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Abstract

This paper presents an approach to using Stochastic Petri nets to model large-scale con-

current systems, in our case, a scalable computer interconnect. We show how Stochastic

Petri net models can exploit the symmetry of the system to construct a tractable, but ap-

proximate, analytic model, and that they can yield results very close to those of a detailed

simulation model, with much less computational e�ort.
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1 Introduction

In this paper, we present techniques for the modeling and analysis of large-scale concurrent

systems using Petri nets. There are two important but con
icting requirements in this sort

of analysis. First, the model should be detailed enough to include those system features that

have a signi�cant impact on performance. Second, the model should be simple enough to

be tractable. Constructing a single model of a complex system does not lead to completely

trustworthy results; modeling is subject to the same sorts of errors and inaccuracies as

programming in general, yet the results are often not as easy to check. We therefore use

di�erent types of models to deal with di�erent aspects and stages of the system analysis.

The common feature of these models is that they are based on Petri nets.

We present as a case study the net modeling of a scalable interconnect for its performance

evaluation and analysis. Our goal was to analyze the performance of the interconnect as a

function of various parameters, including network size (which can scale up to hundreds of

nodes) and the number of internal bu�ers on each node.

We have built and analyzed two net models of the interconnect. We used SPNP [8], based

on Stochastic Petri Nets, to build an approximate model for a quick numerical analysis of

performance. We used Design/CPNTM [9, 14] based on Hierarchical Colored Petri Nets to

develop a detailed simulation model to help re�ne the design and identify performance bot-

tlenecks. This model was also used to verify the accuracy and correctness of the approximate

SPN model.

The original Petri net formalism is inadequate for the speci�cation of complex large-scale

systems, especially systems for which the number of interacting components depend on the

input parameters. We instead use two higher-level formalisms based on Petri nets.

High level Petri nets, in particular Colored Petri nets, provide for the speci�cation of large-

scale systems with colored tokens, that allow the folding of the system description into a very

compact form. The Colored Petri nets used in Design/CPN are a graphical programming

language with rich speci�cation and simulation possibilities. The colored tokens and arc

expressions allow easy parameterization of the system size. Through the use of hierarchy

and re�nement, a series of models with di�erent levels of detail can be easily constructed,

enabling rapid prototyping and analysis.

The main di�culty when modeling complex systems with high level Petri nets is that the
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simulation time of these nets does not remain constant with increasing system size. For a

very large number of components, simulation time becomes prohibitive.

Stochastic Petri Nets allow the quick construction of a simpli�ed abstract model that is then

numerically solved for di�erent model parameters. This analysis is based on the exploration

of all reachable states in the model, and is thus even more dependent on the system size.

A straightforward SPN model of the interconnect generates exceedingly large stochastic

processes for even the smallest network sizes.

The solution to this problem is to construct an approximate model that takes into the

consideration some speci�c features of the modeled system. In our case, we exploit the fact

that the interconnect has a very regular structure. We were primarily concerned with two

di�erent issues:

1) how performance scales with network size, and

2) how internal design alternatives a�ect performance.

These tasks are not independent of one another. Nonetheless, it is possible to split the

problem into two stages. First, a simpli�ed but scalable model to predict bottom-line per-

formance and identify possible bottlenecks is quickly constructed. Next, a detailed model is

constructed to evaluate and analyze particular design alternatives. These two stages may be

iterated to verify the results and re�ne the analysis.

In this paper we show how Stochastic Petri nets can exploit the symmetry of the system to

construct a tractable approximate model. We present this model to support our conclusion

that Stochastic Petri nets can be successfully used for modeling industrial size systems.

Sections 3 and 4 of this paper present the interconnect structure and its exact SPN model.

Section 5 presents our approach to build a tractable approximate SPN model. Section 6

presents the numerical results. Section 7 compares the numerical results of SPN model with

simulation results of the interconnect model based on Colored Petri nets. In the conclusion,

we discuss a few missing features of SPNP which might further improve the applicability of

such a tool.

A brief introduction to the basic terminology is given in the Section 2. For a complete

treatment of the class of SPNs used in this paper, see [5].
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2 Basic SPN Notions and Denotations

A Petri net (PN) [12, 13] is a directed bipartite graph with two sets of nodes, places and

transitions. Input arcs connect a place to a transition, output arcs connect a transition

to a place. A multiplicity (positive integer) may label an arc. The input (output) bag for

a transition is the bag [12] constituted by the input (output) arcs, considered with their

multiplicity. Each place may contain any number of tokens. A marking is a bag representing

the con�guration of tokens in the places of the PN, it is the \state" of the PN.

A transition is enabled if its input bag is a subbag of the (current) marking. When a transition

is enabled, it can �re, leading the PN into a di�erent marking, obtained by subtracting its

input bag from and adding its output bag to the current marking. A marking is reachable

if it is obtained by a sequence of �rings starting in the initial marking. The reachability set

(graph) is the set (graph) of all the reachable markings (connected by arcs representing the

transition �rings). If inhibitor arcs are used, the enabling rules changes. A transition t is

disbaled if there is an inhibitor arc with multiplicity k from place p to t, and p contains k or

more tokens.

A \generalized stochastic Petri net" (GSPN) [1] is a PN where each transition has an associ-

ated �ring time, which can be zero (immediate transition) or exponentially distributed with

a parameter dependent on the marking (timed transition). If several con
icting immediate

transitions are enabled in a marking, a �ring probability is speci�ed for each of them. A

�ring probability for timed transitions does not need to be speci�ed, since we assume a race

model: the �rst �ring time to elapse determines which transition �res �rst; contemporary

elapsing of �ring times has probability zero.

If at least one immediate transition is enabled, the marking is said to be vanishing, otherwise

the marking is said to be tangible. Since the �ring time of an immediate transition is zero,

a GSPN does not remain in a particular vanishing marking for any length of time. In other

words, the probability of �nding the GSPN in a vanishing marking is zero. A GSPN describes

an underlying stochastic process, reducible to a continuous-time Markov chain (CTMC) by

eliminating the vanishing markings [1, 3, 5].

The GSPN model can be extended by allowing phase-type distribution [10] instead of just

simple exponential distributions. The underlying process is still a CTMC, but its states now

describe both the marking of the PN and the phase for the �ring times of the transitions,

hence the size of the state space is larger than that for a similar GSPN. This is a problem,
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since the size of the state space is already the main obstacle to a numerical analysis. Other

distributions can also be used for the �ring times (e.g., constants). The term \SPN" is often

used as a generic indicator that the timing behavior of the net is probabilistic, hence it is,

surprisingly, more general than the term \GSPN". This is due to historical reasons, since

the �rst de�nition of SPNs allowed only exponentially distributed, but not zero, �ring times.

Examples of output measures obtained from the analysis of a SPN are the expected number

(or probability distribution) of tokens in a given place or the throughput of a given transition,

in steady-state or at a speci�c point in time. They correspond to reward functions on the

markings or on the transitions among markings and they are easily computed after solving

for the steady-state or transient probability of each marking [5].

3 System

The interconnect topology is a continuous hexagonal mesh which permits each node to

communicate with its six immediate neighbors. We refer to a mesh having n nodes on each

edge as an En mesh. The resulting total number of nodes is N = 3n(n � 1) + 1. Figure

1 shows the mesh structure for E2, E3, and E4. Physically, nodes on the edge are actually

connected to nodes on other edges in a wraparound fashion, so that their virtual connectivity

is the same as that of internal nodes.

The distance of a node from a particular node i in an En mesh is at most n � 1 \hops".

Furthermore, of the N � 1 = 3n(n � 1) nodes other than i, 6 are at distance 1, 12 are at

distance 2, and so on, up to the 6(n � 1) at distance n� 1.

Each node is attached to a processor connected via a local bidirectional port.

In addition, each node i has six ports, numbered 0 through 5, each of them connecting it to

a di�erent neighbor, n(i; 0) through n(i; 5), respectively (see Figure 2). Each of this ports is

full-duplex.

The node has a total of Nb bu�ers to store the packets in transit. The processor injects

packets to the interconnect through the local ports when both 1) the local port is available

and 2) there is an available bu�er to store the packet. Otherwise, the packet waits in a queue

until the required resources are freed. In-transit packets follow the same procedure. Packets

are always routed through a minimal-length path towards their destination. Each time the

packet arrives at a new node, the next node on a minimal path to destination is computed
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Figure 1: System structure, for n = 2; 3; and 4.
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Figure 2: Neighbor nodes.

and the router attempts to forward the packet. If either the port is busy or no bu�ers in the

next node are available, the packet waits. When the packet �nally arrives to a destination

node, it is ejected from the interconnect through the local processor port.
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Figure 3: Node structure.

We assume packet transfer, injection, or ejection takes 720 tu (time units). A main parameter

of the model is the number of bu�ers inside each node; for this paper, we use a default of

ten.

4 Detailed model

A detailed SPN model for node i is shown in Figure 4. The transition Generatei generates

the packet tokens at a given rate and puts them into the place Waiti. Place EBi contains

tokens corresponding to empty bu�ers inside node i. The number of tokens Nb initially in

this place is the total number of bu�ers in node i.

Firing of the immediate transition GetBuf i reserves a bu�er inside the node i (if there is

a token in the place EBi) for the new packet and moves a token to a place Sendingi. The

packet injection to node i is represented by the transition Sendi.

The output places Oi
0; . . . ; O

i
5 of the node i are the input places for the six neighbor nodes:

for example, place Oi
3 is the input place for node n(i; 3) from the node i.

For simplicity of illustration, a \probabilistic arc" is used from transition Sendi to places
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Figure 4: Detailed SPN model.

Oi
0 through Oi

5. A probabilistic arc is a shorthand to denote that the token deposited by

a transition, say Sendi, can end up in exactly one of the destination places. Formally, this

behavior is be obtained with one extra place and a set of immediate transitions. For the

branches from Sendi to Oi
0 through Oi

5, we specify a probability of 1=6, since we assume

that the destination node for a packet generated at node i is uniformly chosen among the

remaining nodes.

The packets arrive to each node from the local processor (through the local port) and from

the six neighbor nodes (through neighbor ports). Places with a superscript n(i; 0) through

n(i; 5) are in the individual SPNs representing the six neighbor nodes. For example, place

O
n(i;0)
3 is the place in the SPN for the neighbor n(i; 0) of i.
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The packet transfer from the neighbor nodes is the same as from the local processor. First

of all, for each packet arriving at node i, a bu�er must be reserved. Firing of immediate

transition GBi
j; (j = 0; . . . ; 5) reserves the bu�er inside node i if there is one available,

represented by a token in place EBi. The �ring of transition FBi
j corresponds to the packet

transfer by the input port j to a node i. When the packet transfer is complete, the bu�er

occupied by this packet in the previous node n(i; j) is released by returning a token to place

EBn(i;j) (we omit these places for clarity).

A`probabilistic arc is used from transitions FBi
0 through FBi

5 to places Receivingi and Oi
0

through Oi
5; these are expanded into extra places and immediate transitions as described

before. There are two possibilities:

1. If the packet is destined for the node i then it is put in a place Receivingi, and ejected

from the node by the local processor port (represented by the transition Receivei).

When the packet ejection is complete, one bu�er is released by returning a token to a

place EBi.

2. If the packet is intended for a neighbor node j then it is put into the place Oi
j.

Assuming that packets are always routed only through one of the shortest paths, a packet

arriving from port j can only be sent to the current node (place Receivingi) or to another

node to be reached through ports (j + 2) mod 6, (j + 3) mod 6, or (j + 4) mod 6. That is,

a packet never reverses direction. The routing probabilities depend on both the source and

the destination of the packet. For E2, external packets arriving at node i always have their

destination as node i, since the maximum distance between any two nodes is one. When

modeling En, n > 2, we can associate the identity of the source and destination with each

token representing a packet, resulting in a colored SPN with a huge state space.

Alternatively, we can remain in the uncolored domain and obtain considerable state space

reduction by assigning probabilities to the four possible destinations for a packet arriving

through port j:

1. the local node, i, with probability plocal,

2. an external node reachable through port (j + 2) mod 6, with probability pside,

3. an external node reachable through port (j + 3) mod 6, with probability pcenter,
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4. an external node reachable through port (j + 4) mod 6, with probability pside again,

since, by symmetry, this case has the same probability as case (2) above.

This probabilistic view involves an approximation, since it is now possible to have packets

follow arbitrarily large paths through the mesh. On the other hand, it is nevertheless possible

to set the parameter plocal so that the average load on the network is correctly matched, and

each port on each node has the same load. We de�ne a \hop" to be the movement of a packet

from a node to one of its neighbors, and compute the average number of hops required to

send a packet from source to destination. For En, if node i sends to every other node with

equal probability, then 6k potential destinations out of 3n(n�1) are k hops away, hence the

average number of hops is
n�1X
k=1

k �
6k

3n(n� 1)
=

2n � 1

3

In particular, the average number of hops is 1 for E2, as expected. Each incoming packet

corresponds to one hop, hence a fraction

plocal =
�
2n � 1

3

�
�1

=
3

2n � 1

of the incoming packets is directed to the local node i.

We stress that this choice for plocal ensures that the expected number of hops per packet and

the average rate of hops over the entire mesh, N�=plocal, or to an individual node, �=plocal,

or even to an individual port, 1=6 � �=plocal, is the same for the exact colored model and

for the approximate probabilistic model, where � is the injection rate from each node. The

only approximation lies in the probability mass function (pmf) of the number of hops for a

packet. In the exact model,

Prfnumber of hops is kg =
6k

3n(n� 1)
;

while, in the approximate model,

Prfnumber of hops is kg =
3

2n � 1

�
1�

3

2n � 1

�k�1

;

which describes a geometric distribution. The quality of approximation increases with the

size n of the mesh, since the number of nodes increases quadratically in n, while the expected

number of hops increases linearly in n.
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Clearly, plocal+pcenter+2pside = 1, but pcenter and pside still need to be determined. Observing

Fig. 1 again, this corresponds to determining the proportion of hops of type \l", \c", and

\s", de�ned as the �rst hop (i.e., a packet from the local processor on node 1 exits on the

port from 1 to 2), a hop going to the center port (i.e., a packet entered on the port from 1

to 2 exits on the port from 2 to 8), and a hop going to a side port (i.e., a packet entered on

the port from 1 to 2 exits on the port from 2 to 9), respectively.

De�ne Hn to be the expected number of hops of each type for a packet transmitted in En,

starting from node 1 (because of the symmetric nature of the network, the choice of node 1

is arbitrary). For E2, each packet takes exactly one hop of type l, hence H2 = l. For E3,

each packet can take the following combinations of hops:

� From 1 to f2; 3; . . . 7g: one hop of type l.

� From 1 to f8; 10; . . . 18g: one hop of type l and one hop of type c.

� From 1 to f9; 11; . . . 19g: one hop of type l and one hop of type s.

Assuming that each node other than 1 is a potential destination with equal probability,

H3 = l+ 1

3
c+ 1

3
s.

For larger size networks, the analysis becomes more complex. For example, in E4, a packet

with source node 1 and destination node 21 can choose among three paths: 1
l
+2

c
+8

s
+21,

1
l
+2

s
+9

s
+21, and 1

l
+3

s
+9

c
+21. For the analysis, we assume that, whenever a hop to either

one of two neighbors would still achieve the shortest path for the packet, the choice is

performed with uniform probability (e.g., 1
l
+2 and 1

l
+3 have probability 1/2, and, given that

1
l
+2 is chosen, 2

c
+8 and 2

c
+9 have probability 1/2). Hence, the probability of the above three

paths is 1/4, 1/4, and 1/2, respectively, not simply 1/3 for each of them. By enumerating

these paths and computing their probabilities, we can then obtain H4 = l + 11

12
c + 5

12
s. For

E5, we obtain H5 = l+ 29

20
c+ 11

20
s. This implies that the value of pcenter and pside depends on

the size of the network. However, their relative value will not a�ect the average load on the

mesh, hence, we could, for simplicity, use the values

pcenter =
1� plocal

2
=

n� 2

2n � 1
and pside =

1� plocal

4
=

n� 2

2(2n � 1)
;

which coincide with the exact values for n = 2; 3.
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5 Approximate model

By assuming that the �ring times of the timed transitions for the SPN in Fig. 4 are exponen-

tially distributed, the resulting underlying stochastic process is a continuous-time Markov

chain (CTMC). In principle, we could study this CTMC to compute the performance mea-

sures of interest using software tools such as SPNP [8], but its size is too large for an exact

numerical solution, even for the E2 interconnect having only 7 nodes. In this section, we

describe an approximate model based on the idea of SPN decomposition and �xed-point

iteration [7]. This approximate model exploits the large amount of symmetry possessed by

the interconnect and essentially describes a behavior of one node under a workload that

is generated by the whole interconnect fabric. Thus the basic idea is to approximate and

generate a proper amount of tra�c going through one node in a network of a particular size.

We will construct the approximate SPN model from the following four SPN subnets repre-

senting di�erent node activities from the perspective of a single \current" node:

1. Packet injection into the node by the local processor port.

2. Packet transfer from the current node to a neighbor node.

3. Packet transfer from the neighbor node to a current node.

4. Packet ejection from the current node to a processor by the local processor port.

SPN subnet N1 is shown in Figure 5. The transition Al generates the packets at a given

rate � and puts them in place WBl. An inhibitor arc with cardinality Kl from WBl to Al is

needed to ensure that the population of packets waiting to enter the node from the current

node is �nite. If Kl is smaller than the actual theoretical maximum number of packets

waiting to enter the node from the local node, the inhibitor arc introduces an approximation

through truncation of the state space.

Place FB contains tokens corresponding to free bu�ers inside the current node. The initial

number of tokens Nb is the total number of bu�ers in a node. The immediate transition

GBl reserves a bu�er, if one is available (indicated by a token in place FB). An inhibitor

arc from the place Il to a transition GBl insures that the local processor port is not already

busy (indicated by a di�erent waiting token). After IBl �res, the token is put in the place

C1 which is a place shared between the �rst and the second SPN subnets. Tokens in place
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Figure 5: SPN subnet N1: packet injection into a node by the local processor port.

Nb
FB Oe

6

OPY1

OPN1

OBe

C2

C1

OPN2

OPY2

FOP

WOP

6

Figure 6: SPN subnet N2: packet transfer from the current node to its neighbor nodes.

C1 represent packets stored in the current node bu�ers and which must be transfered to

neighbor nodes.

SPN subnet N2 is shown in Figure 6. Place FOP contains tokens corresponding to free

output ports of the current node to its neighbor nodes. The initial number of tokens in FOP

is six, since there are six neighbor nodes. When a token arrives in place C1, either

� the required output port is available, immediate transition OPY1 �res, and a token is

moved to place Oe, or

� the required ouput port is busy, immediate transition OPN1 �res, and a token is moved

to place WOP . An inhibitor arc with cardinality 6 from FOP to OPN1 prevents the

transition OPN1 from �ring when the place FOP contains all six tokens.

The probability that a particular output port is free is #(FOP )=6, so this probability is

assigned to transitionOPY1, and transition OPN1 is assigned a probability of 1�#(FOP )=6.

Tokens in place Oe represent packets being transferred through output ports, and transition

OBe represents the completion of the packet transfer. Its rate is proportional to the number
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of tokens in place Oe (\in�nite server" behavior). When the packet transfer to a neighbor

node is completed, a bu�er is released by returning a token to a place FB. PlaceC2 represents

the state when the busy output port has just been released. There are two possibilities at

this point. Either

� the place WOP has a packet waiting for this particular output port, in which case

transition OPY2 will �re, removing a token from WOP , or

� there is no waiting packet for this output port, in which case immediate transition

OPN2 will �re, adding a token to FOP .

Let us calculate the probability that there is no waiting packet for this particular output

port, and thus the probability that OPN2 will �re. We know the packets are waiting for

ports that are busy, and thus all packets are for either this output port, or one of the other

output ports that are free. The probability that a single packet can use this particular output

is thus 1=(6 � #(FOP )). The probability that that packet cannot use this output port is

(5 �#(FOP ))=(6 �#(FOP )). If we have #(WOP ) waiting packets, then the probability

that none of them can use the newly freed output port is

 
5 �#(FOP )

6 �#(FOP )

!#(WOP )

This, then, is the probability we assign to OPN2; we assign the complementary probability

to OPY2.

SPN subnet N3 is shown in Figure 7. Transition Ae generates the packets ready to be

sent by neighbor nodes to the current node. This rate is simply the product of the processor

injection rate � and the average path length, 2n�1

3
, since the packet is injected into a new

neighbor node for each hop it takes. The structure and internal arrangement of the third

SPN subnet is similar to the second SPN subnet described above. Place FIP (analogous to

FOP ) contains tokens corresponding to free input ports of the current node (with an initial

marking of six tokens). For each waiting packet in place C3 (analogous to C1), there are two

possibilities.

� If the required input port is available, immediate transition IPY1 (analogous to OPY1)

�res and moves a token to a place WBe. Transition GBe then reserves a bu�er in the

current node, if there is a bu�er available. Transition IBe completes the packet transfer,
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Figure 7: SPN subnet N3: packet transfer from a neighbor node to the current node.

and the packet ends up in place C5 which is a place shared between the third and the

fourth SPN subnets.

� If the required input port is busy, immediate transition IPN1 (analogous to OPN1)

�res and moves a token to place WIP (analogous to WOP ) representing waiting

packets. An inhibitor arc with cardinality six from FIP to IPN1 prevents transition

IPN1 from �ring when place FIP contains all six tokens.

A token in a place C4 (analogous to C2) represents the state when a busy input port has

just been released. As before, there are two possibilities:

� If there are no waiting requests for this input port, the immediate transition IPN2 will

�re and return a token to a place FIP .

� If place WIP has a packet waiting for this particular input port, the immediate tran-

sition IPY2 will �re and move a token in place WBe.

The probabilities assigned to these cases are similar to those for N2, since the situation is

analogous. An inhibitor arc with cardinality Ke from WIP to Ae is needed to ensure that

the population of packets waiting to enter the current node from the neighbor nodes is �nite.

This introduces an approximation in our model, by truncating the state space.

SPN subnet N4 is shown in Figure 8. A token in place C5 (representing a packet received
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Figure 8: SPN subnet N4: packet ejection from the current node through the local processor port.

by the current node from its neighbors), is either destined to the current node, or must be

transferred further.

� If the packet must be forwarded, then immediate transition Te moves the token to a

place C1, the input place of the second SPN subnet N2.

� If the packet must be ejected toward the local node, immediate transition Tl moves

the token to a place Ie. Transition OBl represents the completion of the ejection, after

which one bu�er in the current node is released by returning a token to place FB.

Note that the rate of transition OBl is constant, not proportional to the number of

tokens in place Ol, since the activity modeled corresponds to a \single server".

The composite SPN netN shown in Figure 9 is obtained as a superposition of N1;N2;N3;N4

by merging their shared places, FB, C1 and C5. The meaning of the places and transitions in

this SPN is summarized in Table 1 and the �ring rate and probabilities of the transitions are

given in Table 2. Note that places Ci; i = 1; . . . 5 are always empty in a tangible marking.

Moreover, transition GBe has priority over transition GBl, to ensure that the delivery of

packets in transit takes precedence over the injection of new packets in the network. A

priority to local packets or an equal priority to local and external packets could also be

easily modeled.

The inhibitor arcs with cardinality Kl and Ke from WBl and WIP to Al and Ae, respec-

tively, introduce an approximation corresponding to a truncation of the state space. With

exponentially distributed �ring times, it is possible to have any number of packets waiting,

but the probability of having many packets waiting decreases quickly unless the system is

saturated. The introduced approximation does not in
uence the system behavior in the

following two cases:

� the system is lightly loaded. In this case, the probability of having more than a few

waiting packets in places WBl and WIP is close to zero. Hence, the e�ect of the
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Place Meaning

FB Free bu�ers.
WBl Locally generated packets, waiting for a bu�er.
Il Locally generated packets, being copied into a bu�er.
Ol Packets to local node, being copied out of a bu�er.

WBe Externally generated packets, waiting for a bu�er.
Ie Externally generated packets, being copied into a bu�er.
Oe Packets to external node, being copied out of a bu�er.
FIP Free input ports.
FOP Free output ports.
WIP Externally generated packets, waiting for an input port.
WOP Packets to external node, waiting for an output port.
C1 Choice: is the required output port available for the packet?
C2 Choice: is there a packet waiting for the output port just released?
C3 Choice: is the required input port available for an incoming packet?
C4 Choice: is there a packet waiting for the input port just released?
C5 Choice: is the local node the �nal destination for the packet?

Transition Meaning

Al Locally generated packet is ready to be transmitted.
GBl Locally generated packet gets a bu�er.
IBl Locally generated packet is put into a bu�er.
OBl Packet directed to local node is read out of its bu�er.
Ae Externally generated packet is ready to enter the node.
GBe Externally generated packet gets a bu�er.
IBe Externally generated packet is put into a bu�er.
OBe Packet is transferred to an external node and frees its bu�er.
IPY1 Required input port is available.
IPN1 Required input port is not available.
IPY2 Input port just released is required by a packet waiting in WIP .
IPN2 Input port just released is not required by any packet waiting in WIP .
Tl Local node is the �nal destination for the packet.
Te Local node is not the �nal destination for the packet.

OPY1 Required output port is available.
OPN1 Required output port is not available.
OPY1 Output port just released is required by a packet waiting in WOP .
OPN2 Output port just released is not required by any packet waiting in WOP .

Table 1: Meaning of places and transitions in the SPN N .
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IPN2 is disabled if #(FIP ) = 5 ^#(WIP ) > 0.

OPN2 is disabled if #(FOP ) = 5 ^#(WOP ) > 0.

Te is present only if n > 2.

Figure 9: Approximate SPN model N .

introduced inhibitor arcs becomes negligible.

� the system is saturated even with the inhibitor arcs, which reduce the e�ective arrival

rate. In this case, the probability of WBl or WIP being nonempty is close to one
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Transition Firing rate

Al � (� is an input parameter to be varied)

IBl 1=720 tu�1

OBl 1=720 tu�1

Ae (2n � 1)=3 � �

IBe #(Ie)=720 tu�1

OBe #(Oe)=x (x is the unknown iteration parameter)

Transitions Priority level Firing probabilities

IPY1 IPN1 1 � =
#(FIP )

6
1 � �

IPY2 IPN2 2 
 1 � 
 =

 
5�#(FIP )

6�#(FIP )

!#(WIP )

Tl Te 3 � =
3

2n � 1
1 � �

OPY1 OPN1 4 � =
#(FOP )

6
1 � �

OPY2 OPN2 5 � 1 � � =

 
5�#(FOP )

6�#(FOP )

!#(WOP )

GBl 6 1

GBe 7 1

Table 2: Firing rates and probabilities of the transitions in the SPN N .

and increasing Kl or Ke only increases the state space and the solution cost, without

changing in any appreciable way the numerical value computed for the throughput of

packets.

The only unde�ned parameter in Table 2 is x, the average time required by an outgoing

packet to obtain and �ll a bu�er in the next node on its path. Only after this time elapses

can the bu�er for node i be released (through the arc from OBe to FB). By symmetry, this

time has the same average as the time that a packet in place WBe must wait before it can

obtain a local bu�er slot and enter place Ie, plus the time to �ll the slot, 720 tu.

Hence, we set up the following �xed-point iteration scheme:
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� Choose an initial guess x(0) for x.

� Compute the successive values for x as x(i) = w + 720 tu, where w is the average

waiting time and is obtained using Little's law:

w =
E[number of packets waiting]

E[throughput of packets]
=

E[#(WIP ) + #(WBe)

E[rate(Ae)]

� Stop the iterations when x(i) and x(i+1) are su�ciently close.

6 Numerical results

In the numerical experiments, we considered systems of size E3; . . .E8, with Nb = 10 or

12, interarrival packet time 1=� = 1000 tu; 1100 tu; . . . 2000 tu, and truncation parameters

Kl = Ke = 3. In most cases, the �xed-point scheme converged in just a few iterations. For

example, for E5, Nb = 12, 1=� = 1200 tu, four iterations are needed, starting from the initial

guess x(0) = 1000 tu, to obtain four signi�cant digits: x(1) = 744:9 tu, x(2) = 729:3 tu, and

x(3) = x(4) = 728:8 tu.

We discovered that the number of iterations increases as the the system is stressed, that

is, as the mesh size increases, the number of bu�ers decreases, or the interarrival packet

time decreases. The maximum number of iterations, thirteen, was observed for E8, when

Nb = 10, and 1=� = 1000 tu, resulting in x(13) = 912:7 tu. Interestingly, this happens even

if our initial guess, x(0) = 1000 tu, turned out to be always an overestimate of the value

obtained for x through the iterations, hence it is closest to the value x(13) = 912:7 tu than

to the �nal value of x obtained for any other combination of input parameters studied.

For our study, we focus on the average total packet latency time � , de�ned as the

average time elapsing from the instant a packet is generated by its source local processor

(�ring of transition Al), to the instant it is read by its destination local processor (�ring of

transition OBl). In the model of Fig. 9, this is obtained as the sum of three components:

� The \injection time": the average time a packet waits before it is put into a bu�er in

the source node, computed using Little's law:

E[#(WBl) + #(Il)]

E[rate(IBl)]
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� The \ejection time": the average time a packet waits before it is removed from the

bu�er in the destination node, computed using Little's law:

E[#(Ol)]

E[rate(OBl)]

� The \transit time": the average time a packet spends in transit, computed as the

product of the time to perform a hop times the expected number of hops:

x �
2n � 1

3

Fig. 10 shows the value of � as a function of the average interarrival time ��1, for various

system sizes (n) and number of bu�ers (Nb).

7 Comparison with simulation results

In the real system, the time required to perform most activities is far from being exponen-

tially distributed. With simulation, we can accurately portray any distribution, including

exponential, uniform, or constant. For example, packet transfers into or out of bu�ers are

constants of 720 tu in the simulation model.

In a Markovian SPN, all time delay distributions are approximated with exponential distri-

butions. By using Erlang(k) distributions with the same mean, we better approximate the

constant, or almost constant, nature of the random variables involved. Higher values of k

result in better approximation, but they also increase the size of the state space.

With exponential distributions and Nb = 10, the underlying CTMC contains 32,797 nodes

and 308,267 arcs. Increasing Nb to 12 results in 49,259 nodes and 476,838 arcs. Hence,

we limited ourselves to check the e�ect of using Erlang(2) distributions. When using the

Erlang(2) distribution for the Nb = 10 case, the underlying CTMC contains 749,795 nodes

and 6,829,308 arcs.

The comparison of SPN model results (using either exponentially or Erlang(2) distributed

times) against the simulation results is shown in Fig. 11 for the case of networks E3 and

E6, with Nb = 10. The percent workload, de�ned as � � 720 � 100% is on horizontal axis. In

general, the results are o� by only a few percent. As we would expect, the results with Erlang

distributions agree with the simulation results much more closely. Interestingly, the results

for a larger network show closer agreement than those for a small network. This is probably
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Figure 10: � , in tu, as a function of ��1 for di�erent values of n and Nb.

due to the fact that, under heavy load, the shape of the distribution of the interarrival times

to the transitions is less important, since all transitions are more likely to be busy most of

the time anyway.

8 Conclusion

In this paper, we presented our experience in using Stochastic Petri Nets to model an in-

dustrial size application. The paper has shown that Stochastic Petri net models can exploit

the symmetry of the system to construct a tractable, but approximate, analytic model, and

that they can yield results very close to those of a detailed simulation model, with much less

computational e�ort.
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Figure 11: Comparison with simulation results for the case of interconnect fabric E3 and E6 with

Nb = 10.

One of the di�culties in using the SPNs is that all time delays are approximated with

exponential distributions, while, in the real system, many time delays are constants. By using

Erlang(k) distributions with a given mean in the SPN model, we can better approximate the

constant distribution. However, as we have seen, this can lead to a sharp increase in the size of

the state space. To solve this problem, we are investigating the use of SPN having underlying

discrete-time Markov chains [11, 4]. We are currently working on the design of a software

package that will allow us to solve SPNs with continuous-time phase-type distributions, as

those used in this paper, their discrete equivalent (where any distribution over the integers

can be used, such as constant, discrete uniform, geometric or modi�ed geometric), and even,

under certain restrictions, with mixture of the two (see the \deterministic and stochastic

Petri nets" [2] and recent extensions [6]).
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