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Simulating a structurally simple model of a
manufacturing enterprise revealed complex
dynamic behavior. Enterprise modeling and
simulation provided estimates of end-of-life
inventory and order delivery performance based
on interactions of forecast quality, quoted product
availability, material procurement and safety
stock policies, vendor lead times, product life
cycle, and part commonality. An unexpected
result was that end-of-life inventory can exist
even under ideal environmental conditions. Pro­
spective applications of these methods include
estimating the effects of incremental improve­
ments, verifying impacts of process changes, and
generating enterprise behavior information.
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Enterprise Modeling and Simulation:
Complex Dynamic Behavior of a
Simple Model of Manufacturing
Simulating astructurally simple model ofamanufacturing enterprise
revealed complex dynamic behavior. Enterprise modeling and simulation
provided estimates ofend-of-life inventory and order delivery performance
based on interactions of forecast quality, quoted product availability,
material procurement and safety stock policies, vendor lead times,
product lifecycle, and part commonality. An unexpected result was that
end-of-life inventory can exist even under ideal environmental conditions.
Prospective applications ofthese methods include estimating the effects
of incremental improvements, verifying impacts of process changes, and
generating enterprise behavior information.

by M. Shahid Mujtabat

Can we understand the potential impacts ofprocess changes?
Can we quantify the expected amount of improvements and
benefits? Can we anticipate the effects of environmental
changes? Can we predict the effects and side-effects of mak­
ing changes? And can we do all these before taking action
and making major resource commitments?

We suggest that the answer is yes to all these questions, and
the means is enterprise modeling and simulation.

The purpose of this paper is to show how enterprise model­
ing and simulation research activities at HP Laboratories
can be applied to predict system behavior and gain insights
using sound engineering and scientific principles and tech­
niques before implementing the new solution at the level of
the business enterprise.

In this paper, we first discuss modeling and simulation tech­
nology in broad terms to provide background and context.
We then describe one model, the Simple Model, in detail,
and present the insights gained from running simulations on
that model and analyzing and displaying the results. An un­
expected insight was that end-of-life inventory existed at the
end of the product life cycle even though the method for
computing safety stocks should theoretically have resulted
in none when customers ordered exactly according to fore­
cast. Other interesting insights were that high inventory levels
can occur when actual orders come in too high or too low
with respect to forecasts. In other words, forecast quality has
a major impact on some of the metries under consideration.
We then describe the current state of enterprise modeling
and simulation, future research directions, and possible ap­
plication areas, including process reengineering on page 8.
In the appendixes we include more detailed explanations
and sufficient technical details of the model to permit the
results to be duplicated by other researchers. A glossary of

t Author can be reached atemail addressmujtabaOhpl.hp.com.
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terms and a summary of the values for different experiments
are provided for quick reference on pages 7 and 17. The
evolution of enterprise modeling and simulation activities at
HP Laboratories and the place of the Simple Model in those
activities provides a historical context and is described on
page 12.

Modeling and Simulation
Extensive literature exists on the simulation modeling pro­
cess, for example Chapter 1 of Law and Kelton.! Chapter 1
ofPritsker,2 Chapter 6 ofMcHaney,3 and Law and McComas.4

The general consensus is that the purposes of the simulation
modeling process are to define a problem clearly and to de­
velop a model as a tool to understand and solve that problem

"Modeling and simulation have become endeavors central to
all disciplines of engineering and science. They are used in
the analysis ofphysical systems where they help us gain a
better understanding ofthe functioning of our physical world.
They are also important to the design ofnew engineering
systems where they enable us to predict the behavior of a
system before it is actually built. Modeling and simulation
are the only techniques available that allow us to analyze
arbitrarily nonlinear systems accurately and under varying
experimental condtnons.tf

"The facility or process of interest is usually called a system,
and in order to study it scientifically we often have to make
a set of assumptions about how it works. These assumptions,
which usually take the form ofmathematical or logical rela­
tionships, constitute a modet that is used to try to gain some
understanding of how the corresponding system behaves."1

Thus, a model is a conceptual abstraction of an existing or
proposed real system that captures the characteristics of
interest of the system Modeling is the process of building
the abstraction (model).



"If the relationships that compose the model are simple
enough, it may be possible to use mathematical methods
(such as algebra, calculus, or probability theory) to obtain
exact information on questions of interest; this is called an
analytic solution. However, most real-world systems are too
complex to allow realistic models to be evaluated analytically,
and these models must be studied by means of simulation."1

"Simulation is the use ofa model to develop conclusions that
provide insight on the behavior of any real world elements.
Computer simulation uses the same concept but requires that
the model be created through programming on a computer."3

In general, modeling and simulation are useful when system
prototyping is too costly or time-consuming, seriously dis­
ruptive, or simply impossible. They are useful for exploring
proposed system changes by providing performance esti­
mates of a proposed system or of an existing system under
some projected set of operating conditions. A simulation
model or set ofmodels can provide an experimental testbed
on which to try out new ideas or concepts, since it is
cheaper to experiment in the laboratory than on the real
system

Our premise is that these techniques applied to enterprise
processes could help predict the behavior of the organization
more quantitatively than repeated assertion or the application
of mental models.

Enterprise Modeling and Simulation
We define enterprise modeling as the process of building
abstractions or models of three primary functional compo­
nents of an enterprise: manufacturing, marketing, and R&D
(research and development) for the purpose of gaining in­
sight into the interactions between these functions and the
interaction of the enterprise with other enterprises. The
complexity of the enterprise and the large number of people
who have ownership ofdifferent parts makes it difficult for
asin~eindividualto~aspadeUilledunde~tandingofall

the components. There is a limit to the level of complexity
and the means to share and communicate it with others that
can be carried in the head of a single individual.

Many process changes and decisions are based on implicit
mental models in the heads of decision makers or advocates.
Mental models'' are deeply ingrained assumptions, general­
izations, or even pictures or images that influence how we
understand the world and how we take action. Very often,
we are not consciously aware of our mental models or the
effects they have on our behavtorf Generally mental models
assume that there are a small number of factors in cause and
effect relationships. The problem with mental models is the
difficulty of communicating them, checking their consistency,
and combining the mental models of different people. It is
very difficult to estimate the effects of interacting factors
and to combine mental models into a larger-scale composite
model that incorporates the insights, knowledge, and under­
standing of many individuals.

One means of merging different viewpoints is the use of
Hierarchical Process Modeling,7,8which provides an ex­
plicit, graphical representation of the process with which
individuals can agree or disagree. Experience in applying
Hierarchical Process Modeling9 to the building of enterprise
models suggests that the result is a repository for knowledge

of the processes we are studying. During its creation, team
members develop a common understanding of the dynamics
of model behavior through interaction with one another and
with the model. The result is an explicit model that reconciles
differing points ofview and a reusable model that serves as
a foundation on which to build future models.

There is an awareness that a model can be used to embody
knowledge of a system rather than be used as a tool.l? For
example, Funkel! states that at the Boeing Company, simu­
lation has provided "a forum for the collection ofprocess
operating rules and assumptions in one medium as a basis to
develop the model" of a process or system.

.Other ongoing works on the application ofmodels to em­
body knowledge at the enterprise level of manufacturing
operations include TOVE12 and elM-OSA13,14 Pardasani and
Chan15 describe the expansion of an infrastructure for creat­
ing simulation models based on the ISO reference model for
shop floor production standards to create enterprise models.

In applying the process of enterprise modeling and simulation
we need to engage in activities ofmodeling in the large (with
"model as knowledge") where the major issues of interest
are communication and documentation, team coordination,
modularity and large model development, and multimodel
organization, instead ofmodeling in the small (with "model
as tool) where the issues of interest are top-down design,
informal and formal program specifications, simplification
and elaboration, and validation and verification.l''

In modeling the manufacturing enterprise, the primary area of
focus is the manufacturing function, which includes, in addi­
tion to the traditional production and shop floor functions,
the production and material planning, material management,
and order processing functions. In traditional modeling and
simulation applied to the manufacturing domain, computer
simulations have been applied to the production floor or ma­
chine shop level to study machine utilization and production
and material flows and buffers, These methods together with
traditional operations research methods have helped reduce
inventory on the production floor and cut build times to a
level where these are small compared to the other parts of
the system Enterprise modeling and simulation expand the
scope so that traditional modeling and simulation are com­
ponents in the enterprise modeling and simulation system.

Enterprise modeling and simulation indicate the impact of
proposed improvement efforts at the enterprise level before
the changes are made. The "simulation" in enterprise model­
ing and simulation is the process of running the model in a
computer to understand the behaviors over time under differ­
ent operating conditions and circumstances. It will help us
identify leverage points and indicate where we can expect to
get the most impact for a given investment or change. 16

According to Senge,6 "The real leverage in most manage­
ment situations lies in understanding dynamic complexity,
not detail complexity." He suggests that most systems analy­
ses focus on detail complexity (that is, a large number of
variables), not dynamic complexity ("situations where cause
and effect are subtle, and where the effects over time of
interventions are not obvious"). Wesuggest that enterprise
modeling and simulation help in understanding dynamic
complexity, and in addition provide the framework for
slowly expanding the detail complexity.

3
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Fig. 1. Diagram of the Simple
Model for the nominal case
experiment.

Modeling and simulation at the enterprise level are showing
increasing levels of activity. For example, a recent article in
Fortune magastnel? discusses business-oriented economics
that focuses on what economists call "the finn" and the rest
of us call "the company" as the unit of analysis. (Traditional
microeconomics, by contrast, is concerned with markets
and prices. It looks at the economy or at an industry, but
rarely peeks inside the individual enterprise.) Fortune cites
the example of Merck's finance team, which built a com­
pleted model and subjected it to Monte Carlo simulation
analysis.

The Simple Model

Conceptual Description
Fig. 1 shows conceptually the Simple Model of a factory
producing a product called Adder. t Marketing specifies a
trapezoidal order forecast profile for customer orders, and
the number of consignment units (defined as demonstration
units used in the sales offices). R&Dspecifies the Adder
product structure. Order processing quotes a product avail­
ability of four weeks. Production determines that the build
time is two weeks, and shipping states that transit time for
sending the product to the customer is one week. We as­
sume that the production and shipping processes are under
sufficient control that they do not vary from these constant
numbers.

The Simple Model (shown with capital letters because ofits
importance in this paper), was one in a series of models
developed at HP Laboratories (see page 12). The Simple
Model was named because ofits structural simplicity, but as
subsequent descriptions will show, it exhibits dynamic be­
havior that is complex and not intuitively obvious until it is
explained. Expressed in terms used by Senge,6 the Simple
Model is a tool for understanding dynamic complexity using
a model with very low detail complexity.

The Simple Model was commissioned to abstract a real man­
ufacturing facility with greatly simplified assumptions, such
as a single product with a one-level bill of materials and a
trapezoidal order demand pattern, The purpose of the model
was to explore the relationship between different factors
and metries used in manufacturing. Although the model can
generate data on many different metrics, this paper will focus
on two main metrics: (l) inventory levels and write-offat the
end of the product life cycle and (2) customer satisfaction
metrics. We will first describe the structure and assumptions
of the Simple Model and then show the results ofrunning
the model under different conditions.

The problem assumes that the values of class A, B, and C
parts in the Adder product make up 50, 30, and 20 percent,
respectively, of the product material cost. In valuing the fin­
ished product, labor cost is small enough to be factored into
the material cost, and the value of the product is the sum of
values of its parts. In addition, we assume that the values of
6-week, lO-week, and 14-week lead time parts make up 25,
40, and 35 percent, respectively, of the product cost, that the
vendors deliver the parts exactly on time, and that there are
no rejects because of defective parts.

These characteristics are reflected in Table I, which shows
the value of each part category. There are a large number of
unit costs and part quantity combinations that satisfy the
above constraints. The actual bill of materials used for the
model is shown in Table II.

The length of the longest lead time among the parts is 14
weeks for parts A3, B.3, and C.3. Allowing a build time of

t There was a littlebitofwhimsy innaming theproduct The author selected thename from a
fairytaleinwhich somebody ordered thebiggest adder available, expecting it tobeanadding
machine. When thebox wasopened, outpopped asnake. Snakes, ofcourse. was aninternal
HP code name fora class ofworkstations.
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Given that we want quoted availability to be less than the
sum ofmaterial delivery, production, and product delivery
times, we need to plan ahead of time how much to build
based on order forecasts. This decision on how much to
build in future weeks is the responsibility of production

Table I
Simple Model Adder Product Structure

lal ProductStructurebyPartValue

Part Value Part Value Part Value

Al $1250 B.1 $750 C.1 $500

A2 $2000 B.2 $1200 C.2 $800

A3 $1750 B.3 $1050 C.3 $700

two weeks and transit time of one week means that the pe­
riod from the time parts A3, B.3, and C.3 are ordered in the
manufacturing enterprise to the time that the product using
those parts is received by the customer is 17 weeks. This
means that the policy of waiting for customer orders before
we order parts from our vendors will lead to an order-to­
delivery time of at best 17 weeks.

To quote availability of four weeks requires us to order mate­
rial and plan production before we receive customer orders.
The best information we have on current and past customer
behavior is actual orders, and the best information we have
on future customer orders is the order forecast L+3 L+4 L+5 Lif234

Months

~ ConsigllOellt Demand
• Order Demand

1"
L

80

60
!=::l

48 V/2

20

0

FJg. 2. Adder order forecast and consigrnnent demands in units.

planning, which each week computes the number of units to
be started in future weeks.

Forecasts of future customer orders are estimates; customers
may order more or less than forecasted. In the event that
customers order less, we should have no problem meeting
the demand ifwe build to meet the forecast. However, if
customers order more, we might run out of product. To
allow for this contingency production planning must specify
that we need to build a few more units and carry them in a
stock of finished goods inventory (FGI). The amount of ex­
tra product to be carried is the safety stock, and depends on
many factors including the average expected order level, the
expected fluctuations in orders, and how much we want to
allow for contingencies. A high safety stock level will pro­
tect us from low forecasts, but requires a greater investment
in inventory. One way of specifying inventory levels is to use
a measure related to number of weeks of forecasted de­
mand. In the case of this model, we assume that production
planning specifies two weeks of 13-week leading average
forecast as target FGI safety stock.

The discussions for FGI safety stock are also applicable for
raw material. There must be enough raw material on hand
when the time comes to build the product. To allow for ex­
cess demand 110mthe production line because of high cus­
tomer demand, and for late deliveries by vendors, we need
to order some extra material. This extra amount is deter­
mined by material planning and is the target raw parts in­
ventory (RPI) safety stock. The amount of RPI safety stock
can be determined in different ways. One way is to use part
classification.

In practice, part classification indicates the relative impor­
tance of a part and hence the attention it receives. Since class
A parts are reviewed more frequently, a smaller quantity is
carried than for the B or C parts. In our model, part class
determines the amount ofmaterial safety stock to be carried
in weeks, and all parts are reviewed weekly by material
planning. For A, B, and C parts the target RPI safety stock is
4,8, and 16 weeks, respectively, of the I3-week leading aver­
age forecast. The I3-week leading average forecast and the
FGI and RPI target safety stocks are discussed in greater
detail under "Target Safety Stock," below.

Fig. 2 shows the trapezoidal product order forecast supplied
by marketing. The demand during each week of a four-week
month is constant. The demand builds up over three months,

Safety Stock

4 weeks

8 weeks

16 weeks

Value % Value

$2500 25%

$4000 40%

$3500 35%

$10,000 100%

A1,B.1,C.1

A2,B.2,C.2

A3,B.3,C.3

Total

Table II
Adder Bill of Materials

Part Quantity Unit Cost Value in Product

Al 1 $1250 $1250

A2 1 $2000 $2000

A3 1 $1750 $1750

B.1 1 $750 $750

B.2 1 $1200 $1200

B.3 1 $1050 $1050

C.1 1 $500 $500

C.2 1 $800 $800

C.3 1 $700 $700

6 weeks

10 weeks

14 weeks

IblPartValue byPartClassSafety Stock

Class Parts in Class Value % Value

A A1,A2,A3 $5000 50%

B B.1,B.2,B.3 $3000 30%

C C.1,C.2,C.3 $2000 20%

Total $10,000 100%

(c)PartValue by Lead Time

Lead Time Parts
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remains constant for L months, and then reduces to zero over
three months, so the total product life is L+6 months. In the
first month, some units are required for consigmnent pur­
poses. The mature monthly demand V is 80 units, and the
total amount ofinventory for consignment is set at 1.5 weeks
of projected mature demand, or 30 units. In our experiments
we used a baseline value of 6 months for L. This order fore­
cast results in a lifetime total of 780 units, or a total fore­
casted production cost flowthrough (PCFf, see Glossary,
page 7) of $7.8 million, exclusive of the 30 consignment
units.

Of the many performance metries for the system during the
product life cycle, the three main ones of interest are the end­
of-life inventory, which needs to be disposed of or written off,
the shipment and delivery performance, and the inventory
during the product life cycle.

Detalled Description
The fundamental description of the Simple Model of the
enterprise and the primary flows and dynamic components
that interact with it over time are shown in Fig. 3.

Entities External to the Enterprise. Customers send orders to
the manufacturing enterprise. In the simulation each order
for a single unit is sent individually to the manufacturing
enterprise. The orders go into the backlog of the manufac­
turing enterprise, and at some point a shipment fulfilling
each order is delivered to the customer. Customers have the
expectation that the time between ordering and receipt of
delivery is the quoted availability, but are willing to wait
indefinitely for orders.

The manufacturing enterprise sends orders for each part to
the respective vendor, shown collectively in Fig. 3 as vendors.
The shipment of physical parts arrives at some time in the
future determined by the lead time for the part. Ideally the

Forecasts
I

FJg. 3. Material, order, and information flows of the Simple Model
simulation. The heavy solid lines represent the flow of physical mate­
rial, the long-dash lines represent the flow of information related to
individual orders, and the short-dash line represents the flow of peri­
odic order forecasts. The containers represent the accumulation of
physical material or orders, the pointers represent levels of the quan­
tities in the containers, and the light solid lines from the containers
represent this status information being transmitted to the planning
function. The light solid line from the planning function represents a
control signal flow that regulates the amount of material flowing
from RPI to WIP and ultimately to FGI.
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time between the issuance of an order and receipt of the
material (parts) should be the lead time quoted by the vendor,
and for all the runs in this paper, this will be the case.

Functions Internal to the Enterprise butExternal to Manufacturing.
Periodically, marketing provides forecasts of customer
orders in future periods. Each forecast is a list of the quantity
ofproducts that are estimated to be ordered in subsequent
periods. In practice, forecasts are updated periodically and
estimates for the same month in the future can vary from
month to month. In the model, the forecast is used to com­
pute the shipment plan, and to compute the 13-week leading
average forecast for computing FGI and RPI safety stocks.
R&D (not shown in Fig. 3) provides a bill ofmaterials
(BOM) that defines the product structure. Since the BOM
does not change during the simulation, we do not show the
R&Dfunction.

Processes Internal to the Manufacturing Function. This section
should be read in conjunction with Figs. 1, 2, and 3.

Order processing accepts orders and keeps track of all out­
standing orders received from customers, and keeps a run­
ning total of the quantity ofproducts required in the backlog.
In addition, it prioritizes the orders by the ranking criterion,
which in this model happens to be first-in, first-out (FIFO),
into a ship list The backlog level is provided to the produc­
tion planning function. The prioritized list of orders and the
quantity that needs to be shipped in the current period are
provided to shipping.

Shipping fills and ships the orders on the ship list that order
processing provides. From the point of view of the manufac­
turing enterprise, the duration between receipt of customer
order and delivery of the shipment at the customer site
should be the time period specified as the quoted availabil­
ity. Filling an order is attempted no earlier than necessary to
satisfy the quoted availability taking transit time into ac­
count An order is filled and shipped only ifat the time of
the attempt the number of units in FGI is greater than zero.
In other words, shipping's objective is to fill outstanding
orders that need to be filled and not to try to maintain FGI at
some level. This means that the actual order-to-delivery time
for a particular order will depend on whether units are avail­
able to fill the order at the time the order is due to be
shipped. Ifunits are not available, the order will have a
higher priority for being filled in the next period because of
the FIFO rule used to establish the ship list

Production planning computes the current shipment plan
and build plan. It computes the current shipment plan from
the current order forecasts and current order backlog to
attempt to satisfy the quoted availability. It then computes
the current build plan from the shipment plan, build time,
current FGI, current WIP,and FGI safety stock.

Th come up with a suitable build plan, production planning
must know about the characteristics of the system it is trying
to control, that is, it must have a model of the system that it
uses for doing its computation. An important aspect of the
computation is to take into account the number ofunits
already in process rather than relying only on the number of
units of product required. Such a model is generally a mathe­
matical or analytical model, and the fonnulation is described
in Appendix 1.The build plan for the current period is used



Glossary of Terms and Abbreviations

Abbreviations
AIF. Actual-ta-forecast ratio. This istheratio ofthe actual orders received tothe
forecasted orders. Normally expressed as apercentage. AIF greater than 100%
implies that actual orders came inhigher than forecasts, that is, forecasts were
lowordemand was high. NF less than 100% implies that actual orders came in
lower than forecasts, thatis,forecasts were high ordemand was low.

BOM. Billofmaterials. Adescription ofthe components that go into an assembly
and their respective quantities.

• Single-level BOM. The components are raw materials fabricated ormanufactured
elsewhere Ii.e., purchased parts).

• Multiple-level BOM. The components are other assemblies and purchased parts.

EOL End of lifelend ofproduct lifecycle).

FGI. Finished goods inventory.

RPI. Raw parts inventory. Raw material instores waiting to be processed.

WIP. Work inprocess. Raw material on theproduction line being assembled into
thefinal product.

PCFT. Production cost flowthrough. Dollar value ofproduction passing through the
manufacturing enterprise. Because oftheassumptions underlying theSimple
Model. inthispaper PCFT issynonymous withshipments from themanufacturing
enterprise.

Tenns
Backlog. Products ordered by customers but not yetshipped.

Build lime. The time required forcompletion oftheproduct when allthe parts
are available.

Committed Inyentol'f. The total inventory towhich the manufacturing enterprise
iscurrently committed. It isthe sum oftheon-order material and the on-hand
inventory.

Consignment Inventol'f. Inventory inthesales offices and fordemonstration
purposes.

End-of-life Inventol'f. The amount of inventory leftover atthe end ofthe product
lifecycle, thatis,when no more orders are backlogged oroutstanding forthe
product. EOL inventory includes leftover unused RPI, unshipped units inFGI. and
consignment inventory. Ingeneral. material and products leftover attheend of
the product lifecycle are not useful foranything else and must be written off.

ForecestQuelity. Qualitative description oftheamount ofdeviation ofactual
customer orders from forecasted orders. The ratio AIF described above isone way

to trigger the start of the appropriate number of units in the
current period. .

Material planning uses the BOMto generate a material con­
sumption plan for each part that can support the build plan.
It then uses the material consumption plan, on-order material,
RPJ, RPJ safety stock, and part lead times to determine the
material ordering plan, that is, how much of each part to
order in the current and future weeks. Details of the compu­
tation of the consumption and ordering plans are given in
Appendix 1.

Material ordering sends orders for the appropriate amount
of each part in the current week to the vendors. As each
order is sent, the on-order material for that part increases.

Raw material stores (not shown in the figures) receives and
stores incoming material in RPJ and provides material to
production when requested. As it receives deliveries from

7

toquantify forecast quality. Forecast quality isbest forNF =100%, and gets
worse asAIF moves away from 100%.

Leed lime. The time between placement ofanorder tothe vendors and receipt
ofthe material.

On-Hend Inventol'f. All physical inventory that isowned by the enterprise. It is
thesum ofRPI. WIP. and FGI.

On-Order Inyentol'f. Same as on-order material.

On-Order Meteriel. The total amount ofmaterial forwhich orders are currently
open and which will eventually be received from vendors. It increases each time a
new order isissued and sent tothevendor, and decreases each time ashipment
ofparts isreceived from the vendor.

On-lime Oeliyel'f. Measures whether theorder isdelivered tothe customer
within thequoted availability. When described inunits ordollars, it represents the
units ordollar value ofthe deliveries thatare delivered within the quoted delivery
time. When described as a percentage it represents thepercentage of on-time
deliveries withrespect to the total deliveries.

On-lime Shipments. Products thatwere shipped tocustomers within thequoted
availability minus the transit time, thatis,those shipped to arrive intime tosatisfy
the quoted availability.

Order Becklog. The total amount ofoutstanding orders from customers that
have not yetbeen shipped. It increases each time aneworder isreceived from
customers, and decreases each time an order isshipped tocustomers.

Order-to-Oelivel'f lime. The time period from order issue to order delivery at
thecustomer site.

Order-to-Ship lime. Time period from order receipt toorder shipment atthe
manufacturing enterprise.

Orders Delivered. Orders that have been delivered tocustomers.

Orders Shipped. Orders that have been shipped tocustomers.

Product ute Cycle. The general shape ofthe increase. leveling off, and decrease
inorder volume forthe product. We assume here it istrapezoidal.

Send S-Plus. Sisa language and interactive programming environment fordata
analysis and graphics developed atAT&T Bell Laboratories. S-Plus isa product
version ofSthat issold and supported byStatistical Sciences, Inc.

vendors, it sends information about the shipment to on-order
material which is reduced by the amount of the shipment
received.

Production receives a build plan and requests as much
material as required from raw material stores to build the
number ofunits required. Only complete sets ofparts are
drawn from stores, that is, ifone or more parts are not avail­
able in sufficient quantities, all parts are drawn partially. For
example, if the build plan calls for 10 units to be built, and
there are only 5 units ofpart A3 and more than 10 units
each of the other parts in RPJ, only 5 units of of each part
will be drawn and sent to WIP, and only 5 units can be
started. The objective of raw material stores is to fill re­
quests for material if possible, and not to maintain RPJ at
any particular level. The mathematical derivation of the
number ofunits actually started subject to the available
material is given in Appendix 1.



Enterprise Modeling and Simulation Applications in Reengineering

Process reengineering as defined by Hammer and Champy intheir book, Reengineer­
ing the Corporation.' is"the fundamental rethinking and radical redesign ofbusiness
processes toachieve dramatic improvements incritical, contemporal'( measures of
performance, such as cost, quality, service, and speed." It isbeing applied at an
increasing rate bythree kinds ofcompanies: those indeep trouble, those not yetin
trouble but whose management has the foresight to see trouble coming, and those
inpeak condition withno discernible difficulties whose management isambitious
and aggressive. These three categories cover a large number ofcompanies. The
impact ison processes withthroughputs measured inthebillions ofdollars.

Reengineering ispervasive, controversial, and disruptive, and has different
interpretations. CSC Index, whose chairman isChampy,l states thateven though
they pioneered thepractice of reengineering, they are startled byhow widespread
thephenomenon has become. Their survey results2 based on 497 large companies
intheU.S.A. and another 124 inEurope show that69% oftheU.S. companies and
75% ofEuropean companies are already reengineering (average completed or
active initiatives inexcess of31. More than half oftherest were planning to
launch an initiative over the next 12 months orwere discussing one.

Hammer and Champy3 mention three kinds oftechniques that reengineenng teams
can use tohelp them getideas flowing: boldly apply one ormore principles ofre­
engineering, search out and destroy assumptions, and go looking foropportunities
forthe creative application oftechnology.

Asampling of theliterature reveals thatredesign is influenced by thepast
experience ofthereengineering team and the recommendations ofreengineering
consultants. Ultimately, many redesign decisions are made onspeculation based
on implicit mental models, convincing arguments by vocal proponents forchange,
sheer optimism, blind faith, ordesperation.

Amajor concern isthe uncertainty ofpredicting outcomes: Radical redesign and new
ideas bring the possibility ofboundless gain ortremendous loss. While assumptions
are being searched out and destroyed ruthlessly, it should notbe forgotten that
some assumptions are rooted inscientific principles which cannot be ignored with
impunity no matter how highly enthusiastic ormotivated thereengineering team.

Enterprise Modeling and Simulation
Some areas suggested by Hammer arid Champy4 forreengineering the corporation
include product development from concept to prototype, sales from prospect to
order, order fulfillment from order topayment, and service from inquil'( toresolution.

The Simple Model described inthe accompanying article isastart towards address­
ing order fulfillment. Modeling and simulating the other processes on the listrequire
different kinds ofknowledge acquisition. For example, product development requires

The required material is drawn from RPI and goes into WIP
where it remains for the duration of the build period. After
that, the completed units go into FGI.

Target Safety Stock. Inventory is the amount ofphysical
material, and ideally the enterprise would like to maintain it
at or close to zero in RPI and FGI, and only carry it in WIP
when raw material is being converted into final product In
practice, to reduce the effects on production oflate vendor
deliveries and customer orders coming in higher than fore­
casts, safety stock needs to kept In the Simple Model, where
vendor delivery time uncertainty is not an issue, to allow for
the contingency that customer orders may come in higher
than forecast, production planning targets the FGI safety
stock to be two weeks of 13-week leading average forecast,
and material planning targets RPI safety stock for each part
to be the quantity of that part required for the production of
the number of weeks specified in Table I(b) of the 13-week
leading average forecast.
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more knowledge about the R&D function, sales requires more knowledge about the
marketing function, and service has not been considered inthe current model. where
the focus ison manufacturing.

The following paragraphs describe areas where enterprise modeling and simula­
tion and the enterprise modeling and simulation system may provide value inthe
reengineering effort.

Identifying Processes
Hammer and ChampyS suggest that once processes are identified and mapped,
deciding which ones require reengineering and the order inwhich they should be
addressed isnot atrivial part ofthereengineering effort. Typically there are three
criteria formaking theselection: dysfunction, importance, and feasibility.

Enterprise modeling and simulation provide one way ofgaining insight inthese
areas bygenerating performance metrics with and without the change under differ­
ent circumstances. For example, the Simple Model showed theimportance ofdiffer­
ent controllable and uncontrollable factors tothe different system performance
metrics such asEOL inventorv and order-to-delivery cycle times.

After selecting aprocess forreengineering, an understanding ofthe current process
iscrucial. It isnecessary toknow what theexisting process does, how well(or
poorly) it performs, and thecritical issues governing itsperformance from ahigh­
level view. This understanding istheprerequisite to redesign. The key isunder­
standing theprocess rather than completely analyzing it inagonizing detail.

Enterprise modeling and simulation offer at least twoways ofobtaining this under­
standing and possibly showing thecause ofthedysfunction. First, thevel'( actof
building aconsensus model thatdifferent people can agree withsheds light on
what might not be working. Second, simulating themodel will confirm orreject
the validity ofwhat issuspected. For example, after building theSimple Model. it
was possible totest it ina large number ofpossible operating conditions toprovide
understanding ofthe cause and effect relationships. The firstmajor insight from
simulating the model was that what appeared to be areasonable way ofcomputing
safety stock that would gotozero asdemand went down actually gave rise to
end-of-life inventory even though thedemand was forecasted accurately. Enter­
prise modeling and simulation provide away ofgauging therelative impact of
different process changes as astep towards selecting theappropriate subprocess
to reengineer, and ofquantifying theamount ofprospective improvement.

Enterprise modeling and simulation can show the prospective impact of infeasible
changes. Insimulating the proposed reengineering changes, even if they are
infeasible, the results will indicate if there isany promise infurther consideration
ofaparticular direction. For example, it isclearly notfeasible to have zero build

The 13-week leading average forecast at the end of a particu­
lar week in the future is the sum of the order forecasts over
the 13 weeks immediately following the particular week
divided by 13. This average anticipates trends 13 weeks (one
calendar quarter) into the future, increasing as order fore­
casts increase, and decreasing as order forecasts decrease.
In particular, the 13-week average forecast is zero at the end
of the product life cycle, which means that any target safety
stock expressed in weeks of 13-week leading average will aim
for a zero target safety stock level at the end of the life cycle.

Having specified target safety stock in preparation for de­
mands higher than forecasted, what is the impact if custom­
ers order exactly according to forecast? The expectation is
that actual FGI should be equal to targeted FGI safety stock
level, and actual RPI for each part should be equal to targeted
RPI safety stock level for that part.



time forproducts and zero transportation times forshipments inthereal world,
but setting those values tozero inthemodel indicates thetheoretical maximum
benefits ofthese actions, and themagnitude oftheresults provides adata point
fordecisions on how much investment toputon driving these twotimesto zero
instead ofon other opportunities.

Furthermore, byshowing the time behavior ofthe changes, enterprise modeling and
simulation can show when actions can be expected totake effect. Inertia isaprop­
erty ofmost systems, reflected inthetime taken to respond to external influences or
changes. Most physical systems are predictable inthisrespect, but the time be­
havior fororganizational systems such astheenterprise is less predictable simply
because it isnot understood as well. Enterprise modeling and simulation help to
increase thepredictability ofsystem behavior given thatweknow something
about the system's structure and the behavior ofitscomponents. While immediate
improvement forreengineering isthedesired goal, enterprise modeling and simu­
lation can show thelength and causes ofdelays inobtaining thedesired result.

Exposing andChallenging Assumptions
Hammer and Champy suggest thatwequestion assumptionsf Enterprise model­
ing and simulation require assumptions to be stated explicitly during the model
building process to reconcile differences inpoints ofviews. Challenges and dis­
agreements on the validity are withrespect toclearly stated assumptions rather
than differences inopinions resulting from differences inmental models ofdiffer­
ent individuals. For example, theproduction planning and material procurement
processes used intheSimple Model are expressed mathematically inAppendix I.
If these are accepted asrational methods ofplanning, then there isno question or
debate onthe values ofthe outputs foragiven setofinputs. ~ processes expressed
mathematically are notacceptable asrational methods ofplanning and analter­
native method isproposed, then thatalternative method can certainly be tried,
and the results compared withthe previous method. The debate and challenge for
improvement becomes one of improving thelogic ofplanning rather than one
revolving around themeaning ofwords and labels orone on how the model
should behave based onpast experience orspeculation.

The approach advocated byHammer and Champy suggests thatchanges be made
by understanding theproblem and devising thesolution. This iscentral to model­
ing and simulation inaddressing problems intherealm ofthe enterprise. Enter­
prise modeling and simulation offeraway oftesting and verifying thatgiven the
current knowledge, theresults ofthesimulation donot exhibit any obvious flaws
before theprocess is implemented.

Roleof TechnolollY
Hammer and Champy devote awhole chapter to discussing theessential enabling
role of information technology, and assert thatmodern state-of-the-art information
technology ispart ofany reengineering effort. They caution thatthemisuse of

Simple Model Simulation
The Simple Model described above represents a simple pro­
cess design for a manufacturing facility that is subject to
simulation. On the surface, the design appears to be reason­
able and adequate, and in fact is based on representative
data and characteristics of the process, However, simula­
tions will show some unexpected behavior, as well as the
envelope of the possible behaviors.

The Simple Model was executed on an evolving system called
the EMS system, which consists of two parts: the simulation
engine part and the data analysis and display part. The simu­
lation engine has continued to develop with each model that
we have studied. It captures and abstracts processes in the
enterprise. The simulation engine is an object-oriented, en­
hanced discrete event simulation software system.

The initial implementation of the simulation engine part of
the EMS system was the Manufacturing Enterprise Simula­
tor on the TI Explorer n.9 The current implementation runs
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technology can block reengineering altogether by reinforcing oldways ofthinking
and old behavior patterns, and thatequating technology withautomation does not
result inreengineering.

We suggest that the application ofenterprise modeling and simulation isacreative
application ofawell-understood technology to the processes ofthe enterprise.
The technology ofmodeling and simulation has been applied to fields such as
product design and thedesign ofphysical systems, but isonly now beginning to
be applied creatively inanalyzing theprocesses oftheenterprise. What enables
thecreative application ofmodeling and simulation isthetremendous increase in
computational power. Inthis respect, wewould like to suggest another rule along
thelines oftherules described inreference 1.

Old Rule: Decisions regarding process changes are based on mental models
and analysis ofhistorical data.
Disruptive Technology: Enterprise modeling and simulation.
New Rule: Decisions regarding process changes are based both onhistorical
data and analysis ofcomputer simulated behavior of explicit models with
explicit assumptions thatshow theprospective consequences ofdifferent
actions under a large number ofoperating circumstances.

Conclusion
Reengineering isa philosophy ofrenewal and rapid, discontinuous, and drastic
change inthe way corporate enterprises dotheirwork, which brings withit uncer­
tainty and fear oftheunknown future. It isdisruptive and controversial. and there
isasyetnoagreement thatsuccesses outnumber failures. During theimplementa­
tion, "People focus onthepain ofthe present and the joyofthepast. They forget
about thepain ofthepast and thejoyofthepresent.'? However, given that it is
occurring on such awide scale, wesuggest thatapplication ofenterprise model­
ing and simulation can increase thechances forsuccess by (1)quantifying the
potential benefits ofthe reengineered process inan explicit, defensible way,l21
illustrating the transition between the pain ofthe present and the joy ofthe future,
and (3) showing thepossible outcomes ofcurrent actions, thereby making the
future more predictable and less surprising tothose most affected byit.
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on HP 9000 Series 700 workstations at the Manufacturing
Systems Technology Department of HP Laboratories. The
implementation language is the Common Lisp Object Sys­
tem (CLOS).18 The simulation engine has been implemented
in CLOSprovided by three different vendors: Franz, Inc.,19
Lucid, Inc.,20and Harlequin, Ltd.21Models subsequent to the
Simple Model (see page 12) were large enough to stress the
limits of all three implementations. Graphical output was
produced using S-Plus. Further details of the history and
development of the EMS system are given in reference 9. The
initial version of the Simple Model was implemented within
a week based on the full order-to-ship model22 (see page
12). It then took successive refinement and a tremendous
amount of time to analyze the results.

For the reader familiar with discrete event simulation, details
of the similarities and differences in concept between this
implementation and conventional discrete event simulation
are discussed in reference 9. In general, orders and shipments
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Fig. 4. Nominal case inventory components as functions oftirne. The experimental conditions are shown in Fig. 1.

are modeled as the entities of discrete event simulation.
Backlog, on-order material, RPJ, WIP, and FGI are modeled
as queues. Customers and vendors are modeled as source­
sink combinations of orders and material and vice versa.
Production is modeled as an activity.

The production and material planning functions, which are
essentially infonnation processing and decision making func­
tions, are implemented as mathematical models embedded in
the simulation. The information generated by these planning
functions detennines when and how many units of product to
start building and how many units of material to order. Thus,
we can think of the Simple Model as an analytical mathemat­
ical model embedded in a discrete event simulation model.
The analytical model (formulation given in Appendix I) dic­
tates how the simulation model should behave in the same
way as the planning functions dictate how operations should
be handled in reality. The simulation model is the retlection
ofphysical reality and retlects the behavior of the physical
system that is told what to do.

There are two aspects of uncertainty: bias and variance.
Most simulation models focus on variance and assume bias
(offset) to be zero. While the EMS system supports the abil­
ity to simulate the model under stochastic conditions, in the
runs described in this paper, variance is always zero and the
emphasis. of the analysis is on the situation in which bias
can be nonzero.

Each TIm represents one combination of inputs and parame­
ters of the system, and the traditional statistical analysis of
means and confidence levels is not directly applicable for
the analysis of these runs. While process variances are im­
portant considerations in a system, the motivation of this
work was to identify the first-order effects of the various
factors, considering the variances as second-order effects.

Details of the timing of the event sequence are shown in
Appendixll.

Experimental Results

Experiment 0: The Nominal Case
The nominal case experiment assumes ideal conditions for
testing the model. The purpose is to establish model baseline
behavior and offer face validation by verify1ngthat results
are consistent with intuition and the observed behavior of
the real system. Initial conditions for committed inventory
and backlog are set to zero. A warmup period of five months
(20 weeks) allows material to be ordered and received be­
fore customer orders arrive on week 21. The last customer
orders arrive on week 68. Order forecasts are consistent
with the trapezoidal profile already defined, and while they
are generated weekly, they do not change from week to
week. Week 21 corresponds to the first week of month 1,
and week 68 corresponds to the last week of month L+6in
Fig. 2. Production begins during week 19 to ensure units in
FGI at the end of week 21. The computation of FGI and RPJ
safety stock levels is assumed to apply only for weeks after
week 20. Up to and including week 20, the required safety
stock level is set to O.

Time Response ofOn-Hand Inventory and On-Order Material.
Fig. 4 shows inventory levels measured in dollar terms over
time. The two bottom regions show the on-order material
and on-hand inventory for consignment units. There is a
gradual buildup of on-order material, which is rapidly trans­
formed into on-hand inventory over four weeks, followed by
a tlatten1ng out (since the consignment units are never
shipped). The middle region shows on-hand inventory for
trade or shippable units, which is the sum of RPJ, WIP, and
FGI. The upper region shows the on-order material commit­
ment for trade units. The top surface of the graph shows
how total material commitment changes over time.

Inventory Investment Committed inventory at the end of week
20, before the first customer order arrives, is approximately
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Fig. 5. Metrics as functions of time for the nominal case. Ca) Shipments and orders. (b) Backlog and orders. (c) WIP and orders. Cd) Material
ordered and orders. Ce)RPI and orders. (f) FGI and orders.

$3.5 million. Iforders to vendors cannot be cancelled, this
$3.5 million commitment must be disposed ofifwe decide to
cancel the product before the first customer order arrives.

During the mature part of the life cycle of the product, the
on-hand inventory is approximately $2.5 million and the
total committed inventory is approximately $4.7 million. 'Ib
support shipment levels of $200,000a week requires $4.7
million of committed inventory (23.5 weeks of steady-state
PCFT) and $2.32million of on-hand inventory (11.6 weeks of
steady-state PCFT), both of which include $300,000of con­
signment units (1.5 weeks of steady-state PCFT). Details of
the computations verifying these numbers in the simulation
are given in Appendix IV-2. The maximum inventory exposure
over the life cycle is $4.7 million.

The EOL consignment inventory of $300,000reflects the
amount of potential write-on because we did not dispose of
the consignment units. The EOL nonconsignment inventory
for trade units is reflected in the tail of the graph, and its

value is approximately $64,000.If the material cannot be
consumed any other way, there is an EOL write-off of
$64,000of nonconsignment inventory and $300,000of con­
signment inventory for a PCFT of $7.8 million under ideal
conditions of perfect forecast quality and on-time vendor
delivery.

Time Response of Other Metrics. Fig. 5 shows other time series
metries in comparison to orders received. The shipment
profile (Fig. 5a) is identical to the order profile but shifted in
time by three weeks. This is because the four-week availabil­
ity and one-week transit time require three weeks of order­
to-ship time for on-time delivery.

Steady-state backlog (Fig. 5b) is $600,000,or three weeks of
orders. Again, this is because the four-week availability and
one-week transit time result in orders staying in backlog for
three weeks, that is, the current backlog is the sum ofthe
last three weeks of orders.

11



Enterprise Modeling and Simulation Research at lIP Laboratories

Our work atHP Laboratories on enterprise modeling and simulation isan outgrowth
ofthe factory modeling project. which began inearly 1987. While wewere work­
ing inthe area of robotic automation formanufacturing. webegan toappreciate
the complexity ofthegeographically distributed, multientity marketing. m.anufac­
turing, and distribution operations necessary forHP to remain competitive. We
also realized that there were very fewtools available to help understand. design.
and operate these complex systems.

Having been involved inproduct design withthe evolving use ofCAD and CAE
tools. wethought that there was anopportunity ofpotentially tremendous magni­
tude forapplying similar technologies tothedesign and operation ofthefactory
and business systems used to market. manufacture. and distribute products. Inan
effort tocapitalize on this opportunity. webegan identifying theprimary elements
ofasingle factory and building our preliminary order-to-ship model thatspanned
allmajor activity from the receipt ofanorder to itsshipment.

Preliminary Order-to-Ship Model
This early model was avehicle to show thefeasibility ofapplying simulation ata
scope larger than aproduction line. where simulation was beginning tobe applied.
Developed and proposed fordiscussion purposes, itwas amodel toanalyze why the
order-to-ship time forsome products stretched toweeks when the application of
modern manufacturing techniques had reduced thebuild time toamatter of hours.
More details on the reasons behind this work are given inreferences 1and 2.

Full Order-to-Ship Model
By late 1988 thepreliminary model was ready fortesting inareal-world context.
Data and operational information were provided by areal manufacturing division
tohelp enhance our early model. This process helped tovalidate thepreliminary
order-to-ship model and led tothedevelopment ofthe fullorder-to-ship model.3

The primary factors considered were orderforecast quality. production capacity
constraints. supplier lead times. and order filling policies. The primary metrics of
interest were order lateness, backlog. and inventory. The model included three

Fig. 5c shows an initial spike in Wll' preceding the start of
orders by two weeks. This happens because the number of
units started during week 19is not only what is to be shipped
two weeks later, but also the quantity that must be in FGI
(approximately two weeks of orders) at the end of week 21.
The Wll' levels taper off downwards starting in week 44
towards the latter part of the life cycle because as the de­
sired FGI safety stock level decreases, less production is
required than is shipped because some units shipped from
FGI do not have to be replenished.

Fig. 5d shows material orders. The three large spikes in
material orders are caused by different lead times for parts
to fill the targeted RPI safety stock at the beginning of the
cycle. Each of the three small spikes corresponds to the
different lead time parts for the initial Wll' spike. Once the
initial spikes are past, the material ordering volume is ap­
proximately the same height as the customer orders, except
that it is shifted earlier in time, showing that once the sys­
tem has reached mature demand, material inflow in the form
of material ordered is balanced by the material outflow in
the form of shipments. Material ordering starts ramping down
beginning in week 28 just as the orders reach the maximum
demand for this particular set of circumstances.

Fig. 5e shows RPI as a function of time. Notice that the
vertical scale is different from the other graphs. The RPI
level is 7.6 weeks of PCPI' during the mature demand period
and starts ramping down in week 44. Fig. 5f shows FGI as a

distribution centers. one manufacturing entity, and acentralized sales and order
entry system. Itwas configured forone-level bills ofmaterials (BaM). multiline
orders, and long Iifecycle products.

The results ofthe analysis done with the fullorder-to-ship model were encouraging;
they showed things that were consistent withreal-world experiences le.g.•high
forecasts led to high inventory and lowbacklogl. The results also provided aview
ofgreater potential byhelping to identify areas forfuture improvement (e.g .• the
dominant cause ofproduct shortages is long lead time parts coupled withpoor
forecasts rather than thebuild time).

While the results ofthis model were modest. the building and running ofthis model
enabled us to explore some important technologies (i.e .• Hierarchical Process
Modeling forknowledge acquisition. adiscrete event simulation language. SlAM 11.4

and aknowledge-based environment. Knowledge Craft. forsystem representation
and building simulations), Our efforts led to generalized enterprise-level modeling
elements and an object-oriented simulator. We also identified some new obstacles
(e.g.• managing large amounts ofsimulation data, extracting informationl to be
overcome inattaining our goals. More details are given inreference 1.

For about ayear, no further model development was done. but rather. much effort
was put into consolidating what wehad learned about the modeling and simulation
issues. This effort led to the complete overhaul ofour modeling and simulation'
code while migrating it totheCommon lisp Object System onHP workstations.
The power and speed ofour system took aquantum leap forward.

Simple Model
With our improved system ready. wewere presented withanother real-world
opportunity toapply our techniques. The Simple Model was proposed as ameans
ofpulling together the main activities. processes and circumstances involved ina
manufacturing enterprise. The primary purpose was to understand end-of-life
(EOl) inventory and order delivery performance issues. The combined impacts of
several environmental factors and operational policies were considered inthe

function of time. The FGI safety stock during the mature
demand week is two weeks of PCFr, which is the same
as two weeks of steady-state orders. The FGI level starts
ramping down in week 44.

Inventory Results. The results establish the baseline behavior
of a system designed to take contingencies into account
when those contingencies do not occur. Appendix IV pro­
vides further details for computing some of these results on
a theoretical or common sense basis. Some interesting ob­
servations can be made. First, EOL inventory and write-off
exist even though customers ordered exactly according to
forecast and we expect safety stock to go to zero. Second,
the level of inventory required to support this level of busi­
ness can be quantified. Third, long lead time parts make up a
greater percentage of the value of parts on order than their
percentage in the product structure.

EOL inventory is important for short life cycle products
because the inventory cannot be used for anything else and
must be written off. In this case it is a result of the way of
computing safety stock. It occurs if in the early part of the life
cycle too much material is ordered because ofhigh targeted
FGI and RPI. For short life cycle products it can be a signifi­
cant percentage ofPCFT. EOL inventory is less ofan issue
for long life cycle products because the leftover inventory is
generally a smaller percentage of total PCFT and excess
inventory in early periods can be used at a later time.
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analysis. The model. leveraging our earlier work, dealt withaone-level BOM, one
factory, one product, and subsequently afamily ofsuccessive products withcommon
parts and overlapping lifecycles.

Our analysis provided some interesting insights, such ascertain material procure­
ment and safety stock policies result inEOL inventory even forperfect order fore­
casts, and withlowforecasts, increasing material lead times and planning frequency
result in increased EOL inventory. More important, webegan to realize thatwe
were onto something thatcould really have apositive impact forHP. Infact, the
business results led tothe development ofthe planning calendar model withthe
Simple Model as itsfoundation. We also continued oUr technical enhancements by
connecting theoutput to S-Plus5,6fordata analysis and the creation ofaLotus®
interface to display output.

Planning Calendar Model
The purpose ofthe planning calendar model7,8,9was todetermine theeffects of
planning cycle times on inventory levels. It required extension oftheSimple
Model to include production planning and material planning cycle times. Itapprox­
imated atwo-level BOM and multiple assembly sites using aone-level BOM at
one site. It used historical forecasts and orders. The primary factors were forecast
quality, thelength ofthe planning cycle, and the maximum lead times forparts.
The primary metrics of interest were average inventory, delivery performance, and
inventory levels atthe start of production. The primary technical development was
the application of S-Plus data analysis capabilities to the data.

Withthis model. material lead times had adominant effect on inventory levels
and committed inventory. Historically, forecasts were generally low, so forthe
historical data given, theplanning cycle time used forthe particular product had
insignificant impact compared to material lead times. There was greater potential
forreducing inventory byreducing lead times than byreducing planning time. Low
forecasts increased backlogs.

Current ModelingActivities
We are currently finishing an analysis of asingle-site manufacturing system where
wewere looking athow to improve the supplier response time. The challenges in

This nonzero EOL inventory is significant because our
safety stock policy targets zero safety stock levels in FGI
and RPI at the end of the life cycle. Having observed this
phenomenon in the simulation, we were able to show mathe­
matically why the EOL inventory is not zero. The fonnal
derivation of this result is outside the scope of the current
paper, but more detailed analysis of the data showed that it
is the Class C parts that are left over. The Class C parts will
be zero in the case when orders come in as forecasted for
the conditions of experiment 0 only if the target HPIsafety
stock for Class C parts is less thanor equal to the 13-week
leading average forecast. Also, for the conditions of experi­
ment 0, any part with target safety stock greater than 13
weeks of 13-week leading average forecast will end up with
EOL material. The behavior of the amount of Class C EOL
material as the number of weeks of target safety stock goes
down is given in Appendix IV-3, and an Informal explanation
showing the reasoning behind the EOL material is given in
Appendix IV-4.

The nonzero EOL is a function of the number of weeks of
13-week leading average forecast. Other techniques of com­
puting safety stock, for example using a cumulative leading
forecast rather than the 13-week leading average forecast,
might lead to different results.

Smoothing WIP andProduction. The initial. spike in WIP shows
how the policy of starting production in week 19 (and not

this application include managing amultilevel bill-of-materials and understanding
the consequences of long, variable testcycle times. We are also working with
sector-level reengineering teams tohelp understand the consequences ofproposed
changes and explore alternatives.

Our enterprise modeling and simulation capabilities have evolved considerably
from our preliminary order-to-ship model. However, there are stillmany more
interesting challenges to address before wereach ourgoal ofacomputer-aided
business process design and operation system.

Robert Ritter
Project Manager
Enterprise Modeling and Simulation Project
HP Laboratories
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before) gives rise to a spike in capacity demand at the begin­
ning ofthe product cycle. It could be eliminated by incorpo­
rating production capacity constraints into production and
material planning or by allowing FGI to build up before the
first order comes in (i.e., before week 21). Both ofthese
require production to start before week 19.

Experiment Set la:
Single Uncontrollable Factor Variation
In the nominal case, the customer order pattern was accu­
rately forecast We now consider the situation where the
actual orders are different from the forecasts.

We assume that customers order according to a constant
order forecast profile multiplied by some constant factor
ActuallForecast or AIF. AIF is the ratio of actual orders to
forecast orders; its definition is shown in Fig. 6a. In practice,
marketing would change the forecasts periodically. Since we
were not modeling the forecasting process, we chose the
simplifying assumption that although a new forecast is gen­
erated every week, it is identical to the forecast generated
the previous week. t Here is an example of bias in the order
forecast with no variance. The model interpretation is that
although estimates were wrong in the past, we expect that
future orders will be equal to the original forecast. This is

t This isnota limitation ofthemodel. Auser-specified forecast can beaccepted bythemodel.
Later models have incorporated historical forecasts. The reason forthisassumption wastoget
abetter understanding oftheeffectof forecast bias. Fluctuating forecast deviations make
interpretation harder.
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..!!;!!!!L = 200%
Forecast

demanded. Subsequently, production planning and material
planning take this into account and raise the production, but
since they are always estimating low future demand, we
would expect the inventory level in general to be lower than
in the case where AIF is 100%. Surprisingly, this intuitive
result does not hold, as will be seen later.

Time
(al

We ran the simulations with AIF ranging from 50%to 200%at
equal intervals of 25%. In addition, we ran it at smaller inter­
vals in the region of 95%to 125%.

EDL Write-off. A consequence of keeping forecasts identical
for all runs is that the consignment profile does not change
with respect to AIF. Fig. 7 shows EOL memes as AIF ranges
from 50%to 200%. Note that the changes in value are not
constant across the horizontal axis. Fig. 7a shows that total
EOL inventory increases as AIF decreases. Fig. 7b shows
that the percentage impact is even worse, simply because
the write-off is a higher percentage when PCFT, which is
directly influenced by AIF, is lower. For low forecasts, that
is, AIF greater than 100%, the EOL inventory decreases. For
high forecasts, that is, AIF less than 100%, the EOL inventory
increases. The lower the AIF, the higher the EOL inventory.

Fig. 7 leads to the obvious conclusion that inventory write-:<>ff
can be reduced by the strategy of underforecasting orders.
However, this is only one side of the story. The complete
story is shown in Fig. 8.

Impacts onTime Series ofAiF Changes. Fig. 8 shows the im­
pact ofAIF changes on different time series measures. To
avoid clutter we unu not show inventoryfor consignment
in subsequent time series. FGI, WIP, RPI, on-order material,
and on-hand inventory will refer to the material associated
with trade units unless otherwise specified.

All of the graphs in each row of Fig. 8 exhibit identical be­
havior before week 21. This is to be expected, since before
the first orders come in on week 21, the situation is the
same for all cases. Only as different amounts of orders come
in on or after week 21 is the situation different for different
values ofAIF.

Fig. Sa shows the order forecasts and actual orders for ref­
erence. The ratio of the values of the two lines at any time in
the graph is equal to AIF.

Fig. 8b shows the backlog and actual orders time series on the
same scale. Notice how the backlog increases spectacularly
as AIF goes beyond 125%. Fig. Be, which displays backlog in
terms ofmature demand, shows that for an AIF value of

Time
CumntTime

Forecast

Actual = 50%
Forecast

(bl

.~

:5 r-------+--I Forecast

I LowDemand or HighForecast

II Actual = 50%
I Forecast

,..--------1 HighDemand or
Actual = 200% LowForecast

Forecast

Fig. 6. Definition of AIF. (a) AIF ratio. (b) Actuals and forecasts at
the current time.

reflected in Fig. 6b. Actuals came in as shown in the part of
the graph to the left of the current time, while the part to the
right of the current time line shows the current expectation
of future orders.

Clearly, we would expect an effect when AIF is not 100%. If
AIFis less than 100%, that is, if forecasts are high, FGI will
start to build up, since production planning has directed a
larger number ofunits to be built than are subsequently de­
manded. Production planning and material planning take
this into account and plan to build less and order less mate­
rial in the future, but the overall material level is higher than
when AIFis equal to 100%. On the other hand, ifAIF is
greater than 100%, that is, forecasts are low, FGI will start to
be eaten away because production planning has directed a
smaller number of units to be built than are subsequently
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Fig. 7. EOL (end-of-life) inventory for experiment set la.
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Fig. 8. TIme series data for various values of AIF for experiment set la.

200%the backlog can be as much as eight weeks of mature
demand. Backlog measured in terms of weekly mature de­
mand is constant for low AIF. It increases for high AIF be­
cause products cannot be shipped as fast as orders come in.

Fig. 8d shows that the EOL RPI level falls as AIFincreases.
In addition, the general level of RPI as a function of time
falls as AIFincreases until AIF is greater than 150%, when
the RPI level actually appears to rise as AIF increases. The
reason is that because of shortages we order more of all

material to build the shortfall in units. The short lead time
parts show up first, but cannot be used because of a short­
age of the long lead time parts with minimal safety stock. An
analysis of the results shows that the critical part is A3.

Fig. 8e shows that the WIP profile increases as AIFincreases.
This is expected, since WIP is directly related to the ship­
ments flowing through the system, and the shipments are
directly related to orders, which are directly related to AIF.
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Remember that this is true only when the production capac­
ity constraint is not reached. Ifproduction capacity is only a
little greater than forecast, high demands would result in the
level of WIP being capped at some limit but spread out over
time.

Fig. 8f shows that the FGI level is identical for all values of
AIFless than 1000,.6. For AIF greater than 100%, the FGI gets
eaten away slowly because the rate of replenishment of new
units does not keep up with the shipments because of under­
forecasting. However, since FGI safety stock levels are based
on two weeks of 13-week average forecast and the forecasts
used are identical in all the experimental runs, the peak FGI
tends to be the same.

Fig. 8g, on-order material, shows initial large spikes for
material for RPI and FGI safety stock, followed by a drop
after the material for safety stock has been delivered. Sub­
sequently the profile shows an increasing level over time as
AIFincreases.

Fig. 8h, material ordered, shows the same spikes before week
21 that we have seen before. Again the material ordered
versus time increases as AIF increases.

Fig. 8i shows that, in general, committed inventory after
week 21 is higher for higher AIF and stretches out farther
over time. For lower NF the committed inventory is lower
in the early part of the life cycle, but there is an increase in
EOL inventory.

Fig. 8j shows that for NF less than 1()()%, shipments follow
the order stream nicely. High NF (high demand) values
cause the initial orders to be filled as specified, but subse­
quently shipments drop off and then catch up. The product
shipment over time is smooth when AIF is less than or equal
to ·1000,.6. When AIF is greater than 100%, during the early
part of the life cycle the orders are filled as they come in. As
the FGI safety stock is consumed, the shipments fall to the
forecasted levels, and then subsequently tend to rise to the
actual order levels.

The on-time shipment graphs in Fig. 8k show that initial
orders are delivered on time in all cases. For AIFless than
1000,.6 (forecasts are high), all orders are delivered on time.
For AIF greater than 100% (forecasts are low), initial orders
are delivered on time, but subsequent orders are late. As NF
increases beyond 100%, both the percentage and the total
dollar value of on-time shipments (and consequently deliver­
ies), go down, and the late orders never catch up. On-time
delivery graphs, which are not shown, would be identical to
on-time shipment graphs shifted by one week.

As expected, because of the policy of shipping as late as
possible, Fig. 81 shows that average order-to-delivery time
never goes below four weeks, but increases with time up to
18 weeks as AIFincreases to 200%. Fig. 8m, showing the
percentage of on-time deliveries, is consistent with Figs. 8k
and 81 in terms of on-time deliveries.

How Late AreLate Orders? How late are the late orders and
how many orders are delivered on time (namely, within four
weeks of being ordered)? These questions are answered in
Fig. 9, which shows the dollar volume of deliveries and the
order-to-delivery time. For NF less than or equal to 100%
(forecasts high or demand low), all orders are delivered on
time. For AIF = 105%, most orders are delivered on time. For

AIF =1500,.6 and 2000,.6 (forecasts low), some orders are deliv­
ered on time, and a large fraction of orders are delivered
late. Furthermore, for high NF values, even though the total
volume of shipments is higher, the amount of on-time ship­
ments and deliveries actually goes down. Some orders are
delivered as much as 14 weeks late, that is, 18 weeks after
receipt of order. This 14 weeks is the upper limit oflateness
for this particular model and data configuration. No matter
how high NF gets, orders will never be later than 14 weeks.
The explanation for this is given in Appendix N-5.

Interpretation of Results. In this model, forecasts were not
updated on the basis of orders. In reality, when orders are
very much under or over forecasts, there will be pressure to
change the forecasts. If further information on the forecast­
ing process is available, this can be incorporated into the
model. Another study that could be done is to see what hap­
pens if we treat the initial orders as early indicators of the
whole life cycle, that is, after some period of time, we revise
the forecasts so that they more closely represent the volume
of actual orders. On the other hand, if the life cycle is very
short, it may turn out that revising the forecasts when the
first orders come in may not have an impact on system re­
sponse. We have established a nominal trapezoidal product
life cycle, but this could be changed in various ways. It
could be stretched out horizontally to increase the life cycle
(as is done in subsequent experiments), or vertically, to
show a higher level of product demand.

Customers need to receive the products within a reasonably
short time, or they might cancel the order. For the model,
we assume that customers are willing to wait patiently as
long as it takes for the manufacturing facility to produce and
ship the products, and that they will not cancel the order.

The purpose of this detailed discussion is to show how
changing the one factor, NF, can have different impacts on
different metrics, and how this might affect different parties
interested in the outcomes. NF is partly under the control of
customers, and partly under the control of marketing, as­
suming that greater effort will provide a better estimate of
orders. It shows that ifAIFis low, order processing and
shipping would have excellent performance metrics in get­
ting products out in a timely fashion, whereas material pro­
curement would be in the situation of trying to explain why
there is so much material in the plant, and marketing and
the plant manager may have to explain why orders are
below target. On the other hand, if AIF is high, customers
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Fig. 9. Deliveries by order-to-delivery time in weeksfor experimentla
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Factor Description

Table III
Rangeof Values of Factors for Different Experiment Sets

Parameter Name Number of
Different Values

Values

ActuallForecast, %

Part Safety Stocks
Class A 4K weeks
Class B 8K weeks
Class C 16K weeks

Life Cycle, L+6 months

Availability, weeks

Percentage value of6, 10, and
14-week lead time parts in the
product (l'%,s%,1%)

AIF

K

L

Y

It

11

5

5

5

4

AIF (%) =50,75,95,100,105,110,120,125,
150,175,200

K = 0.5,0.75,1.0,1.5,2.0

L = 0,3,6,12,18

Y = 1,2,4,8,12

£IT =(100,0,0),rst =(25,40,35),
sss =(0,100,0), ttt =(0,0,100)

Experiment 0(nominal case): Values shown initalics.

Experiment Set 1a(uncontrollable factor NFvaried): Values ofNFvaried as shown. Values ofother factors same as experiment O.

Experiment Set 1b(NF=100%, controllable factors varied): Values offactors other than NFvaried as shown inturn. Values ofother factors same as inExperiment O.

Experiment Set 2(dual-factor ll)(periments): Values offactor NF and one other factor varied inturn. Values ofother factors same as inExperiment O.

Experiment Set F(all factors varied): Values ofallfive factors varied as shown.

will be screaming for products, order processing and ship­
ping will be trying to placate angry customers, production
will be under pressure to put out products faster, and mate­
rial procurement will have to explain the perpetual shortage
of raw material A3 while other material is piling up.

Experiment Set Ib:
Controllable Factors Varied with 10096 AIF
We next look at the effect of changing the factors over
which the manufacturing enterprise has some control In the
single-factor experiments, the variation ofeach factor is
sununarized in Table m. Except for the set of runs where
AIF varied as in experiment la, AIF was set at 100%.

Changes in safety stock levels can be characterized in many
ways-for example, for each part individually. We chose to
multiply the safety stock levels of experiment 0 by a con­
stant multiplier K whose value ranged from 0.5 to 2.0. Life
cycle lengths were changed by using values of L to result in
life cycle lengths L+6 between 6 and 24 months.

Availability Ywas varied from 1 week to 12 weeks (it cannot
be less than 1 week because of the I-week shipment transit
time). Y = 1 requires off-the-shelf delivery and Implies a total
build-to-forecast strategy. As Y increases, the production
strategy shifts from build-to-forecast to build-to-order. From
prior considerations, an availability Y of 18 weeks will result
in on-time delivery of every order regardless of forecast
quality.

While there are different ways to characterize modification
ofpart lead times-for example, changing it for each part­
we chose to change part lead times by changing the percent­
age ofparts with lead times of 6, 10, and 14 weeks to be
100%in turn.

EOL Results. The EOL inventory graphs for AIF =100% are
summarized in Fig. 10. EOL inventory increases as safety
stock increases; the results are consistent with experiment
O. When K is 0.75, we carry 12 weeks of C parts and there is
no EOL RPI. When K is 1, we carry 16 weeks of C parts and

end up with EOL inventory of C parts. When K is greater
than 1, EOL RPI increases. When K is 2, we carry 16 weeks
of B parts and EOL RPI includes both B and C parts.

Fig. lOb shows that product life length has no impact on
EOL inventory. This is to be expected in the model because
increasing L stretches out the middle portion of the time
series graphs, and the behavior towards the end oflife tends
to be the same in all cases when L increases (illustrated in a
future graph, Fig. Llb). For short L, the effect of the rising
demand in the beginning of the life cycle affects the behavior
at the end of the life cycle. Fig. 10c shows that as availability
Y is shortened, EOL inventory increases, that is, quoting
shorter lead times to customers exposes us to more risk of
EOL inventory. This is intuitively correct; the longer the
quoted availability, the longer we can afford to wait before
ordering material.

Part lead time has no impact on EOL inventory when AIF =

100%(Fig. lOd).

Other Results. Fig. 11 shows the inventory measures over
time as different factors are varied. Delivery performance is
not shown because for AIF =100%, delivery is always 100%
on time.

Fig. 11a shows the inventory measures over time as a func­
tion ofraw material safety stock multiplier K. The heights of
the three initial spikes for material orders increase as K in­
creases, directly impact RPI and on-order material, and indi­
rectly impact on-hand and corrunitted inventories. In general,
the higher the K, the higher the inventory levels, including
EOL inventory, which is the tail of the corrunitted inventory
graph. The on-order material level before the start ofpro­
duction increases as K increases. Keeping all the other fac­
tors constant, there is no change in backlog or delivery
performance, and these are not shown in Fig. lla.

Fig. lIb shows the inventory measures over time for varying
the product life cycle by changing L from 0 to 18 months.
This is one of the less interesting graphs, shown here for
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completeness. EOL inventory is the same in all cases. How­
ever, because total PCFT increases, EOL inventory is a
lower percentage of PCFT as L increases.

Fig. l lc shows the inventory levels over time for varying
quoted availability Y. As Y increases, after the same three
initial spikes, the amount of material ordered gets delayed,
and the on-order material graphs get stretched to the right.
The committed inventory graphs are also stretched into the
future. The committed inventory is lower and the EOL in­
ventory (tail of the committed inventory graph) tends to
decrease. The delivery profiles are shifted out into the
future and the backlog levels are higher.

Fig. l ld shows the time responses of the inventory metrics
as part lead times vary. Notice the change in shape of the
material ordered graphs. For It = (25,40,35), there are three
large and three small spikes, whereas for the other cases,
there is one large spike and one small spike. As lead time
increases, the material needs to be ordered earlier. On-order
material increases as the lead time increases. On-hand inven­
tory does not change. There is no impact on EOL inventory,
order backlog, or on-hand inventory (RPI+WIP+FGl) as long
as NF remains constant at 100%.

Interpretation of Results. This set of results shows how each
organization in the manufacturing enterprise can improve its
performance metrics assuming that it relies on the forecasts
given as being accurate and does not try to second-guess
them. For example, ifmaterial procurement is under pressure
to lower inventory levels, it would naturally try to reduce K.
On the other hand, order processing and shipping would
prefer to reduce Y to reduce having to deal with impatient
customers.

Experiment Set 2: Dual-Factor Experiments
In this experiment set, we varied two factors in combination
and attempted to observe the effects. However, instead of
looking at all combinations, we looked at the impact of each
of the other factors when NF changed. This enabled us to
see the effect of the controlled action in various situations
of customer ordering behavior.

Results ofTwo-Factor Experiments. Fig. 12 summarizes the
information on EOL and on-time deliveries as NF and other
factors are varied. Fig. 12a shows that as K increases, there
is higher exposure to EOL inventory as NF decreases. How­
ever, increasing K in general gives better delivery perfor­
mance by shortening the average order-to-delivery time as
NF increases above 100%. Below an AIF value of 1000..6, K
does not have an impact on the already excellent delivery
performance shown by 00..6 late deliveries.

Fig. 12b shows that as L increases, the total shipments for a
given NF increase. For long L, the absolute volume of on­
time deliveries initially increases as AIF increases. As AIf
keeps on increasing past 1000,6, the absolute volume of on­
time deliveries decreases. The average order-to-delivery time
is not affected very much by L, and the EOL inventory is im­
pacted insignificantly. The absolute amount of EOL inventory
seems to depend little on L except when L is O. For L =0, the
long lead time and high safety stock parts may actually cause
most of the material for life cycle use to be ordered before
the first customer order is received. The percentage of EOL
writeoff decreases for a given NF as L increases, reflecting
the fact that the EOL writeoff is a smaller percentage of the
total shipments as total shipments increase.
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Fig. 12. EOL and shipment metrics as functions of AIF for experiment set 2 as each of the other factors is varied. (a) K varied. (b) L varied.
(c) Yvaried. (d) It varied.

Fig. 12c shows that increasing Yis desirable for reducing the
percentage oflate deliveries and reducing EOLinventory, but
that the average order-to-delivery time increases, resulting
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in customers waiting for long periods of time, which in prac­
tice might lead to possible order cancellations. When Y = 1,
the worst average order-to-delivery time is lower than the



best average order-to-delivery time when Y =12 weeks. This
is an example of a situation in which trying to reduce late
deliveries by quoting a longer lead time actually leads to
longer average delivery times and possibly lower customer
satisfaction.

Fig. 12d shows that if all other things are kept constant,
longer vendor lead time leads to poorer performance when
NF is greater than 100% and increased EOL exposure when
NF is less than 100%. For It =(100,0,0), that is, lead time for
all parts is 6 weeks, NF has little impact on average order­
to-delivery time over the given range. Furthermore, the per­
centage oflate deliveries is generally lower than for the
other values oflead time. IfY could be set to 12 weeks for
the case It = (100,0,0), no orders will ever be late, regardless
of the value of AIF. ApplYingreasoning similar to that on
page 4, the policy of waiting for customer orders to arrive
before we order parts could lead to an order-to-delivery time
of nine weeks, which is shorter than 12.

Observations. Wehave looked at the interactions of NF with
the other factors in our experiments and noticed the com­
plexity of the interactions. The results of experiment set 2
show the impact ofuncertain customer behavior on various
organizations within the enterprise. ill an uncertain world
where NF is outside our control, it would appear that in­
creasing K and L, reducing It, and increasing Ywould in­
crease on-time deliveries, which is desirable from the point
of view of the manufacturing enterprise. However, increas­
ing Y will tend to increase order-to-delivery times and back­
log volumes, which could potentially lead to poorer cus­
tomer satisfaction and high backlogs for order processing
and shipping to deal with.

The other problem of taking these actions is that while
delivery perfonnance for the enterprise improves in general,
different people and organizations are responsible for in­
fluencing and setting the values of K, Y, and It and obtaining
the reward of improved metries. Increasing K results in bet­
ter availability but increased write-off, especially ifNF is
below 100%. One individual owns K, another individual owns
Y, the vendors and R&Dtogether determine It, marketing
owns L, and customers determine AIF.Anyone of these can
influence the other measures unilaterally, so it is necessary
to coordinate the efforts of increasing some parameters and
reducing others simultaneously. For example, material pro­
curement could reduce K on the assumption that it will re­
duce RPI, committed inventory and EOL inventory, and this
would be correct ifNF were 100%, but ifNF came in
greater than 100%, the overall delivery performance would
be poor. On the other hand, if R&Dchose longer lead time
parts because vendors demanded a premium price for short
delivery times, EOL inventory would tend to be higher re­
gardless of what value of K was chosen by material procure­
ment. If quoted availability Y were reduced from 4 weeks to
1 week, inventory levels would tend to go up.

We could also consider the effects of the four other factors
on one another, and that would give rise to another six com­
binations. These discussions are outside the scope of this
paper.

Experiment Set F: All Factors Varied
ill experiment 0, we looked at the results of one simulation
run. ill experiment 1, for each factor we looked at four to

eleven runs. ill experiment 2, we looked at 44 to 55 runs for
each combination ofNF and the other factor. As we study
the effects ofmultiple factors, the number of runs increases
exponentially. Complexity increases not only in terms of
number of simulation runs considered but also the way in
which we analyze the data. A full factorial experiment, that
is, one in which all the factors are varied in all combinations
given here, requires the analysis of 5500 runs. While it is
easy to specify different levels offactors, the analysis of the
amount of data generated as a result of increasing the num­
ber of factors becomes intractable. For example, if all of the
time series graphs of a single run were plotted on one sheet
ofpaper each, we would have a pile ofprintouts eleven
reams ofpaper thick. Th do the analysis, we used a graphing
teclmique supported in S-Plus called a design plot. t

Design Plots.Fig. 13 shows the design plots of the means of
each of four different metries at each of the levels of the five
factors. The four metries are EOL inventory, EOL inventory
percentage, total on-time deliveries, and percent on-time
deliveries. Each plot reflects one metric and summarizes the
value of that metric for 5500 runs. The point labeled A is the
mean of the EOL values of all experimental runs with NF =
50%(mean of 500 values). A longer line indicates greater
sensitivity of the metric to that factor over the range consid­
ered, all other things being equal. For example, NF appears
to have the strongest impact on EOL inventory, EOL per­
centage, and on-time shipments. On the other hand, the ma­
ture demand period L has a strong influence on the total
dollar volume of on-time product deliveries.

An interesting point is that mean EOL and EOL percentage
decrease steadily as NF increases. On-time deliveries in
dollars increases up to a point as NF increases to 125%, but
subsequently decreases (point B in Fig. 13c). The explana­
tion is that the safety stock policy gives some protection for
on-time delivery in dollars when NF> 100%. OIl-time deliv­
eries as a percentage remains at 100%for NF s 100%and
subsequently decreases as NF increases over 100%(point B'
in Fig. 13d).

Another interesting behavior is that of the points marked C
and D. The fact that the mean values of the metries appear
close together for the (25,40,35) case and the (0,0,100) case
suggests that the length of the maximum lead time ofparts
in the bill ofmaterial has a very strong influence on on-time
deliveries if all other factors are kept constant.

Further Analysis. Wehave barely scratched the surface of
what is possible in analyzing the simulation data of this one­
level bill of material, single-product situation. Further analy­
sis and display of the variables is possible through scatter
plots of pairs ofvariables and responses, and the use of fac­
tor plots which show greater detail. For example, further
analysis could try fitting a statistical model using least sum
of squares of residuals for the responses, separately and
jointly. This was not done for this paper.

Experiment Set M:
Multiple Product Life Cycles with Part Commonality
This set of experiments showed the impact ofpart com­
monality across multiple product life cycles. The product

t Wecallit adesign plotbecause it isgenerated bytheS·Plus function plotdesign. There isno
standard name ofthis plot Inthe literatureP it isreferred toasa 'a plotofthemean response
foreach level ofeach factor:
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Fig. 13. Design plots for experiment set F: all five factors varied (5500 runs).

cycles overlapped in time, that is, one started before the
preceding one finished, and we looked at a series of scenar­
ios that differed in the values of conunon parts in adjacent
products. These were the assumptions:

• There were four products: Adder-I, Adder-2, Adder-3, and
Adder-4.

• Part conunonality occurred between adjacent products only.
• Demand increased 30%for each new product.
• The unit cost of each product was 85% of the unit cost of

the previous product.
• Each product life cycle was 6 months, or L =O. This means

that the complete cycle for each product is 6 months, or 24
weeks.

• There was a one-month overlap between products, that is,
the first month of demand of a new product begins in the
last month of demand of the previous product. This implies
a total lifetime of the product family of 21 months, or 84
weeks.

• Other factors and conditions remained as in the nominal.
case.

Fig. 14 shows a graphical. representational. of the part
conunonality between adjacent products for the different
experiments. In particular, since part conunonality for ex­
periment M-ois 0%across adjacent products, there are no
shaded areas. A fuller discussion ofpart conunonality is
given in Appendix m.
Fig. 15 shows the forecasted and actual order patterns for
the four products.

Fig. 16 shows the RPI levels for parts used in the different
products in Experiment M-O (no part conunonality). Con­
sigmnent inventories are not shown to avoid clutter in the
graphs. The WIP, FGI, products ordered, PCIT and delivery
profiles are identical for all runs in experiment set M. How­
ever, each of theruns has a different profile for RPI. Note
the EOL inventory of each set ofparts.

Fig. 17 shows the consignment and EOL inventory levels for
each run. As expected, the consignment level increases by
product because the forecasted and actual orders increase
by product. The consigmnent value for a particular product
is the same across experiments. The EOL inventory for
Adder-4 is the same in all the experiments. There does not
appear to be any correlation between part conunonality and
the EOL inventory. A correlation exists between part ob­
solescence for a product and the EOL inventory for that
product.

Fig. 18 shows the part obsolescence across products for each
of the experiments. Notice how the EOL for each product in
Fig. 17 is proportional. to the obsolete parts for each product
in Fig. 18.

.Traditionally, in considering part conunonality, design prin­
ciples suggest using as many parts as possible from the old
product. However, the results above suggest that from the
point ofview of EOL inventory, the amount ofleftover mate­
rial.at the end of each product is proportional to the percent­
age of the part value of the obsolete parts in the old product.
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Fig. 14. Part commonality be­
tween products across experiment
set M.Demand (width of bars)
for each product is 30% higher
than for the previous product.
Unit cost (length of bars) is 85%
of previous product cost.
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It further suggests that the important consideration from the
point of view ofEOL inventory is that the percentage value
of obsolete parts at the end of each product's life should be
minimized.

Discussion

In this section we discuss specific results of the Simple
Model, enhancements to the EMS system to do more de­
tailed analysis, the role of the Simple Model in enterprise
modeling and simulation, and optional ways of using
enterprise modeling and simulation.

The major results can be smmnarized as follows:
• Rational material ordering and safety stock policies designed

to reduce inventory to zero at the end of the product life
cycle can give rise to leftover material if customers orders
exactly according to forecast.

• System behavior and the impact on different metries such
as write-off, delivery times, and performance deliveries can
be quantified with respect to the factors of forecast quality,
safety stock levels, material lead times, product life cycles,
and quoted availability individually as wen as in combination.

• Forecast quality,which is influenced by the external environ­
ment, has a major effect on the metries of interest. For ex­
ample, high inventory levels may occur when actual orders
come in too high or too low.

• The influence ofpart commonality on write-off can be
quantified; this suggests an alternative way of looking at the
practice ofusing common parts in a series ofproducts.

What have we learned from the simulation runs on the Simple
Model? Wehave derived a set of specific insights into system
behavior under a variety of operating conditions using a
methodology of generating behavior over time. We went
through a large number of scenarios and showed how to
gauge system behavior from the perspectives of different
parties.

Interpreting the Results
The model results are sensitive to the underIying assump­
tions. Since we assumed the vendors always delivered on
time in the simulation, the safety stocks in effect guarded
only against demand uncertainties. Weexamined in detail
the situation of order forecast bias with zero variance. This
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Fig. 15. Orders for different products for experiment set M.
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Fig. 16. RPI levels for the different parts as a function of time for
experiment M-O (no part commonality).
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Fig. 17. Consignment and EOL inventory by product for different amounts of part commonality for experiment M-O.

is not an inherent limitation of the model, but reflects only
the deterministic circumstances in which we ran the simula­
tions. However, the results indicate that even ifproduction
and supplier lead times are completely predictable and sup­
pliers deliver on schedule, interactions and delays within the
system lead to long lead times being seen by the customers
when there is underforecasting of customer orders. The
manufacturing enterprise needs to take this into account
and start looking elsewhere-merely making the production
faster and more efficient is not sufficient.

The results so far have only scratched the surface of the
analysis and interpretation possibilities. Other analysis
could be done by varying ship times, FGI safety stock levels,

production planning frequency, material ordering frequency,
order filling policies, and uncertainty and time delays ofinfor­
mation flow. This increases the number ofruns and the quan­
tity of data collected as well as the complexity of analysis,
but would provide a richer set of relationships.

The Simple Model example may have left the reader with
the impression that the current EMS system can deal with
only simple or trivial cases. One goal of enterprise modeling
and simulation research activities is to address successively
more complex interactions and to model real-world intrica­
cies more closely. In support of that goal, the following sec­
tions discuss subsequent and future enhancements to deal
with other issues that have been raised.
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tween products across experiment
setM.
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Fig. 19. Material and order flow
diagram of a simple multientity
distributed enterprise.

Uncertainty and Variability. In the experiments described the
Simple Model was run under detenninistic Circumstanc:es.
Demand values and process times were constant across a
particular run for convenience ofunderstanding, and we
considered uncertainty in the form of forecast biases where
demands were a fixed multiple of forecasts over the period
of the forecasts. Other forms ofuncertainty could include
the actual life cycle being different from the forecasted life
cycle. Uncertainly in process times could be handled by
using two values for process times: the planned process
time for planning purposes and the actual time for execu­
tion. This reflects the situation when actual process times
are uncertain and different from the estimated times for the
process. For example, the build time for planning purposes
could be two weeks, but it could turn out that the actual
build time was one or three weeks.

We did not deal with variances that might occur when the
total demand is forecasted accurately but the week-to-week
demand fluctuates widely. Furthermore, variances ofprocess
~es (e.g., delivery times from vendors and assembly times),
YIelds (e.g., defective units), and build times for individual
units were not modeled.

Dealing with variances is fairly straightforward once they
are characterized. It requires using random number genera­
tors and multiple runs starting with different random num­
ber seeds-the current practice of discrete event simulation.
There are three pIimary costs associated with this: the in­
crease in data collection to characterize the variances of
different processes, the increase in computational effort,
and the increase in analysis effort. Only the data for the

model needs to be changed to reflect variances. The model
structure itself requires no changes.

Distribution and MultisitelMultiorganizationallnteraction. The
product distIibution function and interaction between multi­
ple sites were not considered in the Simple Model Multisite
and multiorganization interactions have been implemented
by enclosing cloned versions of a slightly enhanced manu­
facturtng enterprtse model as shown in Fig. 19. The enhance­
ment requires the manufacturing facility to generate and
transmit its projected material requirements in addition to
matertal orders.

Capacity and Supply Limitations. In current practice, build
plans and material plans are sometimes computed ignoring
production capacity and vendor limitations. In some cases,
these plans are adjusted to conform to production capacity
and vendor supply constraints, such as a minimum order
quantity or a maximum that can be ordered in a pertod. In
other cases, these limitations are observed at plan execution,
that is, at production, or when delivertes are not received
from vendors when expected. There is no unique way of
dealing with these limitations.

Implementing capacity limitations in the current Simple
Model is straightforward during production. To deal with it
during planning requires the inclusion of two classes of ca­
pacity constraints in the production planning algorithms; the
capacity restrtctions for an individual product, assembly, or
subassembly as well as total capacity, and the rate at which
production capacity can increase.
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In reality, when prospective capacity limitations are detected,
production and manufacturing line design and engineering
considerations detennine the rate of capacity expansion.
When gross overcapacity is detected, consideration is given
to reducing costs by reducing capacity. While currently the
EMS system cannot model the strategic decisions of
whether to expand capacity or forego extra orders, it can
model the consequences ofpicking either of these actions.

Interaction ofMultiple Products. The Simple Model assumed
a single product with unconstrained production capacity.
Consequently, a single unavailable part stops production of
that product Since this phenomenon also occurs with multi­
ple products with no common parts, multiple products with
no common parts can be analyzed by adding up the effects
of the individual products separately. The reader familiar
with linear systems will recognize this as the principle of
superposition.

Adding up the results would also be valid for multiple prod­
ucts with common parts with no part shortages as in experi­
ment set M. It would not be valid for multiple products with
common parts, resources, and supply and production capac­
ity limitations under scarcity conditions. When a part or
resource is in short supply, decisions must be made on how
to allocate the parts and resources based on some simple
heuristic or optimal allocation scheme.

Multilevel Bills of Materials. The Simple Model dealt with a
single-level BOM. Further expansions allow an arbitrary
number of levels of BOMto be passed as data to the model.
A seven-level BOM for a real product has been implemented
and tested successfully. This capability to pass BOM as data
allows us to make different runs with different product
structures (as for example in experiment set M) without
modifying the model structure.

Connection toa Mathematical Programming or Optimization
Package. The Simple Model focused on applying simple algo­
rithms for planning. The production planning and material
procurement processes were initially implemented as the

explicit closed-form solutions derived in Appendix I. It was
realized subsequently that these algorithmic closed-form
solutions were the solutions to the linear programming
problem formulation. As more sophisticated planning deci­
sion techniques are proposed and studied, implementing the
algorithmic solution for each new technique becomes im­
practical. An alternative approach is to formulate the plan­
ning process as an optimization problem and separate its
solution from the formulation This leads to concentrating
on ways to better formulate the problem, leaving the solu­
tion to a separate process such as a mathematical program­
ming package. This could provide a means of rapidly testing
alternative strategies for production planning (e.g., global
production planning across the entire enterprise versus
local production planning at each site).

R&D, Marketing, and Cash Flow. Fig. 20 shows a proposed
enterprise model at a broader scope for the next level of
complexity. It generalizes Fig. 3 which focused mainly on
manufacturing activities. Modeling the marketing function
(and associated activities such as the forecasting process,
pricing issues, and product obsolescence) could help show
the impact of marketing decisions and activities on the over­
all system response as well as the impact of using current
orders to project future forecasts. Modeling the R&D func­
tion could provide insights on impacts on time to market,
with product development time taken into account in addi­
tion to build time. Modeling these functions can help us deal
with situations that require coordination of marketing, R&D,
and manufacturing activities and can help identify the exis­
tence ofleverage points for process improvement The
blocks shown in the diagram represent functions, and each
could describe multiple instances of that function. For ex­
ample, the block labeled manufacturing could represent
multiple manufacturing sites interacting with one another.

The primaIy flows in the Simple Model concentrated on infor­
mation (e.g., orders, forecasts, plans, and status information),
material, and control (e.g., triggers that cause activities like

Payments

$
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Fig. 20. Proposed enterprise
modeling entities for expanded
analysis.



production to start). Flows and inventory levels were con­
verted to monetary units before being analyzed, but cash
flows were not modeled explicitly.

Modeling cash flows for payments ofparts, products, and
process costs will provide a financial perspective. Showing
projected cash flows and investments and the projected
financial consequences of investment decisions will provide
the stepping stones to doing discounted cash flow and net
present value analysis. Modeling cash flows will also help
generate pro forma financial statements to estimate reve­
nue cost and income owing to different capital budgeting
and'allo~tiondecisions, and provide a tool that could help
address business issues. An example of such an issue is the
transition from a high-margin business to a low-margin high­
volume business.24 The model may help by projecting cash
requirements for investments and operations and providing
estimates for return on assets during the transition.

Whither the Simple Model and the EMS System?
The Simple Model is not an end or final model; it is inter­
mediate in a series of models that have contributed to the
evolution of enterprise modeling and simulation (see page 12)
and the development of the EMS system Its simulation dem­
onstrates the kinds of results that can be generated byenter­
prise modeling and simulation. Its value is in providing greater
quantitative analysis where previously qualitative approaches
have been adequate (see below). Its immediate subsequent
application was the planning calendar model.25,26,27

The subsequent and future enhancements discussed make
the Simple Model more complete. Some of the changes
make the model larger, .add detail complexity, and generate
more precise results. Other changes broaden the scope of
the model, and make it more representative of the other
functions of the enterprise besides manufacturing; these
changes require the addition of greater levels of abstraction,
the ability to consolidate different points ofview, and knowl­
edge acquisition across the organization. All the changes are
technically feasible and require different kinds of activities:
the first set of changes requires greater emphasis on "model­
ing in the small," and the second set requires greater empha­
sis on "modeling in the large" (see discussion on page 3).
Discussions based on the experience and views of some
managers responsible for operations suggest that expanding
the size by increasing the detail complexity, while providing
greater predictability of the system, is difficult and requires
a tremendous amount of investment to manage the complex­
ity of the models and the generation and interpretation of
the resulting data. Monroe24 and Harmon28 have individually
reconunended that there is greater value and potentially a
far greater return on investment to be obtained by broaden­
ing the scope of future models to address and reflect business
issues and concerns.

Regardless of the direction of model enhancement is the
challenge ofmanaging simulation data. The simulation runs
for the experiments generated large amounts of data, and
only aggregate data was collected and summarized. For in­
stance, RPI levels for every part were generated for each
week during the simulation, but the data collected was the
aggregate dollar value of all the parts. The challenge became
one not of collecting all data, but one of deciding ahead of
time which data was interesting and not collecting that

The Simple Model: Sponsor's Perspective

As HP's Computer Systems Organization customers increasingly request delivery
ofcomplete systems withmuch shorter lead times. our design. ~a~ufacturing and
delivery systems are being stretched beyond their performance limits.

Qualitative approaches to improvement have served us well inthepast. but more
quantitative analysis isneeded to understand and improve thetotal system both
from acustomer and an HP perspective.

The Simple Model was conceived and developed inteamwork withHP Laborato­
ries. We sponsored it to help learn and communicate the key dnvers and charac-.
teristics ofa manufacturing enterprise. The insight achieved could then be used In

our order fu~illmerlt initiative todesign product. manufacturing. and delivery
systems to match critical business requiremerlts and position us to meet future
customer needs effectively intheglobal marketplace.

Jerry Harmon
General Manager
HP Puerto Rico
Sponsor of Simple Model
forHP Computer Manufacturing

which was not; otherwise the storage requirements for stor­
ing all the generated data became significant. The data pre­
sented in the fonn of graphs and charts in this paper is only
a small portion of the actual data collected and analyzed. A
larger amount of collected data was discarded because it did
not look interesting.

The sheer amount of detailed data that needs to be examined
and interpreted tends to overwhelm the analyst. The analysis
and interpretation of the data was very much a creative team
effort requiring much discussion, and is not yet understood
well enough to be automated. As we increase the number of
factors the behavior becomes more complex, and the
amount of data tends to increase exponentially with the
number of factors. When presented with the data in its raw
fonn, decision makers and experts familiar with the problem
issues but less familiar with modeling and simulation all have
the same general reaction that it is too complex and difficult
to understand. While this is a valid reaction, the reality is that
the enterprise is a complex system of interacting infonnation,
material, resource, and control flows, and whether we like it
or not, has complex behavior. Enterprise models as abstrac­
tions or idealizations for the real system merely reflect that
complex behavior in the simulation. We can choose to ignore
the complexity of the real system and use ad hoc qualitative
methods to deal with the resulting behavior, or we can
choose to face the complexity, understand it by selecting
what we think are important factors that influence the be­
havior of the enterprise, and find opportunities for applying
the understanding. Enterprise modeling and simulation rep­
resent one means of facing this complexity and providing an
understanding of this behavior. As with most endeavors, we
have found that the precursor to simplicity of expression is
greater depth ofunderstanding.

Increased technology in the hands ofthe modeling and simu­
lation expert is not sufficient for providing the insight that
will help make better decisions and highlight important re­
sults. Merely generating large numbers of insights and conclu­
sions is insufficient. It requires the perspective of operations
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~ams and decision makers to guide the direction of explora­
tion and to emphasize the correct metries to solve the current
situation. In fact, Monroe24 has suggested, and we in the
enterprise modeling and simulation project concur: that
~chniqu~sto digest and present large amounts of data rap­
Idly and ill a more easily understood fashion would be a
beneficial next step and a fruitful area of research and that
joint work of a modeling expert with an operations team to
further understand the issues of data reduction, interpreta­
tion, and presentation will help modeling and simulation
take its rightful place as a useful tool in analyzing business
decisions.

The Simple Model is a descriptive model that illustrates
complex dynamic behavior of a manufactur:ing enterprise
with low structural and detail complexity. As we have seen
in this paper, its primary output is data and information on
the state of the world, and it goes a great distance towards
presenting observations. Unlike an optimization model,
which is a prescriptive model whose solution recommends
the best action under a given set of circumstances, the Simple
Model does not suggest actions. It is up to the analyst or deci­
sion maker to come up with creative solutions to solve the
problems highlighted by observations of the model behavior
and then assess the results from a subsequent simulation
run incorporating those solutions.

Prospective Applications
Let us now look at application areas for enterprise modeling
and simulation. These include but are not limited to improv­
ing the performance of the current system (continuous im­
provement), studying the impact of reducing process times
and generating information for the enterprise, all of which '
are discussed below. A potentially far more powerful appli­
cation is looking at new designs where the process itself is
being changed (i.e., reengineering). Because of the strong
current interest, large impact, and controversy surrounding
reengineering, this subject is given its own discussion on
page 8.

Incremental Improvements. Actions for continuous improve­
ment can be suggested by running the nominal or baseline
~odel and rerunning it with minor modification and changes
ill parameters or actions over which we have control. For
example, it may not be possible to reduce all the part lead
times down to six weeks, but we could certainly see the
impact of reducing the value of 14-week parts in the product
to determine the impact on the metries of interest We could
look at the impact of reducing build times or FGI safety
stock levels slightly to study the impact on the measures of
interest. We could examine the impact of making two small
changes at the same time. 'Thisapplication of enterprise
modeling and simulation supports the process of continuous
improvement by demonstrating the benefits of small
changes.

Verifying Impact ofReducing Process Times. Davidow and
Malone29 talk about how short cycle times attenuate "the
trumpet of doom," which is a plot of forecasting error versus
time that implies that the further a person must forecast into
the future, the greater the possibility of error. Rather than
speculate on or guess on the impact of this trumpet of
doom, enterprise modeling and simulation provide a way to
quantify the effect of reducing system cycle times. This can

be accomplished by making some estimates of the amount
of uncertainties within the model.

Stalk and Hout30 suggest mapping out explicitly the major
causes ofproblems in processes such as new product devel­
opment or in operations, and comparing actual versus stan­
dard cycle times. These maps provide qualitative relation­
ships. To the extent that processes can be mapped explicitly
and quantitatively, enterprise modeling and simulation can
show how the system behavior changes for a given change in
the process and can verify whether modifying the component
processes has the desired overall global effect.

Generating Enterprise Behavior Information. Davidow and
Malone29identify four categories of information ofuse to a
corporation: content, form, behavior, and action. Content
information is historical in nature and reflects the experi­
ence. Form information describes shape and composition
and is usually more voluminous than content information.
Behavior information often begins with form information
and usually requires a massive amount of computer power
to predict behavior through simulation. They suggest that
the final triumph of the information revolution will be the
use of action information-information that instantly con­
verts to sophisticated action. Until recently, only the most
elementary category, content, has been available to business
in any systematic and manageable way, and obtaining or
generating the other three categories has become economi­
cally feasible only in recent years. They go on to describe
how behavior information generated by computer simulation
is the new paradigm for product design ranging from molec­
ular design through automotive design to airplane design.
With such behavior information design disasters of the past
might be averted, and potential and unforeseen future trag­
edy can be replaced with a successful and predictable con­
clusion. With the arrival of workstations in the 19808,it be­
came reasonable for the computer to create realistic models
and put them through their paces rather than painstakingly
building prototypes and testing them under a variety of op­
erating conditions. High-speed simulators could be built that
reproduced the actual electrical characteristics of devices in
different configurations.

We suggest that enterprise modeling and simulation repre­
sent an assistive and enabling technology for the design and
implementation ofprocesses of the enterprise, and that the
application of such techniques to the enterprise could poten­
tially have greater impact than product design. Furthermore,
these techniques have the characteristic of converting con­
tent and form information into behavior information on
which action can be taken. While the enterprise modeling
and simulation process currently does not suggest actions
or alternatives, it describes the behavior of the system de­
signed with alternate processes under different operational
scenarios.

Conclusions
In this paper, we outlined activities in enterprise modeling
and simulation at HP Laboratories and presented in detail the
results of the simulation of a simple model of a manufactur­
ing enterprise. We have also described possible areas where
enterprise modeling and simulation might be applicable, and
reiterate that enterprise modeling and simulation provide a
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way of quantiJYingthe impacts of proposed changes before
they are implemented.

The Simple Model captures the characteristics and behavior
of a manufacturing entity at a fairly high level. It shows that
in the best of circumstances (e.g., customers ordering ex­
actly according to forecast), seemingly rational operational
policies can lead to end-of-life inventory. The situation only
gets more complex as greater uncertainty is introduced.

Experience with using the Simple Model suggests two direc­
tions for future research in enterprise modeling and simula­
tion. The first is to expand the scope of the Simple Model to
more completely represent the functions and organizations
and their interactions in the enterprise. The second is to
improve the process by which the data generated by the
simulation models can be understood and sununarized, and
the resulting infonnation presented in a form that permits
decision makers to understand more completely and to act
more rapidly and with greater assurance that the desired
objectives will be achieved.
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Appendix I: Mathematics of Production and Material Planning for the Simple Model

1-1 ThePlenningFunction
The planning function isactually an analytic model embedded within adiscrete
event simulation model. The fundamental principle on which the production and
material planning algorithms are based istheconservation of mass. thatis.con­
sumption cannot be higher than thetotal supply available. The order inwhich the
build plan computation isdone isthereverse ofthe order inwhich subassemblies
are built and products are shipped (i.e .• from shipment to product build to part
order). For ease ofexplanation. thecurrent week isconsidered to be week O. This
derivation emphasizes clarity of explanation rather than rigorous detail.

There are three sets ofdecision variables to be determined foreach week: sft), the
shipment plan. bft),thebuild plan. and rrljft), thematerial ordering plan. These are
shown initalics.

Before wegetinto the mathematical formulation. letusfirst look attheprocess of
computation. Fig. 1illustrates how the production and material planning algorithms
work inthismodel. The computational process isdescribed inthe following order:

• 1-2 describes the notation shown inFig. 1.
• 1-3 describes the safety stock computation.
• 1-4 describes theinitial conditions forcomputation.
• 1-5 describes thecomputation ofthe shipment plan.
• 1-6 describes the computation ofthe build plan.

ForecllSts
I

• 1-7 describes computation ofthenumber ofunits started this week.
• 1-8 describes thecomputation ofthe material consumption and material ordering

plans.
• 1-9 describes theactual material ordered thisweek.
• 1-10 describes the computation ofthe number ofweeks foreach oftheplans.

1-2 Notation
• n,s,t = indexes forweek number (current week = 0)
• fIt)= Currentforecast ofproduct orders forweek t. t =0.1•...• Nf
• F(t) = FGI at end ofweek t
• W(t) =WIP atend ofweek t
• B(t) =Backlog units at end ofweek t
• B(t.s) = Backlog units atend ofweek t having shipment dates inweek s
• sft)= Planned shipments during week t
• bft)= Units planned to be started during week t
• B= Build time innumber ofweeks
• Y=Quoted availability innumber ofweeks
• S=Shipment ortransit time
• j = Index relating to part
• Qj =Quantity ofpart j per unitof product
• qj(t) = Planned consumption ofpart j during week t

This
Week's
Orders
"'J(O)

Note: Subscript i indicatesViEJ. b(O)

30

WI-I) FHI

Fig.1.Notation and production/material
planning. The shipment plan iscomputed from
thebacklog. forecasts. quoted availability. and
transit time. The build plan iscomputed from
thes.hipment plan. thebuild time. W1P. FGI.
and FGI safety stock. The actual build iscom­
puted from thebuild plan and thematerial
availability. The material consumption plan is
computed from thebuild plan and thebillof
materials. The material ordering plan iscom­
puted from RPI. RPI safety stock. thematerial
consumption plan. on-order material. and lead
time.



The target FGI safety stock at theend ofweek t iswweeks and thetarget RPI
safety stock at theend ofweek t for part j isVj weeks. The expressions forthese
quantities are:

(5)
for 0 < n < Y - S
for n ~ Y- S.

for n = 0

{

L 8(-1.s)
sE(i I iSO}

sIn) = 8(- 1.n)

fIn - (Y - S))

Minimize s(n), n= O.l .....Ns

1-6 Build Plan
The build plan. which indicates how many units aretobestarted in thecurrent
week 0and succeeding weeks. isbased ontheassumption thattheFGllevels at
theend ofweeks 0.1 .....8-1 have already been determined by thecurrent FGI.
WIP, and shipments preceding week O.lt further assumes thatwemight beable to
control FGI at theend ofweek 8 orlater bydeciding how many units westartthis
week and future weeks. that is. by controlling b(O),b(1).••••bln). We want to keep
thebIn) as low as possible but greater than orequal toO. such that thetotal planned
build during weeks 0through nmust begreater than orequal toshipments during
weeks 0through 8+n plus FGI at theend ofweek Bf.n minus current FGI and WIP
The complete formulation isasfollows:

Minimize b(n), n= O.l .....Nb

The term (Y- S) isthedifference between thequoted availability and thetransit
time [i.e .• theorder-to-ship time toachieve on-time delivery!, and indicates the
time in thefuture after which shipments depend solely on forecasts.

n n-~-~

such that L s(t)~ L 8( -1. t) + L fIt)
t=O tE(ilisn} t=O

and sIn) ~ O.

These equations define a series of(Ns+ 11 linear programming problems. However.
this formulation will always return a setoffeasible solutions. and theoptimal
feasible solutions can beexpressed in closed form asfollows:

(2)

(3)

(1)

F(t) = wfft)

Rj{t) = VjQjfft)

1-3 Safety Stock Computation
Safety stock isexpressed in number ofweeks of13-week leading average forecast.
The 13-week leading average forecast at theend ofweek t isdefined as:

13

fft) = 11 L fIt + i)
i=1

• mjlt) =Planned quantity ofmaterial j tobeordered during week t. t =O. 1..... Nj.
jeJ

• Rj(t) = RPI ofpart j attheend ofweek t
• rj(t) =Units ofpart j received during week t
• OJ(t) = Units ofpart j onorder at theend ofweek t
• Lj =Vendor lead time for part j
• J = Setofparts thatgointo theproduct
• w=FGI safety stock inweeks ofdemand
• Vj = RPI safety stock ofpart j in weeks ofdemand
• Ns =Last week for computing shipment plan
• Nb = Last week for computing build plan
• Nt = Last week used for forecasts
• Nj =Last week for computing material order for part j.

Since thecurrent week isO. thevalues ofthese variables represent actual values
for weeks before O. and thevalues arecomputed. set.orderived for weeks 0and
later. In particular. thevalues ofvariables at theend ofweek -1 represent the
current values ofthose variables. asdescribed in 1-4. All numerical quaritities
except time indexes arezero orpositive.

1-4 InitialConditions
• FH) =Actual FGI at theend oftheprevious week. that is. current FGI
• W(-l)=Actual WIP at theend oftheprevious week. that is. current WIP
• 0j{-l) =Actual part j onorder at theend oftheprevious week. that is. current

on-order material
• RjH)=Actual RPI for part j at theend oftheprevious week. that is. current RPI

for part j.
• 8{-1) =Order backlog in units at theend oftheprevious week. that is. current

backlog:

8(-1) = L 8(-1.s) (4)
se(all shipment dates incurrent backlog}

• 8(-1.s) =Component ofcurrent backlog with shipment date in week s.

n B+n
such that L b(t) ~ L sIt) + F(8 + n) - F( - 1) - W( -1)

t=O t=O

and b(n)~ O.

Again. theabove isa series of(Nb+1) linear programming problems. with optimal
feasible solutions thatareexpressed in closed form asfollows:

b(n) = max{ O. F{8 + n) + :~ s(t)- F( -1) - W( -1) - t~ b(t+ (6)

for n=O. 1..... Nb.

To summarize theabove. thecurrent build plan should look as follows:

1-7 Actual Units Started
The actual units started this week. boo will beb(O) if there issufficient material. If
there is insufficient material theactual units started isthemaximum possible with
theavailable material. or:

Maximize bo

such thatGjbO S Rj{-l) +rjIO). VjeJ

and 0s bo s b(O),

for which theclosed form solution is:

b. ~ m;,{biOI. l'J!~( ";1-1~J+ '101
) }

1-5 Shipment Plan
The shipment plan indicates prospective shipments during thecurrent and future
weeks. It iscomputed ontheassumption thatcustomer orders arenot shipped
before they aredue. but areshipped in time tosatisfy thequoted availability
requirements. This implies thatfor any week. theorders planned tobeshipped are
those thatarealready late [i.e..should have been shipped in anearlier week) and
those thatmust beshipped to bedelivered ontime. Notice that in computing the
shipping plan. wedo not take into account theamount of inventory on hand or in
process. This isrepresentative oftheway shipment plans arecomputed and then
subsequently checked against reality.

Put another way. this can beexpressed as planning toship theminimum quantity
in each week thatwill satisfy thequoted availability criteria. The problem can be
formulated asshown inthesetofequations below. which indicate thatweare
attempting to minimize shipments in thecurrent week. current plus next week.
current plus next 2weeks. and soon such thatthetotal shipments in those weeks
isgreater than thecurrent existing backlog whose shipment date isalready past
or in those weeks. plus theforecasted orders whose desired shipment dates lie in
those weeks.

Week:
Planned 8uild:

o 1 2
b(O) btl) b(2)

n
b(n).
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1-10 Detennination oftheRequired Number ofWeeks
Since wewant to compute thematerial procurement plan formaterial j forperiods
othrough Nj, weneed to make sure wehave values oftheforecasts, shipment
plan, and build plan farenough inthe future to allow us to do so. This section
shows how many periods ofthose plans weneed to compute.

In10 through 16 below, "fTIj(n) requires x(nl" should be read as, "Computing mjfn)
requires values ofx(O), x(l), •••• xln)." Thus 10should be read as, "Computing
mjf~) requires the values of Rj(O), Rj(1), •••, Rj(~+~r

From 9,

1-8 Material RequirementAnalysis
If the lead time forapart j isLjweeks, the RPllevel forpart j at the end ofweeks
0,1, •••Lj-l has been determined by material onhand, material onorder, and
projected use. We could control RPI forpart j attheend ofweek Lj orlater by
deciding how much of part j weorder inthisweek and subsequent weeks. The
estimated material consumption during aweek isthe quantity ofthematerial for
the build forthatweek, thatis:

(81

The material ordered during weeks 0through nmust be greater than or equal tothe
material consumed during weeks 0through Lj+n plus thedesired safety stock at
the end ofweek Lj+n minus thecurrent on-hand material and thecurrent on-order
material. This can be expressed mathematically as follows:

Minimize fTIj(n). n=O,1... ..Nj, jeJ

n lj+n

such that I mjt) ~ I qj(t) + Rj(Lj + n) - Rj( -1) - 0j(-ll
\=0 \=0

fTIj(~) requires Rj(Lj +Njl

and fTIj(~) requires b(~ +~).

From 10,3. and 1.

fTIj(~)requiresf(Lj+ Nj+ 13).

From 11 and 6,

(10)

(11)

(121

and fTIj(n)? O.

Aftersubstituting equation 8,thisbecomes aseries of linear programming
formulations forwhich the closed form solution is:

{

o
l·+n

mjn) = max J(OJ,~ bft) + 'j(~ + 0) - 'jl-11

n-1 1- 0j(-l) - I mjt)
\=0

forn=0,1. "', Nj.jeJ.

The current material ordering plan isshown by thefollowing table.

Week

0 1 2
Material 1 mdO) md1) md2)
Material 2 m2(O) "'2(1) m2(2)

Material j mjfO) fTIj(1) mjf2)

n
mdn)
m2(n)

(9)

fTIj(~) requires F(B + Lj + Nj)

and fTIj(~) requires s(B +~ + ~).

From13, 2.and 1.

fTIj(~)requires fIB + Lj + Nj+ 13).

From 14,5. and 1.

fTIj(~) requires fiB+ Lj + Nj- (Y - S)).

Computation of Nb. From 11,

Nb = max{L. + N.).
JEJ J J

Computation of Ns. From 14,

Ns = max{B + Lj + Nj).
jeJ

Computation of Nt. From 12, 15, and 16.

{

Lj + Nj + 13

Nt = max B + Lj + Nj + 13
JEJ

B + Lj + Nj - (Y - S)

(13)

(141

(15)

(16)

(17)

(181

(19)

(20)

I-gActual Material Ordered
Given the table above, the actual material ordered inthisweek must be fTIj(O).
VjeJ.

Since B ~ 0,(Y- S) ~ 0,the middle expression dominates, and 19reduces to:

Nt = max{B + Lj + Nj + 13).
jEJ

Appendix II: Weekly Event Sequence

Event Description

Generate and send orders; these orders are received bytheAdder factory at 9:30:00 thesame day.
Completes computing FGI safety stock forfuture weeks. Completes computing shipment plan and
build plans.
Completes computing material requirements plan. Completes computing material procurements plan.
Generates current week's material orders. Material orders arrive atthevendors instantaneously.
Finish filling and shipping orders due thisweek. Shipments arrive atthefactory instantaneously.
Begins current week's production. Completes production started twoweeks ago.
Completes filling and shipping orders fortheweek.
Records values ofall the state variables.

Factory
Factory
Vendors
Factory
Factory

Simulation Executive

Weekly
Weekly
Weekly
Weekly
Weekly
Weekly

Monday 9:00
Monday 10:00
Monday 10:00:01
Monday 10:30
Friday 16:30
Friday 23:58

Inthefollowing table, periodically scheduled events are shown insequence.

Event Time Event Frequency Initiators

Monday 1:00 Weekly Customers
Monday 8:00 Weekly Factory
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Appendix III: Details of Part Commonality Experiments

The following table shows thedefinitions used todescribe part commonality. MC
stands formaterial cost, withuppercase denoting dollar values and lowercase
denoting percentage values. mrepresents thesetof material.

Set 01 Value01 Percentage
Material Matarial Value

Common to products mi,j-l MCi,i-1 MCii-l
i and i-l mCi,j_l =~ x 100

I

Unique to product i m·· MC·· MC··1,1 1,1 mc·· = __1,1 X 100
1,1 MCi

Common to products mi,i+l· MCi,j+l MCi,i+l
i and i+1 mCi,j+l = Mr x 100

I

Commonality occurs only between adjacent products. This implies thatapart can
be used inatmost twoproducts.

Each ofthe MCi,j isfurther broken up into class A B, and Cparts withrelative val­
ues 50, 30, and 20 percent. Each of these classes ismade up of6,10, and 14 week
lead times withrelative values 25, 40, and 35percent. (See Table I on page 5.1

Attheend ofthe product i lifecycle, obsolete inventory (if anyl should come only
from parts insets mi,i and mi,j-l.Any leftover parts from mi,i+l can be used in
product i+1.This implies thatmCi,j_l and mCi,i impact the obsolete inventory atthe
end oftheproduct lifecycle forproduct i.

The values shown inthe following table should be derived from thereal bill of
materials. For our experiments, wereverse the process, thatis,wegenerate abill
ofmaterials from the table, which was generated heuristically from theexperi­
mental scenarios, withthefollowing constraints onthevalues ofmc:

• For each i and j, mCi,j must be greater than orequal to0and less than orequal to
100.

• For each i,the sum ofmCi,j over all j must be 100.
• Ineach experiment. if any mCi,i+l iszero, then mCi+l,i must also be zero.

Description 01 Experimental Scenarios
Run M-D: no part commonality atall between adjacent products.

Run M-1:20% part commonality between adjacent products. The parts common
toproducts i and i+1make up20% ofthe part values ofboth products. This may
happen by a reduction ineither part quantity orpart cost, but the reason isnot
reflected inthe dollar value of leftover inventory ormaterial.

Run M-2:20% part commonality when moving toa new product. The parts com­
mon to products i-1and i make up20% ofthe part value of product i;therest of
the value of product i issplitequally between theparts unique to product i and
those common to products i and i+1.Since product Adder-1has no prior product,
the value issplitequally between unique parts and parts common toAdder-land
Adder-2. 20% ofthe value ofAdder-2 ismade up ofparts common toAdder-1and
Adder-2; the remaining 80% issplitequally between unique parts and parts com­
mon toAdder-2 and Adder-3. 20% ofthe value of product Adder-4 ismade upof
parts common toAdder-3 and Adder-4; the balance ofthe value isunique parts
since there are nosucceeding products.

Run M-3:50% and 25% part commonality between altemate products. There is
50% part commonality between products Adder-1and Adder-2 and between
Adder-3 and Adder-4; there is25% part commonality between Adder-2 and
Adder-3.

Run M-4:50% part commonality between adjacent products; no unique parts in
Adder-2 and Adder-3; 50% unique parts inAdder-1and Adder-4.

Run M-5:80% part commonality between succeeding products.

Part Commonality Data (%)forMuhiple Product Crossover

Product Demand (units) Product Cost (S) Common Parts (%) Experiment Run

M-D M-1 M-2 M-3 Mc4 M-5

Adder-1 V 10,000 mcl,l 100 80 50 50 50 20
mCl,Z 0 20 50 50 50 80

2 Adder-2 1.3V 0.85 x 10,000 mCZ,l 0 20 20 50 50 80
mcz,z 100 60 40 25 0 10
mCZ,3 0 20 20 25 50 10

3 Adder-3 1.3x 1.3V 0.85 x 0.85 x 10,000 mC3,Z 0 20 20 25 50 80
mC3,3 100 60 40 25 0 10
mC3,4 0 20 40 50 50 10

4 Adder-4 1.3 x 1.3x 1.3V 0.85 x 0.85 x 0.85 x 10,000 mC4,3 0 20 20 50 50 80
mC4,4 100 80 80 50 50 20
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Appendix IV: Details of Explanations for Experiments 0 and la

IV-1 Estimated FinancialImpactBased onTheoretical Considerations for
Experiment 0
The impact ofproduct Adder onthefinancial situation ofthe enterprise. as
explained onpage 11. is:

• Total PCFT =$7.800.000
• Mature volume =MV =mature PCFT =$BOO.OOO/month or$200.000/week
• Consignment inventOlY =$300.000.

IV-3 End-of-Life Considerations forExperiment 0
Total PCFT =$7.BOO.000. Net profit =$7B.000(i/l 00). where i isthe profit as a
percent ofPCFT.

The following table summarizes theimpact ontheprofitability ofvarious margins i.

Write-Off asa Function ofProfit onShipped Units

IV-2Mature Demand WeekConsiderations forExperiment 0

RPI Material to Support Mature Demand

Class A Class B Class C All Classes

(j) Percentage ofPart 50% 30% 20% 100%
Value inProduct

~ Weekly Use during $100k $60k $40k $200k
Mature Demand
<Dx MV

@ RPI Safety Stock in 4 8 16 N/A
Weeks

@ RPI in $:@x MV $400k $480k $640k $1520k

@ RPI in Weeks ofMV 2 2.4 3.2 7.6
@+MV

(j) Profit Margin i 5% 10% 20% 30%

(2) Profit from Trade Units $390k $780k $1560k $2340k
$7.BM x(j)

@ Leftover Material $64.615

@ Leftover Material as %ofNet 16.57% 8.28% 4.14% 2.76%
Profit: @+ (2)

@ Consignment $300.000

@ Consignment as %ofNet Profit 76.92% 38.46% 19.23% 12.82%
@+(2)

(j) Total EOL Material as %ofNet 93.49% 46.75% 23.37% 15.58%
Profit: (@ +@)+ (2)

The following table shows the impact onClass CEOL material ofreducing safety
stock levels. These results were computed using means other than simulation.

Total Inventory Metrics during Mature Demand

Weeksof Dollars
Mature Demand

(j) RPI 7.6 $1520k

~ WIP 2.0 $400k
@ FGI 2.0 $400k
@ On-Hand Inventory: (j) +(2) +@ 11.6 $2320k

@ On-Order Material 10.4 $2080k

@ Committed Inventory: @+@ 22.0 $4400k

(j) Consignment Inventory 1.5 $300k

@ Total Committed Inventory: @+(j) 23.5 $4700k

On-order Material toSupport Mature Demand

(j) Lead Time 6weeks 10weeks 14weeks

IV-5 Why Orders Cannot BeMore than 14Weeks Lata forExperiment 1a
Assume thatanorder comes in during weekx. In theworst casewe have not yet
ordered any material for theunit thatgoes with this order. The earliest thematerial
can beordered isweekx-l. and thelongest lead time part will bedelivered during
week (x+11+14. which isweek x+15. Since build time is2weeks. the unit isready
inweek x+17. Since transit time is1week. theunit isdel ivered tothecustomer in
weekx+18. Since thequoted availability is4weeks. on-time delivery means the
customer should receive it in week x+4. This means thatthe lateness is14weeks.

IV-4Why There Is Class Cmaterial Left Over forExperiment 0
The lastperiod inwhich weexpect to receive orders isweek 68. The end ofweek
55is13weeks before theend oftheproduct life c.ycle. From theAdder order fore­
cast in Fig. 2 on page 5and thetarget RPI safety stock forclass Cmaterial being
16weeks ofthe13-week leading average forecast [fable Ib onpage 5), at theend
ofweek 55theamount ofclass Cmaterial inRPI should theoretically be16/13 of
thetotal demand totheend oflife, or(16/13) x(1%xV)=(28/13) x Vunits,
where V=80.

In week 56. weneed tostartbuilding theunits for orders received in week 55.
Ignoring thecurrent FGI. themaximum new build from week 56 tothetheend oflife
isequal tothedemand from week 55through theend oflife. thatis. ZV. Thus, at the
end ofweek 55. there ismore class Cmaterial on hand-enough to build (28/13)
x Vunits----than needed for thedemand to thetheend oftheproduct life c.ycle.

Remember thatwedid not consider units in FGI. Ifwewant to reduce FGI units
down to0 by theend oftheproduct life cycle. thetotal new build must beless than
thatcomputed above. and hence there will beeven more class Cmaterial left over.

In summary, one reason for the leftover class Cmaterial isthatthesafety stock
computation requires holding more class Craw material in RPI13 weeks before
theend oflife than can beconsumed by orders received in the last 14weeks of
the product life c.ycle.

Class CEOL Material

$64.615

$35,385

$13,846

$0

Weeks ofClass CSafety Stock

16weeks

15weeks

14weeks

13weeks

100%

10.4

$200k

$2080k

All Parts

100%

4.9

35%

$70k

$980k

47.1%

40%

4.0

$80k

$BOOk

38.5%

1.5

25%

$50k

$300k

14.4%

(2) Percentage ofPart
Value inProduct

@ Weekly Order during
Mature Demand
(2) x MV

@ Amount onOrder =
Weekly Order x Lead
Time: @x(j)

@ Percent Value ofPart
on Order. @+ $2080k

@ On-order Material in
Weeks of.MV
@+MV
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