.5040614

12 0.9999892 0.9994670 0.9895357 0.9236791 0.7487434 0.5343217

13 0.9999953 0.9996985 0.9926702 0.9378814 0.7754645 0.5626794

14 0.9999979 0.9998281 0.9948488 0.9493794 0.7992655 0.5892578

15 0.9999991 0.9999013 0.9963681 0.9586997 0.8204740 0.6141717

Table 4: Example values of 
 for various values of � (B = 15, N = 16).

that jS0j = jS1j = jS2j = jS3j = 1. Informally, this e�ect is due to the variance in
service times, which cause messages from a given source to build up for the various
destination queues.

It is important to note that the dynamic e�ects become more pronounced with a higher
variance in service time. Indeed, the expected bandwidth for a N�N system processor-
memory crossbar with expected service time normalized to one is [17]:

� N2=(2N � 1) if the memory service time is exponentially distributed.

� 2N � 1=2 �
q
(2N � 1=2)2 � 2N2, asymptotically, if the memory service time is

constant.

These impose a constraint on the value of 
, since, if we focus on just source 0, the
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corresponding throughput should be a fraction 1=N of the above bandwidths, and

\throughput for source 0" =
BX
i=1

Prf#(InSch) = ig � 
(i) � 1

TMsg

:

For the exponential case, then,

BX
i=1

Prf#(InSch) = ig � 
(i) � N=(2N � 1):

For N = 16, N=(2N � 1) � 51:6%. If the service time is constant, the analogous upper

bound is somewhat higher, (2N � 1=2 �
q
(2N � 1=2)2 � 2N2)=N � 59:9%.

In the �xed-point iteration, we use two heuristics to enforce the bound N=(2N � 1), we
will call the corresponding models \SPN-1" and \SPN-2". Since only the value of 
 is
a�ected, both models are still described by the SPN of Figure 2 with the rates of Table
2.

In the �rst heuristic, SPN-1, we simply de�ne 
(i) to be a weighted average of the value
�(i;N�1), obtained from our initial approximation using the tableau, and the limiting
value N=(2N � 1), which we know is the steady-state probability that the switch is
being used by port 0 when the system is saturated:


(i) =
�(i;N � 1) +N=(2N � 1) � �

1 + �
:

The weights corresponding to the two values are one and �, respectively. The reason
for using a weight increasing with � for the second value is obvious: the larger � is, the
closer the system is to being saturated. The actual choice of � as opposed to, say,

p
�,

2�, or �2, however, is simply the most natural, but it is otherwise arbitrary.

In the second heuristic, SPN-2, we want instead to ensure that the value of 
(i) when
i is \close" to �, the average number of messages in every queue, is not greater than
N=(2N � 1). To this end, we de�ne the \typical value of 
" as


typ = �(b�c; N � 1) � (b�c+ 1� �) + �(b�c + 1; N � 1) � (� � b�c):
That is, 
typ is a weighted average of the two values �(i;N � 1) and �(i + 1; N � 1)
corresponding to the unique interval [i; i+ 1) which contains �. The weights used are
one minus the distance from � to i and i + 1, respectively (see Figure 3). Then, if

typ > N=(2N � 1), we scale all the values of 
 by a factor N=(2N � 1)=
typ:


(i) =

8>><
>>:

�(i;N � 1) � N=(2N � 1)


typ
if 
typ > N=(2N � 1)

�(i;N � 1) otherwise
:

We observe that the simpler choices 
typ = �(b�c; N � 1) or 
typ = �(d�e; N � 1) are
prone to problems in the �xed-point iterations. If, in two subsequent iterations, the
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i i+1σ

 σ-i  i+1-σ

Weight of Γ(i+1,N-1) = i+1-σ Weight of Γ(i+1,N-1) = σ-i

0 B

Figure 3: The computation of the weights for SPN-2.

value of � crosses an integer value, the value of 
typ will experience a jump, due to the
discretization imposed by the 
oor or ceiling operators. Conceivably, this phenomenon
could even lead to an oscillating behavior, although we did not encountered this problem
in our experiments. A more mundane problem due to these choices is that the plots
for the various measures considered in Section 6 would be \jagged", due to the discrete
jumps, so we do not consider them further.

Equally poor would be a simple truncation of the values of 
. The choice


(i) = minf�(i;N � 1); N=(2N � 1)g
results in highly pessimistic results for light loads. This is immediately apparent by
observing the values of 
 for � = 0:5 in Table 4.

Table 2 summarizes the �ring rates for the timed transitions in the model of Figure 2.
LF is a value between 0% and 100%, representing the percentage load factor on the
system. Given that both the insertion of a message into a bu�er slot and the use of
the crossbar switch require one TMsg, the average time between generation of messages
must be greater than this time, LF < 100%, if the system is to be stable. Indeed,
given the previous bandwidth analysis for a N �N switch, it is clear that the system
is saturated as soon as LF approaches the value 100 �N=(2N � 1)%. To model a fully
saturated system, we can simply remove transition Gen and place Q from Figure 2,
that is, we allow transition PutHdr to �re whenever there are available bu�ers and
place WtData is empty. The truncation parameter K is not required in this case.

5.2 Fixed-point iterations

The value of � represents the probability that a generic port i has at least one header
waiting to be routed (we assume uniform message distributions). Its estimation is
performed iteratively, starting with a guess and re�ning it using the assignment

� Prf#(WtRtr) > 0g:

The values of 
 are also computed iteratively, starting with a guess for E[#(InSch)].
Then, again because of symmetry, we set

8k 2 f1; . . . ; N � 1g; �k = � N � 2

N � 1
� E[#(InSch)]
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and iterate. That is, the average number of headers from source i (i 6= 0) waiting to
go to destination j (j 6= i; j 6= 0) can be equated, because of symmetry, to the number
E[#(InSch)]=(N �1) of headers going from 0 to j. The factor N �2 is the the number
of possible sources, other than 0, that can send headers to destination j (source j does
not send to itself).

We observe that our iterative approach would still work even if the arrival rates to the
N ports were di�erent or if the choice of the destination port were not uniform (or
both). However, instead of solving a single model for a generic port, we must now solve
N models di�ering only in their parameters, one for each port. Hence, we would have
to start with 2N guesses, one for each of the N values for �k and �k. The tableau
computation would still have complexity O(B2N), although the values c(i; k; j) would
be di�erent for each model, to re
ect the nonuniform destination distributions.

5.3 Modeling acknowledgments

Certain types of messages might trigger the transmission of an acknowledgment back to
the source, upon reception. An acknowledgment behaves just like any other message,
with two di�erences:

� An acknowledgment carries only header information and no data, hence it is much
shorter than a message.

� If both messages and acknowledgments are waiting at a source port, acknowl-
edgments are given preference. However, an acknowledgment cannot preempt
a message transfer which has already initiated and, inside the switch, it is not
granted any special treatment.

The length of an acknowledgment is LAck. Hence, the time to transfer it into a bu�er
slot or through the crossbar switch is TAck = LAck=26:6�sec. The amount of time
required by the router to route an acknowledgment is still TRtr, as for messages. Figure
4 and Table 5 describe the corresponding SPN and the �ring time distributions for its
timed transitions (transitions GetBufm and GetBufa are immediate, they �re in zero
time). We indicate this model with \ACK".

The path for acknowledgements (from transition Gena to transition UseXbara) is ex-
actly analogous to that for messages, with the exception that acknowledgements carry
no data (place WtDatam and transition PutDatam have no corresponding place and
transition in the acknowledgement path).

The model also contains several inhibitor arcs. The inhibitor arcs from Qm and Qa to
Genm and Gena with multiplicityK enforce the required truncation of the state space.
We observe that the \cross arcs" from Qm to Gena and from Qa to Genm achieve a
di�erent purpose. Given that the �ring rate of Genm and Gena is the same, these
inhibitor arcs ensure that the two transitions are either both enabled or both disabled,
thus they ensure that the truncation in e�ect results in the same throughput for the
generation of messages and acknowledgements.
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PutHdrm WtRtrm Rtrm InSchm UseXbarmGetBufm

Figure 4: Approximate SPN model with acknowledgments.

The inhibitor arcs from WtHdrm and WtHdra to GetBufm and GetBufa ensure that
at most one token can be in WtHdrm and WtHdra overall at any time:

#(WtHdrm) + #(WtHdra) � 1:

Transition Firing rate

Genm LF=(TMsg + TAck)

Gena LF=(TMsg + TAck)

PutHdrm 1=THdr

PutHdra 1=THdr

PutDatam 1=(TMsg � THdr)

Rtrm 1=(TRtr(1 + (N � 1)�)) �#(WtRtrm)=(#(WtRtrm) + #(WtRtra))

Rtra 1=(TRtr(1 + (N � 1)�)) �#(WtRtra)=(#(WtRtrm) + #(WtRtra))

UseXbarm 
(#(InSchm) + #(InScha))=TMsg �#(InSchm)=(#(InSchm) + #(InScha))

UseXbara 
(#(InSchm) + #(InScha))=TAck �#(InScha)=(#(InSchm) + #(InScha))

Table 5: Firing rates for the timed transitions in the approximate SPN model with acknowl-

edgments.
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Model Parameters Distributions States Nonzeros

SPN-1/2 K = 15, LF < 100 Exponential 4,352 15,736

SPN-1/2 K = 15, LF = 100 Exponential 272 736

ACK K = 5 Exponential 380,920 2,093,690

SPN-1/2 K = 15, LF < 100 Erlang(10) 41,216 151,960

SPN-1/2 K = 15, LF = 100 Erlang(10) 3,856 10,620

ACK K = 5 Erlang(2) 730,220 4,035,740

Table 6: Size of the state space for various models and parameter choices.

This, plus the inhibitor arcs from Qa to GetBufm, ensures that acknowledgements have
nonpreemptive priority over messages when requesting bu�ers.

5.4 Phase-type distributions and state-space size

If the size of the messages being sent were constant, a more accurate model of the
actual system would be obtained by using Erlang distributions, instead of exponential
ones, for selected transitions. In the SPN-1 and SPN-2 models, transitions PutHdr
and PutData are excellent candidates for this, while transitions Rtr and UseXbar
correspond to a number of concurrent activities (now with constant duration), so it
might still make sense to use exponential distributions for their �ring times. Analogous
considerations apply to the ACK model.

However, the increase in the size of the state space is formidable: see Table 6 for a
comparison of the sizes of the underlying CTMC (number of states and number of
nonzero state-to-state transition rates) for the various models discussed in this paper.
Note that the ACK model cannot be simpli�ed when LF = 100, since, if Genm, Gena,
Qm, and Qa were simply removed the way Gen and Q can be removed in the SPN-1 and
SPN-2 models, the throughput of acknowledgments would not necessarily match that of
messages, as it should. The column \Distributions" refers only to transitions PutHdr
and PutData (or PutHdrm, PutDatam, and PutHdra), all the other transitions retain
an exponential distribution.

6 Results

In this section, we report the results for the SPN-1 and SPN-2 models obtained using
�xed-point iteration with the software tool SPNP [10], and compared them with the
results from a detailed discrete-event simulation.

Knowing that the throughput is bounded by the maximum bandwidth of the switch,
we experimented �rst on the two models to observe how the \requested load factor",
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that is the value used for LF , a�ects the \actual load factor", determined using the
throughput of transition Gen:

\actual load factor" = \throughput of transition Gen" � TMsg = Prf#(Q) < Kg � LF:
Figure 5 shows the results. As expected, the actual load factor coincides with LF until
LF begins approaching the bound N=(2N�1). Then, the actual load factor has a sharp
bend and does not increase any more, suggesting that the system is indeed overloaded.
In the SPN-1 and SPN-2 models, this simply says that the probability of �nding place
Q full (#(Q) = K) increases linearly in LF after that point, so that the truncation
imposed by the inhibitor arc ensures that the actual load factor remains constant. Note
that SPN-1 is slightly more pessimistic than SPN-2, since its horizontal asymptote is
lower. This can be explained by the fact that the de�nition of 
 in SPN-1 results in
slightly smaller values than in SPN-2. For high loads, the average number of headers
in the scheduler table, �, is quite large (above 14), hence the main contribution to the
de�nition of all the values of 
 in SPN-1 is simply the bound N=(2N � 1). Under the
same conditions, in SPN-2, the value of 
typ is a weighted average of �(14; N � 1) and
�(15; N � 1), and all values �(i;N � 1) are reduced so that the new weighted average
coincides with N=(2N � 1). However, the value of 
(15) is su�ciently higher than
N=(2N � 1) after the normalization to result in a higher overall throughput for the
switch.

We study two quantities in particular: the expected number of free bu�ers and the
message latency, de�ned as the expected amount of time elapsing from the instant a
message is generated to the time it is completely transferred to its destination. In the
SPN-1 and SPN-2 models, the �rst one can be easily de�ned as E[#(AvBuf)]. The
computation of the second quantity must be done using Litttle's law. Compute �rst the
expected number of messages in the system as e = E[#(Q)+#(WtRtr)+#(InSch)] =
E[#(Q)+ 15�#(AvBuf)] (tokens in WtData are not counted, since they are already
accounted for by tokens in WtRtr or in InSch). Then, compute the throughput � ,
de�ned as a the average number of �rings of any of the transitions in the SPN per unit
of time (they have all the same throughput). For transition Gen, we have seen that
this can be expressed as

� = Prf#(Q) < Kg � LF=TMsg:

Finally, the message latency w is obtained as w = e=� .

Figures 6 and 7 show the values of these two measures as a function of the actual
load factor, for SPN-1 and SPN-2. In the same �gure, these are compared to the
results obtained from a detailed simulation model (indicated by \SIM") using the same
distributional assumption of exponential timing. In SIM, theN sources and destinations
are explicitly represented, and so is the detailed behavior of the router and of the
crossbar switch and their interaction through the scheduler table. The simulation results
have a 95% con�dence interval of less than �1%, using the batch means method. The
�xed-point iteration approach approximates the simulation results remarkably well,
most of the error lying where the curves experience an abrupt change, going from a
light-to-medium load to a heavy load.

We conclude this section with some observations on the behavior of the �xed-point
method used. Figures 8 and 9 illustrate the number of iterations and, at the same time,
the evolution of the value of the critical iteration parameter E[#(InSch)], for various
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requested load factors. There is a large di�erence in the number of iterations for SPN-1
(Figure 8) and SPN-2 (Figure 9). We have been unable to explain this phenomenon
so far. Also noticeable is the fact that the smallest number of iterations is required
for values of LF corresponding to very high or very low loads, even if the value we
chose to start the iteration, E[#(InSch)] = 8 in all cases, is closest to the �nal value of
E[#(InSch)] exactly for the cases requiring a large number of iterations. For example,
only seven iterations are required to go from E[#(InSch)] = 8 to E[#(InSch)] =
0:1202, for LF = 10, or from E[#(InSch)] = 8 to E[#(InSch)] = 14:44, for LF = 90,
while 60 iterations are required to go from E[#(InSch)] = 8 to E[#(InSch)] = 6:126,
for LF = 50.

7 Extensions and future work

The FIFO policy can be substituted with other policies, which could select source-
destination pairs in the scheduler table not based on their time of arrival, but according
to other criteria. We intend to explore a GREEDY policy, which would allow the
transfer 3 7! 2 in the example of Table 1 in addition to f1 7! 0; 2 7! 1; 0 7! 3g.
Also of interest is an OPTIMAL policy. Such a policy would likely not be implementable
in practice, because of its computational overhead and of the need to preempt ongoing
transfers to maximize the number of concurrent transfers after each change of state.
However, it could provide an ideal upper bound for how well the switch could be
scheduled.

Regarding the �xed-point approach used, more work is certainly needed to understand
its behavior and applicability. Empirical evidence suggests that it is appropriate when
the system being modeled is highly modular and symmetric, but more theoretical work
needs to be done to formalize this concept.

Finally, it might be instructive to model a bimodal workload with some short and some
constant-sized long messages. In the simulation model, this is trivial. In the SPN
model, however, timing delays coe�cient of variation less than one are needed, such as
the Erlang distributions. As we have seen, this can lead to a sharp increase in the size
of the state space. To solve this problem, we are investigating the use of SPN having
underlying discrete-time Markov chains [14, 6]. We are currently working on the design
of a software package that will allow us to solve numerically SPNs with continuous-time
phase-type distributions, as those used in this paper, their discrete equivalent (where
any distribution over the integers can be used, such as constant, discrete uniform,
geometric or modi�ed geometric), and even, under certain restrictions, with mixture of
the two (see the \deterministic and stochastic Petri nets" [2] and recent extensions [8]).
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