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1 Introduction

Object SQL (OSQL) is a database (programming) language that combines an expression-oriented
procedural language with a high-level, declarative and optimizable query language. The OSQL
language combines the object-oriented features found in such languages as c++ [Ellis and Stroustrup
1990] and Smalltalk [Goldberg and Robson 1983] with a query capability that is a superset of the
familiar SQL relational query language. Consequently, OSQL provides many of the advantages of
object orientation, including a more intuitive model, improved productivity, code reuse and
extensibility, together with all the features of current database technology, such as query optimization,
integrity constraints, multi-user access, authorization and security. The OSQL language was developed
as part of the Iris project at Hewlett-Packard Laboratories [Fishman et al. 1989; Lyngbaek 1991;
Wilkinson, Lyngbaek and Hasan 1990]. It has evolved to include general computational primitives
[Annevelink 1991] and is now a computationally complete, extensible database language. The design of
OSQL was influenced by pioneering work on semantic and functional database models, notably the
functional language Daplex [Shipman 1981] and the language Taxis [Mylopoulos, Bernstein and Wong
1980].

The design goals for OSQL can be summarized as follows:

• based on a simple, orthogonal object-oriented model and type system

• computationally complete and independent of specific application programming languages

• provides constructs for specifying declarative queries and allows such queries to be compiled and
optimized, similar to the capabilities offered by relational query languages

• extensible, that is allows the user to (dynamically) define new types and operations

• no artificial distinctions between meta-data objects and user-defined objects

• allows separate definition of the interface of an object (type) and the corresponding implementa­
tion(s).

OSQL is object-oriented in that it provides object identity, a type system with multiple inheritance,
polymorphic functions and built-in aggregate object types such as sets and lists. It differs from other
object-oriented languages, in particular C++, in that it does not mix the definition of the interface of an
object type with a particular representation of the instances of the type. OSQL allows the interface of an
object type to be defined independent of a specific choice for implementing the interface and allows the
implementation to change over timel . In OSQL, the state of an object is not an intrinsic part of the
object itself; rather, it is defined by functions which model attributes of the object, interobject
relationships, and arbitrary computations. By disassociating the interface of an object type from any
specific representation of the instances of the type, one can allow objects to dynamically acquire and
lose types, thus enabling one to model the evolution of objects over their lifetime in a natural way.The
OSQL type system allows the OSQL compiler to do compile-time type checking. However, since OSQL
allows objects, including types and functions, to be created dynamically, compile-time type checking
has to be supplemented by run-time type checks.

Functions are a major modelling construct of OSQL and are used to model attributes of the object,
interobject relationships, and arbitrary computations. Functions can be implemented as stored functions
(e.g. by storing a direct representation of the relationship in the form of a table in the database) or they

1. Future versions of the language may include additional constructs to allow the specification of multiple imple­
mentations of a given interface.
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can be computed. The implementation of a computedfunctionis specified by an expression, the bodyof
the function; the free identifiers in this expression are the formalparametersof the function and the
value computedby the expressionis the valuereturnedby the function. The body of a computed
functionmay includequery expressions. In addition to storedand computedfunctions, OSQLalso
supportsexternal functions. External functions providea crucial measureof extensibility, because they
allow a function to be implemented by a routine written in an externalprogramming language(e.g.C,
C++ or COBOL).

The OSQLauthorization mechanism is also designedaround functions [Ahadet al. 1992].Users are
membersof UserGroup's that are assignedcall and/or updateprivileges to functions. The OSQL
authorization mechanism is not further discussedin this chapter.

The OSQL language is independent of specific application programming languages(e.g. C, C++,
Smalltalk, COBOL)and specific implementations. The examplesusedin this chapterare slightly
stylizedversionsof actual OSQL functions used by applications runningon top of OpenODB, Hewlett­
Packard's object-oriented databasemanagement systemand implementation ofOSQL [Ahadand Dedo
1992;Ahad and Cheng 1993;Hewlett-Packard 1992]. The programmatic interfaceprovidedby
OpenODB allows client applications to call any OSQLfunctionand map the results returnedby OSQL
functions to the data-typesprovidedby the programming interface.

In this chapter we will give an outlineof the OSQLmodel (section2), followedby a discussion of the
major constructsfoundin the OSQL language(section3), with specialattentionto the selectconstruct
(section4). In section5 we will give a numberof exampleshighlighting some of the more advanced
applications madepossibleby OSQL.

2 OSQL Object Model

The OSQL languageis centeredaroundthree basic concepts: objects, types and functions. Objects,
typesand functions arerelated as shownin Figure 1.

Function Signature
Type

FIGURE 1. OSQL - basic data model elements and relationships
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Objects
Objectsrepresentthe real-world entitiesand concepts from the application domainthat the databaseis
storinginformation about For example, in a clinicaldatabase, objectsmayrepresentclinics,physicians,
nurses,patients,problemlists, and so on. In OSQL,objectscan be classified in one of threecategories:

• literals,for example, integers,characterstringsand binaryobjects

• aggregates, for example, a problemlist or a tuplecontaining demographic data for a patient,such as
name,age and socialsecuritynumber

• surrogates, for example, patientsand clinics

Surrogate objectsare characterized by a system-generated, uniqueobject identifier (oid).Surrogate
objectsalso represententitiesusedto implement OSQL,e.g. system typesand functions. Surrogate
objectsare explicitlycreatedanddeleted.

Types
The secondmajor conceptin OSQL is that of a type.Types are used to classifyobjectson the basisof
sharedproperties and/orbehavior. For example,it is naturalto group togetherall patientobjectsand
similarly groupall physicianobjects,all nurse objectsand all clinic objects. Types are also used to
definethe signatureof functions (i.e. theirargumentand resulttype).The extension of a typeis the setof
objectsthat are instancesof the type.Some types, for example Integer,havepre-defined extensions.
Surrogatetypeshave dynamic extensions that changedepending on the type(s)and order in which
objectsare createdand deleted. Aggregate typesand aggregate objectscan be constructed fromother
typesand objectsrespectively, usingsystemdefined aggregatetype and objectconstructors'. For
example, an instanceof the type SetType (Small Integer) is denotedby the expression:
Set (1,2, 3) . Note that this does not constructa new object,but rather returnsa specific object from
the extentof the type SetType (SmaIIInteger), in the same way that the expression 1 does not
return a new objectbut returns an instanceof the type SmallInteger.

Types are relatedin a subtype/supertype hierarchy that supports multipleinheritance. The typehierarchy
enforcestype containment, that is, if an object is an instanceof a given type T, it must also be an
instanceof all supertypes of the type T. An overview of the (pre-defined) systemtype hierarchy is
shownin Figure 2. User-defined typescan be addedas subtypes of the type Usersurrogate''. OSQL
surrogateobjectscan be instances of any numberof types,even if the typesare not relatedby a subtype/
supertype relationship. This is obviouslyrequiredin the real world,where say a personmay belongto
manydifferentgroups,and assumedifferent roles depending on the context. For example, the groupof
cancerpatientscan be distinguished from the group of diabetics; different typesof properties are
applicable and relevantto each of the members of the two. Moreover, peoplecan changetheir
membership in a groupand thuschangewhatrolesand whatpropertiesand behaviorare applicable. For
example, a personcan be curedand thusno longerbe a cancerpatientor he can get sick and be
diagnosed withdiabetes.

Functions
The thirdconcept,functions, is used to modelattributes of the object, interobject relationships, and
arbitrary computations. One of the key distinctions of OSQLas compared to other models (e.g, those
inspiredby object-oriented programming languages) is this unifying notion of a function to model

2. OpenODB supports four aggregate type and object constructors, BagType, SetType, ListType and TupleType to
construct aggregate types and Bag, Set, List and Tuple to construct the corresponding objects.

3. The version ofOSQL implemented by OpenODB currently does not allow the creation of user-defined subtypes
of pre-defined system types.
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storedand derivedattributes, storedand derivedrelationships and arbitrary computations (behavior). In
OSQLthe distinction between these is relegatedto the implementation domain,thus makingthe actual
modeling moreindependent of implementation trade-offs andallowing a greaterfreedom in choosing an
implementation, including the possibility to evolvean implementation (e.g. choosing to re-implement
something that was a storedattributeas a derivedor computed attribute).

An OSQLfunction takesan objectas an argumentand mayreturn an objectas a result4. OSQL
functions can be overloaded, that is, therecan be multiplefunctions with the same namebut different
argumenttypes.OSQL does not currentlyallowoverloaded functions to havedifferentresult types.
OSQLrefers to an overloaded function as a genericfunction. The resolvents of a genericfunction are
calledspecific functions. For a given function f, the argumentobjectmustbe an instanceof the
argumenttype specified for one of the specific functions that resolvethe function f. A function can only
return an object that is, an instanceof the result type of the function. The result type of functions that
never returna value is Vai d. Functions may changethe state of the databaseas a side effectof their
application, by updating other functions. Functions that performupdates are said to haveside effects
and can not be calledas part of a query. Similarto types, functions have extensions. The extension of a
function is the mapping fromits arguments to its results. Functionextensions can be explicitly stored,or
they can be computed. Functions whoseextentis computedcan be implemented eitheras an OSQL
expression, or as a program(subroutine, procedure) writtenin a general-purpose programming
language. These latter are calledexternalfunctions and give OSQLa uniqueformof extensibility by
allowing the encapsulation of (entrypoints in) externallibraries.

An importantpropertyof functions is theirupdatability. A function f that is, updatable has a companion
function, say set_f, that will set the value to be returnedby ffor a givenargument, whencalled.If a
function f returnsan aggregatetype, then it willhave three suchcompanion functions: one to set the
valueas before, the other two to add or removea valuein the aggregate. The set, add and remove
functions can be specified explicitly, or they can be generatedautomatically by the system (e.g. when
the extentofthe function fis explicitlystored). For example, a storedfunction translate can be
defined as follows:

create function translate(Char english) -> Char /*french */;

Sincethis is an atomicvaluedstoredfunction, the systemwill automatically create a secondfunction to
allow it to be updated. This functionhas no nameand can be foundby evaluating the (system-defined)
function FunAssign. The latter function will be invokedwhen the function trans lat e is to be
updated; for example,

translate('one') := 'un';

4. OSQL functions can take aggregate objects as argument and/or return them as results. Functions with multiple
arguments are implemented by combining the arguments into a single tuple value and applying the function to the
tuple. The argument type of function with multiple arguments is the tupletype corresponding to the types of the
arguments.
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OSQL System Types

Tomakean OSQL system work,a greatmanybuilt-inobjects, typesand functions need to be defined.
The basic typehierarchy is shownin Figure2. The root object typeis calledObjectand is the supertype
of all other object types. Subtypes of objectare:

~~"~"

~~)--oVOid

/ Literal Types

umber

Char

unction
Index
User

Group /
UserSurrogate .

----- j _ ..".fatielt (user-defined)

:_ "Prlvider (user-defined)
Transient j - - .

. /

/

FIGURE 2. OSQL System Type Hierarchy (simplified)

• TypeRef- the type whoseextension is the set of all type objects,including aggregatetypes;for
example, SetType(Integer) and surrogate types (all the instances oftype Type)

• Surrogate- the supertype of all types whoseinstances have oid's, including Function,Type, Index,
User,UserGroup and UserSurrogate

• UserSurrogate - supertypeof all user-defined types; for example, Patient,Provider, and so on.
• Type- the type whoseextension is the set of all surrogatetypes(i.e. all typesother then aggregate

types).

• Transient - the supertype of all transientobject types(i.e. the types whoseinstancesare transient, for
exampleTransaction, Savepoint, Sessionand Cursor).

• Aggregate - the supertype of all aggregatetypes. Aggregate types supported includeBagType, Set­
Type,ListType and TupleType. Instances of Bag, Set and List typescan haveany numberof compo­
nents that must all be instances of the component type of the Bag, Set or List. A tupleobjecton the
other handhas a fixednumberof components, each with its own type.

• LiteralTypes- The literaltypessupportedby OSQLincludeNumber(Integer, SmallInteger, Double,
Real), Char,Binary, Date,Time,DateTime and Interval.

• Void - Void is a subtypeof all typesexceptaggregate types; its extension is the emptyset.
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OSQL System Functions

Thereare also a largenumberof system-defined functions that provide the functionality necessary to
implement a full-fledged object-oriented data manager. Someof the moreimportantfunctions provided
are the following:

• CreateType - create a new (user-defined) type and (optionally) createone or more functions that
have the new type as their argumenttype

• CreateFunction - createa new (user-defined) function

• ImplStored - implementa function, or set of functions, as a storedfunction (i.e. a function whose
extent is explicitlystoredin the database).

• ImplOSQL - implement a function as an OSQLexpression, eitheras a procedurallanguage expres­
sion (section 3) or as a query expression (section 4).

• ImplExtemal - implementa function as an arbitrary program,written in an externalprogramming
language

• CreateObj - createa newobject,an instanceof a user-defined type, optionally initializing one or
morefunctions for the new object

The OSQLlanguageimplemented by OpenODB providesconvenientsyntactic sugaringto invokethe
aboveand other functions. For example,to createa new type and a set of associatedfunctions, one can
submitan OSQL statement, as follows:

create type Patient subtype of Person functions (
patld Char (var 32)

) ;

A statementsuch as the one above will be parsed intoa call to the function CreateType as follows:

CreateType('Patient',Set(type Person),
List(Tuple('patld',type Char (var 32»»

It is also importantto note that users can definetheirown functions that involvesystemobjectssuchas
typesand functions. For example, to allowtype objectsto be annotated, one can defineand use a stored
function, help, as follows:

create function help(Type t) -> Char as stored;
help(Type Patient):= 'Patient object type help descriptor';

3 Expression Language (DML)

In the previoussectionwe describedthe computational modelof OSQLas beingone of expression
evaluation. In this sectionwe will discussthe various typesof expressions allowedand the means
providedto composeexpressions.
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In additionto the function application expression as described above, thereare a numberof ~ecial
forms, including if-then-else, quote,and a numberof iterativeconstructs. An abstractsyntax that
defines the types of expressions is shownbelow:

Expr : = Constant
Identifier
FuncAppl
Assign
Conditional
BlockExpr
ForLoop
WhileLoop
Quote
Select

FuncAppl := func_ref: Expr arg: Expr;
Conditional:=pred: Expr then: Expr else: Expr;
Assign := id: Identifierval: Expr
BlockExpr := declare: Declaration+ exprs: Expr+;
ForLoop := id: Identifier domain: Expr loop: Expr;
WhileLoop := pred: Expr loop: Expr;
Quote := Expr;
Declaration:= t: TypeRefid: Identifier;

FIGURE 3. OSQL abstract syntax

(1)
(2)
(3)

(4)
(5)
(6)
(7)
(8)
(9)

(10)

(11)
(12)
(13 )
(14)

(15)

(16)

(17)
(18)

(19)

The firstrule defines an expression to be eithera constant,an identifier, a function application, an
assignment, a conditional, a blockexpression, a for loop,a while loop,a quotedexpression or a select
expression (discussed separately in section4).

Constantsand identifiers are defined as usual,except thatOSQLalso supports aggregateconstants, that
canbe specified usingthe tuple,set,bag (multi-set) and list constructors. For example, a set constantcan
bespecifiedas Set (1, 2, 3 + 4). The elementsof the set can be specified as expressions
themselves. An aggregate objectwill in generalhave manytypes that can be inferredfrom the typesof
their elements.The OSQLlanguageas implemented by OpenODB also supports a specialnotation to
denotetype and function constants. For example, the genericfunction name is denotedby the constant
expression: funct ion name. Similarly, the specific name function whoseargument typeis Person,
is denotedby: function name. Person, and the type T is denotedby the expression: type T.

The most frequently usedkind of expression is the function application. Abstractly, a function
application expression consistsof two expressions; a function reference(labelled func_refin Figure3
line 2), and an argument(labelled arg). The func ref expression evaluatesto a (generic or specific)
function identifier, whichmay be the sameas the function that the expression is a part of, thusallowing
recursivefunction invocations. The expression labelledarg evaluates to an arbitrary objector aggregate
object.The semantics of evaluating function applications was discussed in detail in section2. For
example, to set the nameof a person,we evaluatethe following expression:

5. The notation used to define the abstract syntax uses three constructs, respectively choice, denoted by I, aggrega­
tion, denoted by a tuplelike notation that labels the components of the syntactic construct, and repetition, denoted by
+, to mean one or more, or *, to mean zero or more. Note that the labels used to identify the components of an aggre­
gate construct resemble, but are not the same as the keywords used in specifying a concrete syntax.
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FunAssign(function name.person) (p1,'John')

In this example, the first expression is itself a function call, applying the function FunAssign to the
function name. person (an example of a specific function reference). This returns the oid of the
function that sets a person's name, which is subsequently applied to a tuple of two elements, the oid of
the person and the new name (a string object), and sets the name of the person accordingly. The
parentheses and ',' are used here to denote an operator that creates a tuple. The OSQL language as
implemented by OpenODB provides a convenient syntactic shorthand for the above expression, as
shown below:

name.person(p1) := 'John'

OSQL provides an imperative model of variables and assignment similar to C. Variables can be declared
and have scope equal to the block expression in which they are declared. Within such scope, one can
assign a value to the variable using an assignment, similar to what one would do in a language like C.
The introduction of assignment in OSQL is not strictly necessary, but is needed to support such
imperative constructs as while loops. Alternatively, one can use recursion and recursive functions to
avoid the need for assignment. The OSQL language as implemented by OpenODB provides the
following concrete syntax for variable assignment:

i := 2

The conditional or if-then-else expression consists of three sub-expressions: a predicate expression, a
then expression, and an else expression. A specific example using the concrete syntax implemented by
OpenODB is shown below:

ticketPrice := if age(p1) >= 60 then 27 else 40

The semantics of its evaluation is to first evaluate the predicate expression; for example, age (pl.) >=
60. If it returns true, we evaluate the then expression; if it returns false, we evaluate the else expression.
The if-then-else expression returns the value of the then or else expression.

The next expression is the block expression or begin-end expression. It consists of a list of (local)
variable declarations and a list of expressions. Its semantics is to evaluate the expressions in the list in
order, in the environment created by extending the environment of the block expression with bindings
for the local variable identifiers. The value returned by the block expression is the value returned by the
last evaluated expression in the list. For example, a simple block returning 5 is defined as follows:

begin declare Integer i, j; i := 1; j := 4; i + j; end

Next there are two types of iterative expression; a for loop expression and a while expression. The for
loop provides iteration over the elements of an aggregate. It returns no value (i.e. its return type is Void),
and is thus evaluated only for its side effects. For example, to set the primary provider for a set of
patients to a given provider, prov, one could evaluate the following expression:

for p in Set(p1, p2, p3, p4) do primProvOf(p) := prov

The while expression allows one to iteratively evaluate an expression (the loop expression), until
another expression (the pred expression) returns true. The while loop also returns no value, similar to
the for loop.

The next expression type is the so-called quote special form. A quoted expression returns its arguments
unevaluated. A variation of the quote is the so-called backquote expression. This also returns its
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argumentexpression unevaluated, except for thoseparts that are wrapped in a call to the unquote
function. The quotefunction is requiredto allow functions to evaluatetheirown arguments. This is
often useful, for example, whendefining functions that create and implementother functions.

The last constructshownin the abstractsyntaxis a type declaration. This is notan expression, but rather
is requiredto be able to definevariables. A type declaration defines a bindingbetweenan identifier and
a variable(i.e. a storagelocationusedfor storingthe value). The identifier servesas the nameof the
variable. Declarations can only be specified as part of a block expression, whichis the scopeof the
declaration.

In addition to the specialforms discussedabove, thereare a numberof systemfunctions thatprovidea
degreeof non-local control that is often convenient when defining a function. The first suchfunction is
the return function. The effectof calling the return function is that the function containing it
immediately returns the valueof the only argument of the return function. Anotherfunction is the
raise-error function. This function raisesan exception that will transfercontrolback to the client
application, undoing any changesthe function containing the call made.

An examplehighlighting a numberof theseconstructs is shownin Figure4. Givena tupleconsisting of
a function f and a set of objectsarg, the fil ter function will returnthe set of objects e in arg for
which f (e) returns true. Note that the parameter f is function- valuedand that the function
application f ( e) in the filterfunction above will not be resolveduntil run-time.

create function filter(Function f, SetType(Object) arg) ->
SetType(Object) as osql

begin
declare SetType(Object) r;
declare Object e;

for e in arg do
if(f(e» then r := r + e; endif;

return r;
end;

FIGURE 4. Example OSQL function- filter
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4 Query Language

OSQL supports a query language whose semantics is based on domain calculus, with support for
aggregate domains, functions and multisets (bags). The OSQL SELECT function provides the basic
query facilities of OSQL and closely resembles the Select statement of SQL. The abstract syntax of a
select expression shows that it consists of six parts:

Select:= resStruct: ResStruct
resList: Expr+
forEach: Declaration*
where: Expr
groupBy: Group·
having: Expr
orderBy: orderSpec*;

All of the parts of the select expression shown above, except for the resList, are optional. For example,
using the concrete syntax used by OpenODB, to retrieve the name of a person we evaluate the following
expression'';

select name(p)

The query compiler will infer that the type of this expression is BagType(TupleType(Char». We can use
the resStruct options of the select expression to change the result type. For example, to have the select
expression return a bag of strings, we add the keyword atomic. Similarly, to have the query return just a
single name, we add the keyword single. A query that returns the name of a person (or null) can be
defined as follows:

select single atomic name(p)

Select expressions are evaluated by parsing them into a call to the (system defined) select function, and
passing the select function its arguments, that is, the parts of the select expression as indicated by the
abstract syntax above, without evaluating them. The select function compiles the query by creating an
unnamed function with no arguments, whose body is the compiled and optimized query expression. The
query is evaluated by calling this function without any arguments. In the case of a stand-alone query
expression, the unnamed function is transient and deleted after the function is evaluated. If the query
expression is part of the body of a function, the compiled and optimized expression becomes part of the
body of that function.

More complicated query expressions than the ones shown above can be easily expressed as well. For
example, to return the set of names of all persons living in San Jose, CA, we evaluate the following
expression:

select distinct atomic name(p) for each Person p where
City(p) = 'San Jose' and State(p) = 'CA'

The type of this expression is SetType(Char). The reason this query returns a set instead of a bag is that
we included the keyword distinct as part of the resStruct clause. Similarly, a query that includes an
orderBy clause will return a list object instead of a bag. For example, to return a list of the names and

6. Note: we assume that the identifier p is bound to the oid of a person object
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oidsof the next n personswhosenamesare lexicallygreaterthan a givenprefixstringfr, we can define a
function PersonsByName as follows:

create function PersonsByName(Char fr, Integer n) ->
ListType (TupleType (Char, Person» as osql

begin
declare Cursor c;
declare ListType(TupleType(Char, Person» r;
if ( n > 0) then

open cursor c for
select name(p), p for each Person p where

name(p) >= fr order by name(p);
else begin

open cursor c for
select name(p), p for each Person p where

name(p) <= fr order by name(p) desc;
n := n * -1;

end; endif;
r := fetch(c,n); /* fetch first n elements of cursor c */
close(c);
return r;

end

The function above can be calleddirectlyby an application or via anotherfunction. Whencalledby an
application, it can for examplebe used to fill in the elements of a menu used to selecta personfrom
amongall the personsin the database. The secondargument of the function PersonsByName is used to
specifythe numberof personsto return,as wellas to controlthe direction of the scan, e.g. allowing a
client application to use this function to scroll up and/ordowna list of persons. Note also that the
efficient evaluation of the function PersonsByName is dependenton both the presenceof an index on
the result of the namefunction and the queryoptimizerchoosing this index to access the corresponding
storagestructure. OSQLprovidesthe necessary system functions to definesuchan indexand the query
optimizerwill select it when compiling a querysuchas the one above.

The forEach clause/ defines the searchdomain of the queryby declaring a list of identifiers and their
types.The domainof the query is formedby takingthe cartesianproductof the domainof each of the
identifiers in the forEach clause. Doingso willgeneratea set of bindings for the identifiers; one binding
per elementof the domain. From the examples shownso far, it can be inferredthat the whereclauseof
the select is a functional expression that returnsa booleanvalue. In fact, in OSQL,the whereclausecan
return any naturalnumber. In case the expression actuallyreturnsbooleanTRUE, the valuereturnedis
1; similarly, in case the expression actuallyreturnsbooleanFALSE, the valuereturnedis O. Thecounter
valuereturnedby the whereclausedetermines the numberof times the result clauseof the queryshould
be evaluatedfor a givenbindingin the searchdomainof the query. A full treatmentof the semantics of
OSQLqueries is beyondthe scopeof this chapter, but can be foundin [Kent 1993].

The groupByand having clausesof a query are similarto thosefound in SQLand will not be further
explainedhere.

7. Note: The concrete syntax for the forEach clause as implemented by OpenODB allows the keyword f rom to be
used instead of for each for reasons of compatibility with SQL
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OSQLdoes not restrict the kindsof functions allowedin the expressions associatedwith theresListand
whereclauseof a queryexpression, other than that functions can not haveside effects.A function has a
sideeffect8 whenit updatesanotherfunction, eitherdirectlyor indirectly. Tobe able to includeexternal
functions in queryexpressions, the querycompilerhas to ensure that theirarguments are boundbefore
they are called.

OSQLqueryexpressions supportlate binding semantics of functions, that is, function resolution is
postponed until the query is actuallyevaluated, unlessthe querycompilercan determine a unique
resolventat query compiletime.For example,supposethat we havea function namedarea defined on
Circle,RectangleandPolygon,all subtypes of typeShape,the following querywillreturn the areaof all
shapeobjectsfound in the database, using the appropriate specific function for each:

select area(s) for each Shape s

5 Annotated Examples

In this sectionwe give examples of OSQLfunctions that are intendedto highlight the various
capabilities of OSQL.Theseexamplesare all derivedfromactualOpenODB applications and reflectthe
capabilities of OSQLas it standstoday. Wehope to evolvethese capabilities by increasing our
understanding of applications and extending the languageto providemore and higher levelconstructs,
aimedat simplifying the development of applications such as these, to increaseprogrammer
productivity and to simplifymaintenance of the resulting systems.

Queries
The first set of examples showsOSQL'squery capabilities and illustrates the modeling of objectswith
nestedstructure,the use of function overloading and the use of recursion in queries.

create type part functions
name Char (var 128)

) ;

create type complexPart subtype of part;
create function subparts(camplexPart) -> bagtype(part);

create function price(part) -> Real;
create function price(complexPart p) -> Real as osql
sum(select atomic price(q) for each part q

where q occurs in subparts(p»;

Thefirst two statements abovedefine typepart anda subtypecomplexPart. The definition of typepart is
combinedwith the definition of a function, name,that returns the nameof a part. A complexpart is
distinguished from a part in that it has subparts. The function subparts, defined in the third statement
above,returnsa bag of parts, thusallowing a complex part to includea givenpart multipletimes.
Functionprice illustrates how easilya transitive closureoperation can be expressedas an OSQLquery,
mostlybecausethe price function can be overloaded on the typespart and complexPart and willbe
dynamically resolvedas part of the query to computethe priceof a complexpart p. Note that the occurs
in clause in the whereclauseof the query servesas a multiplier, that is, the price of a givenpart will be

8. The OpenODB OSQL function compiler determines whether a function has a side effect automatically and
marks the function as such in the system dictionary.
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duplicated in the result of the query as many times as the part is included as a subpart of a complex part,
so that the summation of the elements of the bag returned by the query returns the intended result. The
function to compute the price of a complex part could also have been implemented procedurally, as
follows:

create function price(complexPart p) -> Real as osql
begin

declare Real pPrice;
declare part sp;
pPrice := 0;
for sp in subparts(p) do pPrice := pPrice + price(sp);
return pPrice;

end;

The implementation as a procedure is semantically equivalent to the implementation as a (declarative)
query, but the query form is more amenable to optimization.

Another example, showing transitive closure for a parts explosion, is the following,

create type material functions (name char(64»;
create type simplePart subtype of part functions (

mat material
) ;

create function partExplode(part p) -> bagtype(simplePart)
as osql bag(p);

create function partExplode(complexPart p) ->bagtype(simplePart)
as osql select atomic sp
for each simplePart sp, part q where q occurs in subparts(p)

and sp occurs in partExplode(q};

The function partExplode defined above can be used in queries, as follows,

select name(sp) for each part p, simplePart sp
where sp occurs in partExplode(p) and name(p) = 'mercedes' and

name(mat(sp» = 'asbestos';

This query will find the names of all components of parts whose name is 'mercedes' that are made of
'asbestos' .

Distributed Application Integration example
In a distributed environment, the database system, or more precisely, the database server processes, must
be able both to receive messages from other applications, as well as to send messages to other
applications, including other database servers. In general, it is easy to provide a customized interface
(client front-end) to a database that enables it to receive messages from other applications, and to
respond to these messages. The other way around is more difficult and will require that the database
system provide the ability for users (developers) to invoke their own code, both inside the database
server process or a specialized external server process, and as part of the client application. Such a
capability can then be used to notify other applications of events in the database, such as a change in
state in the database as a result of an update, thus implementing a basic 'active database' capability, or to
request from other applications (services) information that is needed inside the database.
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For example, a slightlystylizedfunction that canbe usedto send 'messages' to objectsresidingin other
applications can be defined as follows:

create function genEvent(Object sender, Object rec, Object msg,
Object msgArgs) -> Object as

simpleextfun 'gen_event';

The function genEvent sendsan eventor messagemsg with arguments msgArgs to an Objectrec
froman Object sender. Note that the senderand receiverobjectsmay be instancesof subtypes that
haveproperties that willenablethe actual messagesending code to retrievetheir externalidentifiers, for
example, somekindof globallyuniqueobjectidentifier that enablesidentification of senderandreceiver
objects.The genEvent function is implemented as a 'simple external' function, meaning that whenit
is called the C routineregistered as gen_event is called.OpenODB allows suchC routinesto be called
in the contextof the clientapplication, thus allowing the databaseserverto haveaccess to the stateof
the clientapplication and providing a degreeof isolationbetweenapplication code and database code",
The gen_event routine will format the actual messageand forwardit to the receiverobject.The reason
we call this capability activedatabase is becauseit allows the database to affect the stateof an object
outsidethe databaseitself.The actualcapabilities are to a largeextentdetermined by the external
environment. For example,in a CORBA[ObjectManagement Group 1991] environment, the routine
genEvent could formatand senda messageto a remoteobject,according to the actualarguments
supplied as part of the genEvent function invocation.

Functionslike genEvent can be used as a building block in other functions, to be called whenever an
action is requiredoutsideof the database. An exampleof an actual invocation is as follows:

genEvent(LabTechNamed('John'),ProviderNamed('Dr.Heartdoc'),
'send_email',
'call 415-123-4567, regarding your patient:

John - critical high K+ 14.5');

This call showshow, in a hospital environment, a lab tech objectcan notifya providerobjectabout a
criticallyhigh lab value.In this case, notification involvessending a relevantmessage, via e-mail,to the
receiver.

Anotherexample, alongthe samelines,showshowwe cancreatefunctions that spawnand controlother
processes.

create function sendMail(Char to, Char Subject, Char msg) -> Void
as osql
begin
declare TupleType(Integer,Integer) pty;

pty := PtySpawn('/usr/bin/mailx',List('-s',subject,to»;
PtySend(ptY,StrAppend(msg,'\n.\n'»;

end;

This function showsthe use of some system-defined processcontrolfunctions (PtySpawn,
PtySend) that allowprograms to be executed in a terminalemulator(pseudo terminaldevice)and
control the programby sendingit data or readingback data genernted by the program. In this case we
createan externalprocess,usingthe function PtySpawn, and thensend that processsomedata (i.e. the

9. Future releases will also allow such routines to be made part of so-called 'external server processes' that are
independent of any specific applications.
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contents of the mail message) using the function PtySend. The mailx process sends the mail message
when it receives a terminating'.' on a line by itself and then terminates, as if it was invoked
interactively from a terminal and the mail message had been typed in directly.

create function dhcp_eval(Char cmd} -> ListType(Char} as osql
begin

declare TupleType(Integer,Integer} pty;
declare TupleType(Integer,Char} ans;

/* lookup or establish connection with msm interpreter */
pty := LookupMsmPty(};
if(NotExists(pty}} then begin

pty := PtySpawn('/mumps/msm',List(}};
LookUpMsmPty(} := pty;

end;
else if (not(PtyAlive(pty}}) then begin

pty := PtySpawn('/mumps/msm',List(}};
LookupMsmPty(} := pty;

end; endif; end!f;

/* send command to interpreter and receive echo back */
PtySend(pty,cmd};
PtyReceive(pty,List(Tuple(O,MkRegExprToMatch(cmd}}}};

/* receive, parse (split in lines) and return answer */
ans := PtyReceive(pty,List(Tuple(O,'\r> '}}};
return SplitLines(ans[l)};

end;

The function dhcp_eval above is similar to the sendMail function but shows an example of the type of
processing required to establish a connection with another process and then repeatedly send commands
and receive replies. Note the use of Lookuplvlsml'tyt), a stored function used to store the values of the
external process id and file descriptor. The function PtyAlive is called to check that the process whose
process identifier is in the variable pty is still present and responding; if not, a new process will be
spawned. The function PtyReceive provides capability to do pattern matching on the output stream sent
back by the external process, allowing the function dhcp_eval to recognize the end of a reply. The
function MkRegExprToMatch takes a string as an argument and returns a string which is a regular
expression that matches the argument. The newline characters in the result returned by the second call to
PtyReceive are used to split the answer into a list of strings, which is returned as the result of the
function dhcp_eval.

The program started by the function dhcp_eval is a stand-alone interactive interpreter for the MUMPS
language. This language is used extensively in hospitals to implement information systems that manage
all kinds of data associated with patients, for example, laboratory test results, prescription records,
demographic information and so on [Dept. of Veterans Affairs 1990]. The details are outside the scope
of this chapter but the important thing to note is that the msm program provides us access to all of this
information by evaluating specific commands. For example, using MUMPS interface routines that we
developed [Annevelink, Young and Tang 1991], we can request a list of the next n names and identifiers
for patients, starting from a given prefix. Given the identifier of a patient, we can then request values of
attributes for these patients and so on, thus enabling us to access the external database.
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Constraints, rules and triggers

The next example utilizes genEvent and shows how OSQL procedures can be used to encode rules,
constraints and triggers. In this case, we want to create a function to update a patient's lab values that
generates a message when the lab value is abnormal.

create function newLabResult(LabTech it, Patient p, TestOrder t,
Char value) -> Boolean as osql

begin
declare isAbnormal;
LabtestResults(LabTestOf(t),p,CurrentDate(» := Tuple(value,lt);
isAbnormal := CheckCriticalRange(LabTestOf(t),value);
if (isAbnor.mal) then
genEvent(lt,PrimaryPhys(p),'send-email',StringAppend('cal1 '

ToChar(work-phone(lt»,
'regarding your patient: '
name(p) ,
, critical value of lab test: '
name(LabTestOf(t»,
'value: '
value) ;

endif;
return isAbnor.mal;

end;

The function shown above will update the LabTestResults function to reflect that a labtest result has
come in. It will then compare the value of the labtest with the critical range defined for it and determine
whether it is abnormal. If so, the function will format a message using information stored in the
database and send that to the primary physician of the patient.

This example is not intended to show the utility of OSQL as a language for defining rules or constraints.
Rather, it intends to show how one can enforce arbitrarily complex rules or constraints by
'programming' them by hand. Future versions of OSQL may include more specialized rule and
constraint subsystems that can be invoked directly, or used to compile functions similar to this one
automatically, from a more declarative specification.

Integration of legacy applications (external data sources)
In many situations, there is a need to integrate existing, so-called legacy systems and applications to
simplify access to these systems and to provide a capability to formulate queries that range over data
included in several such systemsor applications.

The types and functions below are prototypical for the situation in which one wants to integrate an
external system with an OSQL database. The type ExtObject provides the capability to define an
external key for an object. The external key must provide the ability to uniquely identify the object in
the external system, in the same way that its object id allows that inside the OSQL database.

The function CrExtObject provides the capability to create instances of local objects that represent
external objects. It provides an example of the capability to call system functions such as CreateObj
with arbitrary parameters. CreateObj is a system function that provides the capability to create objects
and initialize one or more functions that have the newly created objects as their argument. CrExtObj
also shows the capability of OSQL functions to contain arbitrary OSQL queries. The object created by
the function CrExtObject is an instance of the type t, which must be a subtype of the type ExtObject.
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create type ExtObject functions (xkey Char);

create function CrExtObj{Type t, Char key) -> ExtObject as osql
begin

declare ExtObject eObj;
declare ListType{ExtObject) eObjs;
eObj := select single atomic 0 for each ExtObject 0

where xkey{o) = key;
if{isNull{eObj» then

eObj := CreateObj{t,List{FUNCTION xkey),
List{Tuple{key»;

endif;
return eObj;

The latter constraint is entorced by a run-time typecheck on the value returned by the function
CreateObj, added by the OSQL compiler.

Using the functions described so far, it is now relatively straightforward to define the function
ReadExtSurrAttr which returns the value of an attribute of an object stored in an external MUMPS
database. The external database is accessed through the dhcp_eval function defined before. The
argument of the function dhcp_eval is an example of a MUMPS expression used to retrieve the value of
the attribute.

create function ReadExt8urrAttr{Char id, Type objType,
Char attrName) -> Object as osql

begin
declare ListType{Char) ans;
ans := dhcp_eval{strAppend{

'8 DR=',attrName,',OID=',id,' 0 ENAHPRD\r'»;
return CrExtObj{objType,ans[O]);

end;

The function above returns the value of a surrogate-valued attribute of an external object. For example,
the following call will return the oid of the spouse of the patient whose id is 'ADPT(A2301A2'1O:

ReadExtSurrAttr('ADPT(A2301 A2' ,type patient, 'SPOUSE')

The arguments are the external key (id) of the external object, the type of the surrogate object, and the
name of the external attribute. The function ReadExtSurrAttr invokes the function dhcp_eval to retrieve
the value of the external key of the surrogate attribute from the MUMPS database and calls the function
CrExtObj to convert the external key into a corresponding oid, which is then returned.

The next two functions show how OSQL system functions can be used to dynamically create types and
functions. In this example, the function ImpExtType creates a type whose extension maps to a set of
objects residing in an external system. It also creates, by calling the function CrAttrF, a set of attribute
functions that can be used to access the attributes of the objects that reside in the external database. The
functions ImpExtType and CrAttrF access the data dictionary of the external system to determine
different properties of the attributes, for example what type of value they return and what indexes, if
any, are defined to access the data in the external system. The functions ImpExtType and CrAttrF in

10. This string is an example of an external id. It contains the information necessary to uniquely identify an object
in an external database, in this case a record that contains a.o. a reference to the spouse.
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create function rmpExtType(Char tName, Char extTypeName,
ListType(TupleType(Char /* fname */, Char /* attrName */,

Integer /* attrMod */» attrs)
-> TupleType(Type, ListType(Function» as osql

begin
declare Function f;
declare ListType(Function) attrFncs;
declare Type extType;
declare TupleType(Char, Char, Integer) attr;

extType : = MkExtType (tName, extTypeName ) ;
attrFncs := List();
for attr in attrs do begin

f := CrAttrF(attr[Oj,extType,attr[lj,attr[2j);
attrFuncs := attrFuncs + f;

end;
return Tuple(extType,attrFncs);

end;

effect map the schema specified by the external data dictionary into an OSQL schema Similar functions
can be defined to import other data sources and/or applications.

create function CrAttrF(Char fname, Type argtype, Char attrName,
Integer attrMod) -> Function as osql

begin
declare ExtAttr attr;
declare Type resType;
declare Function f;

attr := FindExtAttrByName(argtype,attrName);
if(isNull(attr» then

raise error StrAppend('Attribute does not exist: '
attrName);

endif;
resType := TypeOfExtAttr(attr);
f := CreateFun(fname,argtype,resType,List(»;
if (SurCategory(resType) = 0) then

ImplOsql(f,List('ARG'), BACKQUOTE(ReadExtCharAttr(
xkey(ARG), UNQUOTE(attrName»»;

else
rmplOsql(f,List('ARG'),BACKQUOTE(ReadExtSurrAttr(

xkey(ARG), UNQUOTE(resType), UNQUOTE(attrName»»;
endif;
return f;

end;

The function ImpExtType creates a new type by calling the function MkExtType. This function is not
shown here, but it will ultimately create the new type by calling the system function CreateType. After
creating the new type, the function CrAttrF is called repeatedly to create the functions that will allow us
to access the attributes of the objects residing in the external system.

The function CrAttrF creates a surrogate or character valued attribute function for an external attribute.
CrAttrF is implemented as a procedure that first checks the existence of the attribute. If the attribute
does not exist, an error will be raised. Next the function TypeOtExtAttr is called to determine the type
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of the attribute. This information can be found by accessing the data dictionary of the external database.
Given the type, we can create the attribute function by calling the system function CreateFun. This
function takes the name of the function to be created, its argument and result type and a list of
constraints and returns the oid of the newly created function. The next step is to implement the just
created function. Essentially the body of the function will be a call to either the function
ReadExtCharAttr or ReadExtSurAttr, depending on whether the attribute's type is a string or a surrogate
type. The body of the function is specified as a backquoted expression, to allow us to substitute the
attribute name and possibly the attrType into the function body. The function ReadExtSurAttr is the one
defined earlier. The function ReadExtCharAttr is similar to ReadExtSurAttr, except that it returns a
string object instead of a surrogate object.

The examples shown here are in many ways simplifications of the ones we have actually implemented.
Due to the fact that OSQL is computationally complete and all of the system functionality is accessible
by calling the appropriate system functions, there are few limits on what can be done. Another example
of extensions that we have implemented are functions to control caching of data residing in external
systems. This is often necessary to overcome performance limitations inherent in accessing the external
system, for example when the external system does not provide the indexes needed to efficiently
evaluate queries posed by the applications running on top of our system.

6 Alternative Approaches

In this section we want to compare the approach we have taken with OSQL to that of extending the C++
programming language with persistence mechanisms. The first observation that we make is that, due to
the fact that extension constructs provided by C++ are limited, approaches that provide a seamless
integration between programming language constructs and query constructs and that allow for the
compilation and optimization of queries (e.g. those described in [Agrawal and Gehani 1989; Blakeley
1994]) require the use of a language preprocessor. In effect, one defines a new and extended language.
Secondly, the C++ object model is at the same time more complex and less flexible as the OSQL object
model. As alluded to before, the C++ object model mixes the representation of an object with its
interface definition. Also, the C++ model does not provide support for adding or removing types from
objects, a requirement if one wants to realistically model persistent objects. Thirdly, the C++ language
provides only very limited mechanisms for function polymorphism and the type system requires that the
types of the identifiers in an expression be known at compile time. These restrictions, while useful at
times, also prevent the definition of functions like those discussed in section 5, where we pass types and
functions as arguments.

In our view, C++ is not a suitable basis for defining a database programming language, because it falls
short off meeting some of our essential design goals as summarized in the introduction. That
notwithstanding, C++ can be an excellent choice as an applications programming language. By
carefully designing and implementing the C++ application programming interface, taking advantage of
the data abstraction capabilities offered by C++, one can easily provide a set of classes to provide a
seamless interface to the OSQL data model.
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7 Conclusions

We have presented OSQL, a language developed to facilitate the design and implementation of object
databases. OSQL is a computationally complete language that combines the power of relational query
languages with the expressiveness and extensibility characteristic of a functional programming
language. OSQL provides a type system that allows objects to evolve over time, acquiring new types
and losing old ones as their roles change. OSQL provides support for aggregate types and avoids the
impedance mismatch problem between programming language and query language by tightly
integrating the two. OSQL is very well suited to developing applications in a distributed world. By
providing the capability to evaluate (user-defined) functions in the database server, the application
developer can implement functions and then share these across a large number of applications. In
addition, as shown by the examples in this chapter, database functions can interact with other
application services, providing the capability to integrate data residing in external applications and/or
databases and building integrated information management systems that preserve the integrity and
autonomy of legacy applications. Moreover, by providing this capability as an orthogonal extension to
the base language, one can use OSQL's declarative query processor to transparently query data residing
either in the object database or in one or more external databases.

The OSQL language is characterized by the fact that it can evolve by extending the set of (system) types
and functions provided. As a result, a lot of our development effort is directed towards building libraries
of functions and types that facilitate the rapid development of applications in specific application
domains and that provide the constructs needed to integrate information available in existing databases
and other types of legacy applications. This is a first step towards an approach that would allow
application developers to quickly construct information services by picking from an existing set of type
and function definitions, refining them as needed and interface them with their (application specific)
user interfaces using the communications facilities and application development tools provided in a
distributed computing environment.
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