
@
HEWLETT
PACKARD

Bank Conicts in Cache Tags

Alan H. Karp
Sidney Hantler (IBM)
HPL-94-102
November 1994

Cache, Bank conict We would like to know the sustained per-
formance of a cache system with inter-
leaved, multi-ported cache tags when it
is presented with more address references
than it has ports to handle. This report
describes a program used to count the
number of bank conicts in the cache tags
and an analysis of a formula for computing
the probabilities directly.

cCopyright Hewlett-Packard Company 1994

Internal Accession Date Only



1 Introduction

Because main memories are large and quite far from the processor, there are many ways to
minimize the impact of conicts in interleaved memories. For example, most such memories
continue to accept requests while servicing a bank conict; ow control turns o� requests
only when queues get too full. There have been numerous studies of the performance of
interleaved memory systems on both RISC and CISC machines.

We are interested in a di�erent problem, the performance of a cache with interleaved tags in
a VLIW machine. Caches are much smaller and much closer to the processor. The only way
to keep up with memory requests is to make things as simple as possible. In particular, we
would like to have a cache that never has to delay the processor when it holds the requested
data. In a VLIW machine, which can make more than one address request per cycle, we
would like to provide one port to the cache tags for every address request. Unfortunately,
we can't always have enough ports so we may have to deal with conicts.

Simplicity dictates against having queues and general ow control, so we will assume that
the cache tags stall the machine as soon as a conict is detected. In particular, assume that
the cache tags are interleaved B ways with P ports each and the memory unit will send A

addresses on each cycle. If more than P but fewer than 2P addresses arrive at any bank,
the machine will stall for a cycle; if more than 2P but fewer than 3P arrive, the machine
will stall for 2 cycles, etc.

We will assume that the addresses fall into the banks at random. Of course, real programs
don't address memory at random, but we can achieve the same e�ect by using a random
hash when placing the data into the cache.

It is straightforward to enumerate all possible con�gurations of A addresses falling into B

banks. This enumeration is not even very time consuming since we are dealing with relatively
small numbers for typical caches. Current circuit densities force us to interleave a typical
cache 4 to 16 ways. The most memory intensive operation normally supported on high
performance machines is a SAXPY[2] which does 2 loads and 1 store per memory unit per
cycle. Typical VLIW or super-scalar machines have between 1 and 4 memory units so that
3 � A � 12.

The smallest case only involves some 2,048 possible con�gurations; the largest some 256
million. The smaller cases take only a few seconds on a modern workstation to enumerate,
but the largest ones can take an excessive amount of time. Hence, we present here both the
enumeration and a derivation of a simple formula to evaluate the number of conicts.

First, we'll describe how to �nd the number of conicts by enumeration. Next, we'll describe
the analysis used to derive a general solution. Finally, we'll present the numbers showing the
performance for various con�gurations. Appendices contain descriptions of the program that
enumerates all cases for particular cache con�gurations and the program that implements

2



the general solution.

2 Enumeration

There are two non-analytic ways to �nd how many references the busiest bank must handle
for a given number of banks and addresses. The �rst is simulation by something like a Monte
Carlo method which can only approximate the solution. The second approach is enumeration
which can give exact counts of the possible cases. Enumeration is practical only when the
number of cases to be considered is modest. For the parameters of interest, enumeration is
�ne.

One way to formulate the enumeration problem is using the \Stars and Bars" approach[1].
For B banks, we divide the number line into B segments which requires B � 1 \Bars". We
enumerate the cases by putting these bars down in all possible combinations with A \Stars".

If we treat the \Bars" as ones and the \Stars" as zeros, we see the enumeration consists of
picking all those integers with a binary representation containing exactly B � 1 ones and A

zeros. The number of cases is quite manageable even for modestly large values of B and A;
there are only about 54,000 such numbers with 15 ones and 6 zeros out of some 2,000,000
integers with 21 bits. The program that does the counts is described in Appendix A.

3 Analysis

Assume we have a cache with B banks of tags, each bank having P ports. Assume also
that we simultaneously present this cache with A addresses. As long as A � P , there will
never be a need to stall the machine. The interesting case is when A > P . If P < A < 2P ,
it will take up to 2 cycles to service the memory requests; up to 3 cycles if 2P < A < 3P ,
etc. Hence, we need to know the number of times the busiest bank gets 1 � k � A requests.
This section explains how we arrived at a formula for f(B;A; k), the number of times the
busiest B bank must service exactly k requests when presented with A random addresses.

First, look at k = A. There are exactly B ways to put these k references into the B banks;
all A references fall into any of the B banks. If k = A � 1, we can put all the addresses in
the same bank, or A� 1 addresses in one bank and the remaining one in another bank. The
number of times this happens is B(B � 1). The �rst term comes from the ways that A� 1
items can go into B slots; the second from the number of ways that 1 item can go into B�1
slots.

Things rapidly get more complicated. Basically, we end up enumerating the number of ways
we can add up integers to make A. Fortunately, the next most complicated case leads us
to a nice solution. When k = A � 3, we can put the remaining 3 addresses into one of the
remaining banks, 2 in one bank and the other in a third bank, or all 3 into di�erent banks.
In other words, having placed the k references into one of the B banks, we are left with the

3



problem of placing A� k reference in B� 1 banks with no more than k references per bank.
Since this second problem formulation is exactly the one we started with, we are let to a
recursive formula.

Before presenting the equation, there is one more case that needs to be considered. So far
we have been considering cases with A < 2k. If A = mk, we have one more situation to
worry about. We can have exactly 1 bank with k references, two such banks, and so on up to
m such banks. In each case, the remaining references are distributed among the remaining
banks using an identical formulation. So, when we have j occurrences of k references to
put into B banks, we have the \B choose j" problem, the solution to which is the binomial
coe�cient

 
B

j

!
=

B!

j!(B � j)!
: (1)

The formula which gives the number of occurrences with the busiest of B banks having m

references when the memory is presented with A simultaneous references is

f(B;A;m) =
bc=mcX
k=1

 
B

k

!
m�1X
j=1

f(B � k;A� km; j); (2)

with

f(B;A; 1) =

 
B

A

!
8B � A � 1

= 0 8B < A

f(B; 0; 1) = 1 8B � 1
f(B; 0;m) = 0 m > 1:

(3)

The program that evaluates f(B;A;m) is described in Appendix B. To see how this formula
works, consider the case of B = 8, A = 6, and m = 3. We get

4



f(8; 6; 3) =
2X

k=1

 
8
k

!
2X

j=1

f(8 � k; 6� 3k; j)

=

 
8
1

!
[f(7; 3; 1) + f(7; 3; 2)]+ 

8
2

!
[f(6; 0; 1) + f(6; 0; 2)]

f(7; 3; 2) =

 
7
1

!
f(6; 1; 1)

f(8; 6; 3) =

 
8
1

! 
7
3

!
+

 
8
1

! 
7
1

! 
6
1

!
+

 
8
2

!

= 644:

(4)

In other words, there are exactly 644 conicts out of all possible ways of distributing 6
addresses to 8 banks. The total number of possible assignments is simply

C(B;A) =
AX

m=1

f(B;A;m): (5)

Since C(8; 6) = 1; 716, the busiest bank must handle 3 references 38% of the time.

4 Performance

We can now estimate the performance of our cache subsystem. The percentage of oc-
currences of the busiest of B banks having m references when presented with A addresses
is

p(B;A;m) =
f(B;A;m)

C(B;A)
: (6)

We can now compute the average time to respond to the A addresses when we have P ports
as

t(B;A) =
mX
k=1

p(B;A;m)

&
k

P

'
(7)

Table 1 shows the results for 8, 16, and 32 banks presented with 6 addresses. Table 2 shows
that this con�guration handles 6 references in 1.58 cycles with 8 banks and in 1.24 cycles
with 16 banks.

5



Table 1: Percent times busiest bank has m references when given 6 addresses.

m B = 8 B = 16 B = 32
1 0.016317 0.147475 0.389796
2 0.440559 0.614035 0.528049
3 0.375291 0.198290 0.074887
4 0.130536 0.035383 0.006827
5 0.032634 0.004423 0.000427
6 0.004662 0.000295 0.000014

Table 2: Average number of cycles to service 6 addresses.

P B = 8 B = 16 B = 32
1 2.736597 2.135928 1.700081
2 1.580420 1.243108 1.082595
3 1.167832 1.040100 1.007268
4 1.037296 1.004718 1.000440
5 1.004662 1.000295 1.000014

It's a good thing we derived Equation 2. Even the case with 16 banks takes almost a minute
to enumerate on a modern workstation. Enumeration is totally impractical in the third case
which has over 2,000,000 occurrences of 31 ones and 6 zeros.

5 References

[1] William Feller. An Introduction to Probability Theory and its Applications, volume 2 of
Wiley Mathematical Statistics Series. John Wiley, New York, 1950.

[2] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra Subprograms
for Fortran Usage. ACM Trans. Math. Softw., 5:308{329, 1979.

[3] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes
in C. Cambridge University Press, London, 1992.

6



These appendices are nuweb descriptions of the two programs used for the calculations. The
�rst is a simple enumeration scheme; the second embodies Equation 2.

A Enumeration Program

This section is a nuweb implemenation of the program that enumerates all cases for the
given input parameters.

First, I'll put a brief explanation in the code.

"bankenum.c" 7a �

/*

Enumerate number of bank conflicts - bankenum(b,s)

b = number of banks

s = number of simultaneous references

*/

3

File de�ned by scraps 7abc, 8, 9abc, 10, 11, 12ab, 13, 14a.

I may want to see the bit patterns. A macro variable can be used to turn this printing on
and o�.

"bankenum.c" 7b �

#undef SEEBITS

3

File de�ned by scraps 7abc, 8, 9abc, 10, 11, 12ab, 13, 14a.

Now, the standard start with paramenters coming in.

"bankenum.c" 7c �

main(argc,argv)

int argc;

char *argv[];

3

File de�ned by scraps 7abc, 8, 9abc, 10, 11, 12ab, 13, 14a.

The program starts with some declarations.

7



Table 3: Variables used in bankenum.
Variable Type De�nition
b Input Number of banks
s Input Number of addresses requested
i, j Local Loop counters
k Local Largest integer considered
n Local Remaining bits in integer
nb Local Number of bars
ns Local Number of stars
p Local Number of banks
ss Local Number of consecutive 0s
mss Local Max consecutive 0s for this i
t Local Low order bit of n
cases Local Number of integers with s 0s
total Local Number of terms in counts
counts Local Number of times get i 0s
countu Local Number of times get max i 0s
temp Local Provisional counts
pcts Local counts/total
pctu Local countu/cases
sum Local Used for running percentages
bits Opt. Bit patters for printing
time Out Ave. time per s refs

"bankenum.c" 8 �

{

int b, s; /* Input parameters */

int c, d, i, j, k, n, nb, ns, p, ss, mss, t;

int cases = 0, total = 0;

int counts[20], countu[20], temp[20];

float pcts[20], pctu[20], sum, time = 0;

char bits[20];

3

File de�ned by scraps 7abc, 8, 9abc, 10, 11, 12ab, 13, 14a.

OK, it's time to check the input parameters.

8



"bankenum.c" 9a �

/*

Read and check parameters

*/

if ( argc < 3 ) {

printf("Not enough input parameters.\n");

return 1;

}

if ( argc > 3 ) {

printf("Too mainy input parameters.\n");

return 2;

}

b = atoi(argv[1]);

s = atoi(argv[2]);

printf("%d banks, %d addresses\n",b,s);

3

File de�ned by scraps 7abc, 8, 9abc, 10, 11, 12ab, 13, 14a.

I have two global counters. The �rst, counts[i], counts the total number of times that
exactly i addresses appear in a bank. The second, countu[i] counts the number of integers
that have exactly i consecutive zeros, i.e. the number of cases with exactly i zeros in an
interval.

"bankenum.c" 9b �

/*

Initialize global counters

*/

for ( i = 0; i < s; i++ ) counts[i] = countu[i] = 0;

3

File de�ned by scraps 7abc, 8, 9abc, 10, 11, 12ab, 13, 14a.

This outer loop runs through all the integers between 0 and 2b+s�1.

"bankenum.c" 9c �

/*

For each index in range count stars and bars

*/

k = 1<<(b-1+s);

for ( i = 0; i < k; i++ ) {

3

File de�ned by scraps 7abc, 8, 9abc, 10, 11, 12ab, 13, 14a.

9



The inner loop runs over bits in the current integer counting the number of ones and the
number of zeros. It also keeps track of the number of consecutive zeros, recording the number
of each in a temporary array. The array is temporary because we don't know if the counts
are valid until we see that the integer has exactly B � 1 bars and exactly A stars.

"bankenum.c" 10 �

/*

Initialize for this integer

*/

for ( j = 0; j <= s; j++ ) temp[j] = 0;

nb = ns = ss = mss = 0;

n = i + k;

3

File de�ned by scraps 7abc, 8, 9abc, 10, 11, 12ab, 13, 14a.

This inner loop counts the number of ones, the number of zeros, and the number of consec-
utive zeros. The last count is held in the temporary array.

10



"bankenum.c" 11 �

/*

Examine bits in this number one by one

*/

for ( j = 0; j < (b+s); j++ ) {

t = n & 1;

bits[j] = t;

if ( t == 1 ) nb ++;

else ns ++;

/*

Stop after too many bars or stars

*/

if ( nb <= b && ns <= s ) {

if ( t == 1 ) {

mss = (mss>ss) ? mss : ss;

temp[ss]++;

ss = 0;

}

else ss++;

}

else

break;

n = n >> 1;

}

3

File de�ned by scraps 7abc, 8, 9abc, 10, 11, 12ab, 13, 14a.

If the number of ones and the number of zeros are correct, I can record the results. I'll also
print the bit patterns and individual counts if requested.

11



"bankenum.c" 12a�

/*

Collect stats for valid cases

*/

if ( nb <= b && ns <= s ) {

cases++;

#ifdef SEEBITS

for ( j = 1; j < (b+s); j++ )

printf("%d",bits[b+s-1-j]);

#endif

for ( j = 0; j <= s; j++) {

if ( temp[j] > 0 ) d = j;

counts[j] += temp[j];

#ifdef SEEBITS

printf(" %d",temp[j]);

#endif

}

countu[d]++;

#ifdef SEEBITS

printf(" %d %d %d %d\n",i,nb,ns,mss);

#endif

}

}

3

File de�ned by scraps 7abc, 8, 9abc, 10, 11, 12ab, 13, 14a.

Now I'll print the counts. First the count of all occurrences, then the count of number of
integers with having a speci�ed count.

"bankenum.c" 12b�

printf("Counts:\n");

for ( i = 0; i <= s; i++ ) {

total += counts[i];

printf(" %8d",counts[i]);

}

printf("\n");

for ( i = 0; i <= s; i++ )

printf(" %8d",countu[i]);

3

File de�ned by scraps 7abc, 8, 9abc, 10, 11, 12ab, 13, 14a.

The percentages of each occurrence are probably most interesting fact since I can calculate

12



the performance of the memory system using this data. The running percentages show the
fraction of occurrences that have the indicated maximum or below.

"bankenum.c" 13 �

/*

Percentages

*/

printf("\nPercentages:\n");

for ( i = 0; i <= s; i++ ) {

pcts[i] = ((float)counts[i])/((float)total);

printf(" %8.6f",pcts[i]);

}

printf("\n");

for ( i = 0; i <= s; i++ ) {

pctu[i]=((float)countu[i])/((float)cases);

printf(" %8.6f",pctu[i]);

}

/*

Running Percentages

*/

printf("\nRunning Percentages:\n");

sum = 0;

for ( i = 0; i <= s; i++ ) {

sum += pcts[i];

printf(" %8.6f",sum);

}

printf("\n");

sum = 0;

for ( i = 0; i <= s; i++ ) {

sum += pctu[i];

printf(" %8.6f",sum);

}

printf("\n");

3

File de�ned by scraps 7abc, 8, 9abc, 10, 11, 12ab, 13, 14a.

The average time to satisfy the incoming requests can be calculated from the number of
ports on each bank, p in the inputs, and the percentages just printed. Note that this is the
only place p is used.

13



"bankenum.c" 14a�

/*

Timing

*/

printf("Cycles per case for various numbers of banks for %d cases.\n",cases);

for ( p = 1; p < s; p++ ) {

time = 0;

for ( i = 1; i <= s; i++ ) time += pctu[i]*((i+p-1)/p);

printf("%d %f\n",p,time);

}

}

3

File de�ned by scraps 7abc, 8, 9abc, 10, 11, 12ab, 13, 14a.

B Recursion Program

This section is a nuweb implemenation of the program that evaluates the recursion formula
in Equation 2.

First, I'll put a brief explanation in the code.

"bankeval.c" 14b�

/*

Evaluate number of bank conflicts - bankeval(b,s)

b = number of banks

s = number of simultaneous references

*/

3

File de�ned by scraps 14bc, 15, 16abc, 17, 18abc, 19ab, 20abc.

Now, the standard start with paramenters coming in.

"bankeval.c" 14c�

main(argc,argv)

int argc;

char *argv[];

3

File de�ned by scraps 14bc, 15, 16abc, 17, 18abc, 19ab, 20abc.

The program starts with some declarations.

14



Table 4: Variables used by bankeval.

Variable Type De�nition
b Input Number of banks
s Input Number of addresses requested
cases Local Number of integers with s 0s
count Local Number of times get max i 0s
i, m Local Loop counter
p Local Number of ports per bank
sum Local Used for running percentages
pct Out count/cases
time Out Ave. time per s refs

The program starts with some declarations.

"bankeval.c" 15 �

{

int b, p, s; /* Input parameters */

int i, m;

int cases = 0, fsumi = 0, fsumo = 0;

int count[20];

float pct[20], sum, time = 0;

3

File de�ned by scraps 14bc, 15, 16abc, 17, 18abc, 19ab, 20abc.

OK, it's time to check the input parameters.

15



"bankeval.c" 16a�

/*

Read and check parameters

*/

if ( argc < 3 ) {

printf("Not enough input parameters.\n");

return 1;

}

if ( argc > 3 ) {

printf("Too mainy input parameters.\n");

return 2;

}

b = atoi(argv[1]);

s = atoi(argv[2]);

printf("%d banks, %d ports, %d addresses\n",b,p,s);

3

File de�ned by scraps 14bc, 15, 16abc, 17, 18abc, 19ab, 20abc.

The count for each possible maximum is de�ned as a recursive function.

"bankeval.c" 16b�

/*

The outer loop is over all possible counts per bank

*/

cases = 0;

for ( m = 1; m <= s; m++ ) {

count[m] = f(b,s,m);

cases += count[m];

}

3

File de�ned by scraps 14bc, 15, 16abc, 17, 18abc, 19ab, 20abc.

Now I'll print the counts. First the count of all occurrences, then the count of number of
integers with having a speci�ed count.

"bankeval.c" 16c�

printf("Counts:\n");

for ( i = 0; i <= s; i++ )

printf(" %8d",count[i]);

3

File de�ned by scraps 14bc, 15, 16abc, 17, 18abc, 19ab, 20abc.

16



The percentages of each occurrence are probably most interesting fact since I can calculate
the performance of the memory system using this data. The running percentages show the
fraction of occurrences have the indicated value or below.

"bankeval.c" 17 �

/*

Percentages

*/

printf("\nPercentages:\n");

for ( i = 0; i <= s; i++ ) {

pct[i]=((float)count[i])/((float)cases);

printf(" %8.6f",pct[i]);

}

printf("\n");

/*

Running Percentages

*/

printf("Running Percentages:\n");

sum = 0;

for ( i = 0; i <= s; i++ ) {

sum += pct[i];

printf(" %8.6f",sum);

}

printf("\n");

3

File de�ned by scraps 14bc, 15, 16abc, 17, 18abc, 19ab, 20abc.

The average time to satisfy the incoming requests can be calculated from the number of
ports on each bank, p in the inputs, and the percentages just printed. Note that this is the
only place p is used. I'll save time by evaluating all reasonable values for p.

17



"bankeval.c" 18a�

/*

Timing

*/

printf("Cycles per case for various numbers of banks for %d cases.\n",cases);

for ( p = 1; p < s; p++ ) {

time = 0;

for ( i = 1; i <= s; i++ ) time += pct[i]*((i+p-1)/p);

printf("%d %f\n",p,time);

}

}

3

File de�ned by scraps 14bc, 15, 16abc, 17, 18abc, 19ab, 20abc.

That's the end of the main routine. Here is the function that evaluates Equation 2.

"bankeval.c" 18b�

/*

Recursive evaluation of

(s)

sum(k=1:c/m) ( ) sum(j=1:m-1) f(s-k,c-km,j)

(m)

*/

int f(s,c,m)

int s, c, m;

{

3

File de�ned by scraps 14bc, 15, 16abc, 17, 18abc, 19ab, 20abc.

First, some declarations.

"bankeval.c" 18c�

int j, k, sumi, sumo;

float pct, time;

3

File de�ned by scraps 14bc, 15, 16abc, 17, 18abc, 19ab, 20abc.

The �rst thing to do is put in those cases that end the recurrence. The general rule for
f(x; y; z) is that

18



Table 5: Variables used by f(s,c,m).

Variable Type De�nition
s Input Number of servers
c Input Number of clients
m Input Max clients per server
j, k Local Loop counters
sumi Local Inner loop accumulator
sumo Local Outer loop accumulator
pct Out count/cases
time Out Ave. time per s refs

f(s; c; 1) =

 
s

c

!
8s � c � 1

= 0 8s < c

f(s; 0; 1) = 1 8s � 1
f(s; 0;m) = 0 m > 1:

(8)

"bankeval.c" 19a�

if ( m == 1 ) {

if ( c == 0 ) return 1;

if ( s >= c ) return binomial(s,c);

else return 0;

}

if ( m > 1 && c == 0 ) return 0;

3

File de�ned by scraps 14bc, 15, 16abc, 17, 18abc, 19ab, 20abc.

Now, let's look at the other cases. The outer loop runs over the number of ways that a
maximum of m can occur.

"bankeval.c" 19b�

/*

Sum over number of ways max of m can occur

*/

sumo = 0;

for ( k = 1; k <= c/m; k++ ) {

3

File de�ned by scraps 14bc, 15, 16abc, 17, 18abc, 19ab, 20abc.

19



The inner loop runs over all maxima less than m.

"bankeval.c" 20a�

/*

Sum over all maxima less than m

*/

sumi = 0;

for ( j = 1; j < m; j++)

sumi += f(s-k,c-k*m,j);

3

File de�ned by scraps 14bc, 15, 16abc, 17, 18abc, 19ab, 20abc.

Finally, we do the outer sum and return.

"bankeval.c" 20b�

sumo += binomial(s,k) * sumi;

}

return sumo;

}

3

File de�ned by scraps 14bc, 15, 16abc, 17, 18abc, 19ab, 20abc.

We need to de�ne the binomial coe�cient. This routine uses the recursive formula from
Equation (6.1.7) from Numerical Recipes[3]. This program returns 0 when n < k.

"bankeval.c" 20c�

/*

Binomial coefficient by recursion

*/

int binomial(n,k)

int n, k;

{

if ( k > n ) return 0;

if ( k == 0 || k == n ) return 1;

if ( k == 1 ) return n;

else return ((n-k+1)*binomial(n,k-1))/k;

}

3

File de�ned by scraps 14bc, 15, 16abc, 17, 18abc, 19ab, 20abc.

20




