(b, HEWLETT

PACKARD

Object SQL - A Language for the Design
and Implementation of Object Databases

Jurgen Annevelink, Rafiul Ahad*, Amelia Carlson*,
Dan Fishman, Mike Heytens, William Kent
Software Technology Laboratory

HPL-94-02

March, 1994

object databases, Object SQL (OSQL) is a language for the design
query language, in- and implementation of object databases. The
formation services, OSQL language is computationally complete and
distributed envi- provides a rich set of constructs that allow defini-
ronment, relational tion, implementation and integration of informa-
databases tion services in a distributed environment. It also

provides a declarative query capability, similar to
that provided by SQL for relational databases.
This chapter includes examples of OSQL types
and functions used in actual distributed applica-
tions, based on Hewlett-Packard’s OpenODB im-
plementation of OSQL.

Internal Accession Date Only

To be published in the ACM Press Books (Association for Computing Machinery), “Database Chal-
lenges for the 90's” edited by Won Kim,

*Cooperative Computing Systems Division, Cupertino, CA

© Copyright Hewlett-Packard Company 1994

1 Introduction

Object SQL (OSQL) is a database (programming) language that combines an expression-oriented
procedural language with a high-level, declarative and optimizable query language. The OSQL
language combines the object-oriented features found in such languages as C++ [Ellis and Stroustrup
1990] and Smalltalk [Goldberg and Robson 1983] with a query capability that is a superset of the
familiar SQL relational query language. Consequently, OSQL provides many of the advantages of
object orientation, including a more intuitive model, improved productivity, code reuse and
extensibility, together with all the features of current database technology, such as query optimization,
integrity constraints, multi-user access, authorization and security. The OSQL language was developed
as part of the Iris project at Hewlett-Packard Laboratories [Fishman et al. 1989; Lyngbaek 1991;
Wilkinson, Lyngbaek and Hasan 1990]. It has evolved to include general computational primitives
[Annevelink 1991] and is now a computationally complete, extensible database language. The design of
OSQL was influenced by pioneering work on semantic and functional database models, notably the
functional language Daplex [Shipman 1981} and the language Taxis [Mylopoulos, Bernstein and Wong
1980].

The design goals for OSQL can be summarized as follows:

+ based on a simple, orthogonal object-oriented model and type system
< computationally complete and independent of specific application programming languages

» provides constructs for specifying declarative queries and allows such queries to be compiled and
optimized, similar to the capabilities offered by relational query languages

« extensible, that is allows the user to (dynamically) define new types and operations
< o artificial distinctions between meta-data objects and user-defined objects

« allows separate definition of the interface of an object (type) and the corresponding implementa-
tion(s).

OSQL is object-oriented in that it provides object identity, a type system with multiple inheritance,
polymorphic functions and built-in aggregate object types such as sets and lists. It differs from other
object-oriented languages, in particular C++, in that it does not mix the definition of the interface of an
object type with a particular representation of the instances of the type. OSQL allows the interface of an
object type to be defined independent of a specific choice for implementing the interface and allows the
implementation to change over time!. In OSQL, the state of an object is not an intrinsic part of the
object itself; rather, it is defined by functions which model attributes of the object, interobject
relationships, and arbitrary computations. By disassociating the interface of an object type from any
specific representation of the instances of the type, one can allow objects to dynamically acquire and
lose types, thus enabling one to model the evolution of objects over their lifetime in a natural way.The
OSQL type system allows the OSQL compiler to do compile-time type checking. However, since OSQL
allows objects, including types and functions, to be created dynamically, compile-time type checking
has to be supplemented by run-time type checks.

Functions are a major modelling construct of OSQL and are used to model attributes of the object,
interobject relationships, and arbitrary computations. Functions can be implemented as stored functions
(e.g. by storing a direct representation of the relationship in the form of a table in the database) or they

1. Future versions of the language may include additional constructs to allow the specification of multiple imple-
mentations of a given interface.

can be computed. The implementation of a computed function is specified by an expression, the body of
the function; the free identifiers in this expression are the formal parameters of the function and the
value computed by the expression is the value returned by the function. The body of a computed
function may include query expressions. In addition to stored and computed functions, OSQL also
supports external functions. External functions provide a crucial measure of extensibility, because they
allow a function to be implemented by a routine written in an external programming language (e.g. C,
C++ or COBOL).

The OSQL authorization mechanism is also designed around functions [Ahad et al. 1992]. Users are
members of UserGroup’s that are assigned call and/or update privileges to functions. The OSQL
authorization mechanism is not further discussed in this chapter.

The OSQL language is independent of specific application programming languages (e.g. C, C++,
Smalitalk, COBOL) and specific implementations. The examples used in this chapter are slightly
stylized versions of actual OSQL functions used by applications running on top of OpenODB, Hewlett-
Packard’s object-oriented database management system and implementation of OSQL [Ahad and Dedo
1992; Ahad and Cheng 1993; Hewlett-Packard 1992}. The programmatic interface provided by
OpenODB allows client applications to call any OSQL function and map the results returned by OSQL
functions to the data-types provided by the programming interface.

In this chapter we will give an outline of the OSQL model (section 2), followed by a discussion of the
major constructs found in the OSQL language (section 3), with special attention to the select construct
(section 4). In section 5 we will give a number of examples highlighting some of the more advanced
applications made possible by OSQL.

2 OSQL Object Model

The OSQL language is centered around three basic concepts: objects, types and functions. Objects,
types and functions are related as shown in Figure 1.

BehaviorOf

Function Signature

Type

FIGURE 1. OSQL - basic data model elements and relationships

Objects

Objects represent the real-world entities and concepts from the application domain that the database is
storing information about. For example, in a clinical database, objects may represent clinics, physicians,
nurses, patients, problem lists, and so on. In OSQL, objects can be classified in one of three categories:

« literals, for example, integers, character strings and binary objects

« aggregates, for example, a problem list or a tuple containing demographic data for a patient, such as
name, age and social security number

» surrogates, for example, patients and clinics

Surrogate objects are characterized by a system-generated, unique object identifier (oid). Surrogate
objects also represent entities used to implement OSQL, e.g. system types and functions. Surrogate
objects are explicitly created and deleted.

Types

The second major concept in OSQL is that of a type. Types are used to classify objects on the basis of
shared properties and/or behavior. For example, it is natural to group together all patient objects and
similarly group all physician objects, all nurse objects and all clinic objects. Types are also used to
define the signature of functions (i.e. their argument and result type). The extension of a type is the set of
objects that are instances of the type. Some types, for example Integer, have pre-defined extensions.
Surrogate types have dynamic extensions that change depending on the type(s) and order in which
objects are created and deleted. Aggregate types and aggregate objects can be constructed from other
types and objects respectively, using system defined aggregate type and object constructors. For
example, an instance of the type SetType (SmallInteger) is denoted by the expression:

Set (1,2, 3). Note that this does not construct a new object, but rather returns a specific object from
the extent of the type SetType (SmallInteger), in the same way that the expression 1 does not
return a new object but returns an instance of the type SmallInteger.

Types are related in a subtype/supertype hierarchy that supports multiple inheritance. The type hierarchy
enforces type containment, that is, if an object is an instance of a given type T, it must also be an
instance of all supertypes of the type T. An overview of the (pre-defined) system type hierarchy is
shown in Figure 2. User-defined types can be added as subtypes of the type UserSurrogate3. OSQL
surrogate objects can be instances of any number of types, even if the types are not related by a subtype/
supertype relationship. This is obviously required in the real world, where say a person may belong to
many different groups, and assume different roles depending on the context. For example, the group of
cancer patients can be distinguished from the group of diabetics; different types of properties are
applicable and relevant to each of the members of the two. Moreover, people can change their
membership in a group and thus change what roles and what properties and behavior are applicable. For
example, a person can be cured and thus no longer be a cancer patient or he can get sick and be
diagnosed with diabetes.

Functions
The third concept, functions, is used to model attributes of the object, interobject relationships, and

arbitrary computations. One of the key distinctions of OSQL as compared to other models (e.g. those
inspired by object-oriented programming languages) is this unifying notion of a function to model

2. OpenODB supports four aggregate type and object constructors, BagType, SetType, ListType and TupleType to
construct aggregate types and Bag, Set, List and Tuple to construct the corresponding objects.

3. The version of OSQL implemented by OpenODB currently does not allow the creation of user-defined subtypes
of pre-defined system types.

stored and derived attributes, stored and derived relationships and arbitrary computations (behavior). In
OSQL the distinction between these is relegated to the implementation domain, thus making the actual
modeling more independent of implementation trade-offs and allowing a greater freedom in choosing an
implementation, including the possibility to evolve an implementation (e.g. choosing to re-implement
something that was a stored attribute as a derived or computed attribute).

An OSQL function takes an object as an argument and may return an object as a result*, OSQL
functions can be overloaded, that is, there can be multiple functions with the same name but different
argument types. OSQL does not currently allow overloaded functions to have different result types.
OSQL refers to an overloaded function as a generic function. The resolvents of a generic function are
called specific functions. For a given function f, the argument object must be an instance of the
argument type specified for one of the specific functions that resolve the function f. A function can only
return an object that is, an instance of the result type of the function. The result type of functions that
never return a value is Void. Functions may change the state of the database as a side effect of their
application, by updating other functions. Functions that perform updates are said to have side effects
and can not be called as part of a query. Similar to types, functions have extensions. The extension of a
function is the mapping from its arguments to its results. Function extensions can be explicitly stored, or
they can be computed. Functions whose extent is computed can be implemented either as an OSQL
expression, or as a program (subroutine, procedure) written in a general-purpose programming
language. These latter are called external functions and give OSQL a unique form of extensibility by
allowing the encapsulation of (entry points in) external libraries.

An important property of functions is their updatability. A function f that is, updatable has a companion
function, say set_f£, that will set the value to be returned by f for a given argument, when called. If a
function f returns an aggregate type, then it will have three such companion functions: one to set the
value as before, the other two to add or remove a value in the aggregate. The set, add and remove
functions can be specified explicitly, or they can be generated automatically by the system (e.g. when
the extent of the function f is explicitly stored). For example, a stored function translate canbe
defined as follows:

create function translate(Char english) ~> Char /*french */;
Since this is an atomic valued stored function, the system will automatically create a second function to

allow it to be updated. This function has no name and can be found by evaltuating the (system-defined)

function FunAssign. The latter function will be invoked when the function translate is to be
updated; for example,

translate(‘one’) := ‘un’;

4. OSQL functions can take aggregate objects as argument and/or return them as results. Functions with multiple
arguments are implemented by combining the arguments into a single tuple value and applying the function to the
tuple. The argument type of function with multiple arguments is the tupletype corresponding to the types of the
arguments.

OSQL System Types

To make an OSQL system work, a great many built-in objects, types and functions need to be defined.
The basic type hierarchy is shown in Figure 2. The root object type is called Object and is the supertype
of all other object types. Subtypes of object are:

UserSurrogate

- ,)Patieé (user-defined)
oTransient : -)Pr_aéider (user-defined)
-/
|__Number :
Ch /
| Char

7 Literal Types

- DateTim
regate
e Gglype
etType

- ListType
olupleType
FIGURE 2. OSQL System Type Hierarchy (simplified)

» TypeRef - the type whose extension is the set of all type objects, including aggregate types; for
example, SetType(Integer) and surrogate types (all the instances of type Type)

« Surrogate - the supertype of all types whose instances have oid’s, including Function, Type, Index,
User, UserGroup and UserSurrogate

» UserSurrogate - supertype of all user-defined types; for example, Patient, Provider, and so on.

+ Type - the type whose extension is the set of all surrogate types(i.e. all types other then aggregate
types).

« Transient - the supertype of all transient object types (i.e. the types whose instances are transient, for
example Transaction, Savepoint, Session and Cursor).

» Aggregate - the supertype of all aggregate types. Aggregate types supported include BagType, Set-
Type, ListType and TupleType. Instances of Bag, Set and List types can have any number of compo-

nents that must all be instances of the component type of the Bag, Set or List. A tuple object on the
other hand has a fixed number of components, each with its own type.

« Literal Types - The literal types supported by OSQL include Number (Integer, Smalllnteger, Double,
Real), Char, Binary, Date, Time, DateTime and Interval.

» Void - Void is a subtype of all types except aggregate types; its extension is the empty set.

0SQL System Functions

There are also a large number of system-defined functions that provide the functionality necessary to
implement a full-fledged object-oriented data manager. Some of the more important functions provided
are the following:

¢ CreateType - create a new (user-defined) type and (optionally) create one or more functions that
have the new type as their argument type
+ CreateFunction - create a new (user-defined) function

¢ ImplStored - implement a function, or set of functions, as a stored function (i.e. a function whose
extent is explicitly stored in the database).

e ImplOSQL - implement a function as an OSQL expression, either as a procedural language expres-
sion (section 3) or as a query expression (section 4).

» ImplExternal - implement a function as an arbitrary program, written in an external programming
language

« CreateObj - create a new object, an instance of a user-defined type, optionally initializing one or
more functions for the new object

The OSQL language implemented by OpenODB provides convenient syntactic sugaring to invoke the
above and other functions. For example, to create a new type and a set of associated functions, one can
submit an OSQL statement, as follows:

create type Patlient subtype of Person functions (
patId Char (var 32)
)i

A statement such as the one above will be parsed into a call to the function CreateType as follows:
CreateType(‘Patlent’, Set (type Person),

List (Tuple(’patId’,type Char (var 32))))

It is also important to note that users can define their own functions that involve system objects such as

types and functions. For example, to allow type objects to be annotated, one can define and use a stored
function, help, as follows:

create function help(Type t) -> Char as stored;
help (Type Patlent):= ‘Patient object type help descriptor’;

3 Expression Language (DML)

In the previous section we described the computational model of OSQL as being one of expression
evaluation. In this section we will discuss the various types of expressions allowed and the means
provided to compose expressions.

In addition to the function application expression as described above, there are a number of special
forms, including if-then-else, quote, and a number of iterative constructs. An abstract syntax- that
defines the types of expressions is shown below:

Expr := Constant (1)
| Identifiler (2)
| FuncAppl (3)
| Assign (4)
| Conditional (5)
| BlockExpr (6)
| ForLoop (7)
| WhileLoop (8)
| Quote (9)
| Select (10)
H (11)
FuncAppl := func_ref: Expr arg: EXpr; (12)
Conditional:=pred: Expr then: Expr else: Expr; (13)
Assign := 1d: Identifierval: Expr (14)
BlockExpr := declare: Declaration® exprs: Expr*; (15)
ForLoop ;= 1d4: Identifier domain: Expr loop: ExXpr; (16)
WhilelLoop := pred: Expr loop: EXpr; (17)
Quote 1= Expr; (18)
Declaration:= t: TypeRefid: Identifier; (19)

FIGURE 3. OSQL abstract syntax

The first rule defines an expression to be either a constant, an identifier, a function application, an
assignment, a conditional, a block expression, a for loop, a while loop, a quoted expression or a select
expression (discussed separately in section 4).

Constants and identifiers are defined as usual, except that OSQL also supports aggregate constants, that
can be specified using the tuple, set, bag (multi-set) and list constructors. For example, a set constant can
be specified as Set (1, 2, 3 + 4).The elements of the set can be specified as expressions
themselves. An aggregate object will in general have many types that can be inferred from the types of
their elements. The OSQL language as implemented by OpenODB also supports a special notation to
denote type and function constants. For example, the generic function name is denoted by the constant
expression: function name. Similarly, the specific name function whose argument type is Person,
is denoted by: function name.Person, and the type T is denoted by the expression: type T.

The most frequently used kind of expression is the function application. Abstractly, a function
application expression consists of two expressions; a function reference (labelled func_ref in Figure 3
line 2), and an argument (labelled arg). The func_ref expression evaluates to a (generic or specific)
function identifier, which may be the same as the function that the expression is a part of, thus allowing
recursive function invocations. The expression labelled arg evaluates to an arbitrary object or aggregate
object. The semantics of evaluating function applications was discussed in detail in section 2. For
example, to set the name of a person, we evaluate the following expression:

5. The notation used to define the abstract syntax uses three constructs, respectively choice, denoted by 1, aggrega-
tion, denoted by a tuplelike notation that labels the components of the syntactic construct, and repetition, denoted by
*, to mean one or more, or *, to mean zero or more. Note that the labels used to identify the components of an aggre-
gate construct resemble, but are not the same as the keywords used in specifying a concrete syntax.

FunAssign(function name.person) (pl, ‘JdJohn’)

In this example, the first expression is itself a function call, applying the function FunAssign to the
function name . person (an example of a specific function reference). This returns the oid of the
function that sets a person’s name, which is subsequently applied to a tuple of two elements, the oid of
the person and the new name (a string object), and sets the name of the person accordingly. The
parentheses and ,” are used here to denote an operator that creates a tuple. The OSQL language as
implemented by OpenODB provides a convenient syntactic shorthand for the above expression, as
shown below:

name.person(pl) := ‘John’

OSQL provides an imperative model of variables and assignment similar to C. Variables can be declared
and have scope equal to the block expression in which they are declared. Within such scope, one can
assign a value to the variable using an assignment, similar to what one would do in a language like C.
The introduction of assignment in OSQL is not strictly necessary, but is needed to support such
imperative constructs as while loops. Alternatively, one can use recursion and recursive functions to
avoid the need for assignment. The OSQL language as implemented by OpenODB provides the
following concrete syntax for variable assignment:

1 :=2

The conditional or if-then-else expression consists of three sub-expressions: a predicate expression, a
then expression, and an else expression. A specific example using the concrete syntax implemented by
OpenODB is shown below:

ticketPrice := 1f age(pl) >= 60 then 27 else 40

The semantics of its evaluation is to first evaluate the predicate expression; for example, age (pl) >=
60. If it returns true, we evaluate the then expression; if it returns false, we evaluate the else expression.
The if-then-else expression returns the value of the then or else expression.

The next expression is the block expression or begin-end expression. It consists of a list of (local)
variable declarations and a list of expressions. Its semantics is to evaluate the expressions in the list in
order, in the environment created by extending the environment of the block expression with bindings
for the local variable identifiers. The value returned by the block expression is the value returned by the
last evaluated expression in the list. For example, a simple block returning 5 is defined as follows:

begin declare Integer 1, J; 1 := 1; J := 4; 1 + J; end

Next there are two types of iterative expression; a for loop expression and a while expression. The for
loop provides iteration over the elements of an aggregate. It returns no value (i.e. its return type is Void),
and is thus evaluated only for its side effects. For example, to set the primary provider for a set of
patients to a given provider, prov, one could evaluate the following expression:

for p 1n Set(pl, p2, p3, p4) do primProvoOf(p) := prov
The while expression allows one to iteratively evaluate an expression (the loop expression), until

another expression (the pred expression) retumns true. The while loop also returns no value, similar to
the for loop.

The next expression type is the so-called quote special form. A quoted expression retums its arguments
unevaluated. A variation of the quote is the so-called backquote expression. This also returns its

argument expression unevaluated, except for those parts that are wrapped in a call to the unquote
function. The quote function is required to allow functions to evaluate their own arguments. This is
often useful, for example, when defining functions that create and implement other functions.

The last construct shown in the abstract syntax is a type declaration. This is not an expression, but rather
is required to be able to define variables. A type declaration defines a binding between an identifier and
a variable (i.e. a storage location used for storing the value). The identifier serves as the name of the
variable. Declarations can only be specified as part of a block expression, which is the scope of the
declaration.

In addition to the special forms discussed above, there are a number of system functions that provide a
degree of non-local control that is often convenient when defining a function. The first such function is
the return function. The effect of calling the return function is that the function containing it
immediately returns the value of the only argument of the return function. Another function is the
raise-error function. This function raises an exception that will transfer control back to the client
application, undoing any changes the function containing the call made.

An example highlighting a number of these constructs is shown in Figure 4. Given a tuple consisting of
a function £ and a set of objects arg, the £ilter function will return the set of objects e in arg for
which £ (e) returns true. Note that the parameter £ is function- valued and that the function
application f (e) in the filter function above will not be resolved until run-time.

create function filter (Function f, SetType(Object) arg) ->
SetType(Object) as osqgl
begin
declare SetType(Object) r;
declare Object e;

for e 1n arg do
if(f(e)) then r := r + e; endilf;
return r;
end;

FIGURE 4. Example OSQL function - filter

10

4 Query Language

OSQL supports a query language whose semantics is based on domain calculus, with support for
aggregate domains, functions and multisets (bags). The OSQL SELECT function provides the basic
query facilities of OSQL and closely resembles the Select statement of SQL. The abstract syntax of a
select expression shows that it consists of six parts:

Select:= resStruct: ResStruct
resList: Expr*
forEach: Declaration”
where: Expr
groupBy: Group*
having: Expr
orderBy: orderSpec’;

All of the parts of the select expression shown above, except for the resList, are optional. For example,
using the concrete syntax used by OpenODB, to retrieve the name of a person we evaluate the following
expression”:

select name(p)

The query compiler will infer that the type of this expression is Bag Type(TupleType(Char)). We can use
the resStruct options of the select expression to change the result type. For example, to have the select
expression return a bag of strings, we add the keyword atomic. Similarly, to have the query return just a
single name, we add the keyword single. A query that returns the name of a person (or null) can be
defined as follows:

select single atomic name(p)

Select expressions are evaluated by parsing them into a call to the (system defined) select function, and
passing the select function its arguments, that is, the parts of the select expression as indicated by the
abstract syntax above, without evaluating them. The select function compiles the query by creating an
unnamed function with no arguments, whose body is the compiled and optimized query expression. The
query is evaluated by calling this function without any arguments. In the case of a stand-alone query
expression, the unnamed function is transient and deleted after the function is evaluated. If the query

expression is part of the body of a function, the compiled and optimized expression becomes part of the
body of that function.

More complicated query expressions than the ones shown above can be easily expressed as well. For
example, to return the set of names of all persons living in San Jose, CA, we evaluate the following
expression:

select distinct atomic name(p) for each Person p where
City(p) = ’San Jose’ and State(p) = ‘CA’

The type of this expression is SetType(Char). The reason this query returns a set instead of a bag is that
we included the keyword distinct as part of the resStruct clause. Similarly, a query that includes an
orderBy clause will return a list object instead of a bag. For example, to return a list of the names and

6. Note: we assume that the identifier p is bound to the oid of a person object

11

oids of the next n persons whose names are lexically greater than a given prefix string fr, we can define a
function PersonsByName as follows:

create function PersonsByName (Char fr, Integer n) ->
ListType(TupleType(Char, Person)) as osql
begin
declare Cursor c;
declare ListType(TupleType(Char, Person)) r;
1f(n > 0) then
open cursor c¢ for
select name(p), p for each Person p where
name (p) >= fr order by name(p):;
else begin
open cursor c¢ for
select name(p), p for each Person p where
name (p) <= fr order by name(p) desc;
n :=n * -1;
end; endif;
r := fetch(c,n); /* fetch first n elements of cursor c */
close(c);
return r;
end

The function above can be called directly by an application or via another function. When called by an
application, it can for example be used to fill in the elements of a menu used to select a person from
among all the persons in the database. The second argument of the function PersonsByName is used to
specify the number of persons to return, as well as to control the direction of the scan, e.g. allowing a
client application to use this function to scroll up and/or down a list of persons. Note also that the
efficient evaluation of the function PersonsByName is dependent on both the presence of an index on
the result of the name function and the query optimizer choosing this index to access the corresponding
storage structure. OSQL provides the necessary system functions to define such an index and the query
optimizer will select it when compiling a query such as the one above.

The forEach clause’ defines the search domain of the query by declaring a list of identifiers and their
types. The domain of the query is formed by taking the cartesian product of the domain of each of the
identifiers in the forEach clause. Doing so will generate a set of bindings for the identifiers; one binding
per element of the domain. From the examples shown so far, it can be inferred that the where clause of
the select is a functional expression that returns a boolean value. In fact, in OSQL, the where clause can
return any natural number. In case the expression actually returns boolean TRUE, the value returned is
1; similarly, in case the expression actually returns boolean FALSE, the value returned is 0. The counter
value returned by the where clause determines the number of times the result clause of the query should
be evaluated for a given binding in the search domain of the query. A full treatment of the semantics of
OSQL queries is beyond the scope of this chapter, but can be found in [Kent 1993].

The groupBy and having clauses of a query are similar to those found in SQL and will not be further
explained here.

7. Note: The concrete syntax for the forEach clause as implemented by OpenODB allows the keyword £rom to be
used instead of for each for reasons of compatibility with SQL

12

OSQL does not restrict the kinds of functions allowed in the expressions associated with the resList and
where clause of a query expression, other than that functions can not have side effects. A function has a
side effect® when it updates another function, either directly or indirectly. To be able to include external
functions in query expressions, the query compiler has to ensure that their arguments are bound before

they are called.

OSQL query expressions support late binding semantics of functions, that is, function resolution is
postponed until the query is actually evaluated, unless the query compiler can determine a unique
resolvent at query compile time. For example, suppose that we have a function named area defined on
Circle, Rectangle and Polygon, all subtypes of type Shape, the following query will return the area of all
shape objects found in the database, using the appropriate specific function for each:

select area(s) for each Shape s

5 Annotated Examples

In this section we give examples of OSQL functions that are intended to highlight the various
capabilities of OSQL. These examples are all derived from actual OpenODB applications and reflect the
capabilities of OSQL as it stands today. We hope to evolve these capabilities by increasing our
understanding of applications and extending the language to provide more and higher level constructs,
aimed at simplifying the development of applications such as these, to increase programmer
productivity and to simplify maintenance of the resulting systems.

Queries

The first set of examples shows OSQL’s query capabilities and illustrates the modeling of objects with
nested structure, the use of function overloading and the use of recursion in queries.

create type part functions (
name Char (var 128)
)i
create type complexPart subtype of part;
create function subparts(complexPart) -> bagtype(part):

create function price(part) -> Real;
create function price(complexPart p) -> Real as osql
sum(select atomic price(q) for each part g

where ¢ occurs 1in subparts(p)):;

The first two statements above define type part and a subtype complexPart. The definition of type part is
combined with the definition of a function, name, that returns the name of a part. A complex part is
distinguished from a part in that it has subparts. The function subparts, defined in the third statement
above, returns a bag of parts, thus allowing a complex part to include a given part multiple times.
Function price illustrates how easily a transitive closure operation can be expressed as an OSQL query,
mostly because the price function can be overloaded on the types part and complexPart and will be
dynamically resolved as part of the query to compute the price of a complex part p. Note that the occurs
in clause in the where clause of the query serves as a multiplier, that is, the price of a given part will be

8. The OpenODB OSQL function compiler determines whether a function has a side effect automatically and
marks the function as such in the system dictionary.

13

duplicated in the result of the query as many times as the part is included as a subpart of a complex part,
so that the summation of the elements of the bag returned by the query returns the intended result. The

function to compute the price of a complex part could also have been implemented procedurally, as
follows:

create function price(complexPart p) -> Real as osql

begin
declare Real pPrice;
declare part sp;
pPPrice := 0;
for sp in subparts(p) do pPrice := pPrice + price(sp);
return pPrice;

end;

The implementation as a procedure is semantically equivalent to the implementation as a (declarative)
query, but the query form is more amenable to optimization.

Another example, showing transitive closure for a parts explosion, is the following,

create type material functions (name char(64)):

create type simplePart subtype of part functions (
mat material

)i

create function partExplode(part p) -> bagtype(simplePart)
as osqgl bag(p):

create function partExplode(complexPart p) ->bagtype(simplePart)
as osql select atomic sp

for each simplePart sp, part g where q occurs in subparts(p)
and sp occurs in partExplode(q):;

The function partExplode defined above can be used in queries, as follows,

select name(sp) for each part p, simplePart sp
where sp occurs in partExplode(p) and name(p) = ‘mercedes’ and
name (mat (sp)) = ‘asbestos’;

This query will find the names of all components of parts whose name is ‘mercedes’ that are made of
‘asbestos’.

Distributed Application Integration example

In a distributed environment, the database system, or more precisely, the database server processes, must
be able both to receive messages from other applications, as well as to send messages to other
applications, including other database servers. In general, it is easy to provide a customized interface
(client front-end) to a database that enables it to receive messages from other applications, and to
respond to these messages. The other way around is more difficult and will require that the database
system provide the ability for users (developers) to invoke their own code, both inside the database
server process or a specialized external server process, and as part of the client application. Such a
capability can then be used to notify other applications of events in the database, such as a change in
state in the database as a result of an update, thus implementing a basic ‘active database’ capability, or to
request from other applications (services) information that is needed inside the database.

14

For example, a slightly stylized function that can be used to send ‘messages’ to objects residing in other
applications can be defined as follows:
create function genEvent (Object sender, Object rec, Object msg,
Object msgArgs) -> Object as
simpleextfun ‘gen event’;

The function genEvent sends an event or message msg with arguments msgArgs to an Object rec
from an Object sender. Note that the sender and receiver objects may be instances of subtypes that
have properties that will enable the actual message sending code to retrieve their external identifiers, for
example, some kind of globally unique object identifier that enables identification of sender and receiver
objects. The genEvent function is implemented as a ‘simple external’ function, meaning that when it
is called the C routine registered as gen_event is called. OpenODB allows such C routines to be called
in the context of the client application, thus allowing the database server to have access to the state of
the client application and providing a degree of isolation between application code and database code’.
The gen_event routine will format the actual message and forward it to the receiver object. The reason
we call this capability active database is because it allows the database to affect the state of an object
outside the database itself. The actual capabilities are to a large extent determined by the external
environment. For example, in a CORBA [Object Management Group 1991] environment, the routine
genEvent could format and send a message to a remote object, according to the actual arguments
supplied as part of the genEvent function invocation.

Functions like genEvent can be used as a building block in other functions, to be called whenever an
action is required outside of the database. An example of an actual invocation is as follows:

genEvent (LabTechNamed(‘John’), ProviderNamed (‘Dr.Heartdoc’),
‘gend_email’,
‘call 415-123-4567, regarding your patient:
John - critical high K+ 14.57);

This call shows how, in a hospital environment, a lab tech object can notify a provider object about a
critically high lab vatue. In this case, notification involves sending a relevant message, via e-mail, to the
receiver.

Another example, along the same lines, shows how we can create functions that spawn and control other
Pprocessces.
create function sendMall (Char to, Char subject, Char msg) -> Vold
as osql
begin
declare TupleType(Integer, Integer) pty:

pty := PtySpawn(’/usr/bin/mailx’,List(’-8’,subject,to));
PtySend (pty, StrAppend (msg, ‘\n.\n’));
end;

This function shows the use of some system-defined process control functions (PtySpawn,
PtySend) that allow programs to be executed in a terminal emulator (pseudo terminal device) and
control the program by sending it data or reading back data generated by the program. In this case we
create an external process, using the function Pty Spawn, and then send that process some data (i.e. the

9. Future releases will also allow such routines to be made part of so-called ‘external server processes’ that are
independent of any specific applications.

15

contents of the mail message) using the function Pty Send. The mailx process sends the mail message
when it receives a terminating ‘.” on a line by itself and then terminates, as if it was invoked
interactively from a terminal and the mail message had been typed in directly.

create function dhcp_eval (Char cmd) -> ListType(Char) as osql
begin

declare TupleType(Integer,Integer) pty:

declare TupleType (Integer,Char) ans;

/* lookup or establish connection with msm interpreter */

pty := LookupMsmPty():;

1f (NotExists(pty)) then begin
pty := PtySpawn(’/mumps/msm’,List());
LookupMsmPty() := pty;

end;

else 1f (not(PtyAlive(pty))) then begin
pty := PtySpawn(‘/mumps/msm’,List());
LookupMsmPty () := pty;

end; endif; endif;

/* send command to interpreter and receive echo back */
PtySend (pty,cmd);
PtyRecelve (pty, List (Tuple (0, MkRegExprToMatch(cmd))));

/* recelve, parse (split in lines) and return answer */
ans := PtyRecelve(pty,List(Tuple(0,’\r> ‘))}):
return SplitLines(ans([1l]):

end;

The function dhcp_eval above is similar to the sendMail function but shows an example of the type of
processing required to establish a connection with another process and then repeatedly send commands
and receive replies. Note the use of LookupMsmPty(), a stored function used to store the values of the
external process id and file descriptor. The function PtyAlive is called to check that the process whose
process identifier is in the variable pty is still present and responding; if not, a new process will be
spawned. The function PtyReceive provides capability to do pattern matching on the output stream sent
back by the external process, allowing the function dhcp_eval to recognize the end of a reply. The
function MkRegExprToMatch takes a string as an argument and returns a string which is a regular
expression that matches the argument. The newline characters in the result returned by the second call to
PtyReceive are used to split the answer into a list of strings, which is returned as the result of the
function dhcp_eval.

The program started by the function dhcp_eval is a stand-alone interactive interpreter for the MUMPS
language. This language is used extensively in hospitals to implement information systems that manage
all kinds of data associated with patients, for example, laboratory test results, prescription records,
demographic information and so on [Dept. of Veterans Affairs 1990]. The details are outside the scope
of this chapter but the important thing to note is that the msm program provides us access to all of this
information by evaluating specific commands. For example, using MUMPS interface routines that we
developed [Annevelink, Young and Tang 1991], we can request a list of the next n names and identifiers
for patients, starting from a given prefix. Given the identifier of a patient, we can then request values of
attributes for these patients and so on, thus enabling us to access the external database.

16

Constraints, rules and triggers

The next example utilizes genEvent and shows how OSQL procedures can be used to encode rules,
constraints and triggers. In this case, we want to create a function to update a patient’s lab values that
generates a message when the lab value is abnormal.

create function newLabResult (LabTech 1lt, Patient p, TestOrder t,
Char value) -> Boolean as osqgl

begin
declare isAbnormal;
LabtestResults (LabTestOf(t),p,CurrentDate()) := Tuple(value,lt);
isAbnormal := CheckCriticalRange(LabTestOf(t),value);

if(isAbnormal) then

genBvent (1t, PrimaryPhys (p), 'send-email’, StringAppend(‘call ‘,
ToChar (work_phone (1t)),
‘regarding your patient:
name (p),
‘ critical value of lab test: /,
name (LabTestO£f(t)),
'vyalue: '/,
value);

endif;

return isAbnormal;

end;

The function shown above will update the LabTestResults function to reflect that a labtest result has
come in. It will then compare the value of the labtest with the critical range defined for it and determine
whether it is abnormal. If so, the function will format a message using information stored in the
database and send that to the primary physician of the patient.

This example is not intended to show the utility of OSQL as a language for defining rules or constraints.
Rather, it intends to show how one can enforce arbitrarily complex rules or constraints by
‘programming’ them by hand. Future versions of OSQL may include more specialized rule and
constraint subsystems that can be invoked directly, or used to compile functions similar to this one
automatically, from a more declarative specification.

Integration of legacy applications (external data sources)

In many situations, there is a need to integrate existing, so-called legacy systems and applications to
simplify access to these systems and to provide a capability to formulate queries that range over data
included in several such systems or applications.

The types and functions below are prototypical for the situation in which one wants to integrate an
external system with an OSQL database. The type ExtObject provides the capability to define an
external key for an object. The external key must provide the ability to uniquely identify the object in
the external system, in the same way that its object id allows that inside the OSQL database.

The function CrExtObject provides the capability to create instances of local objects that represent
external objects. It provides an example of the capability to call system functions such as CreateObj
with arbitrary parameters. CreateObj is a system function that provides the capability to create objects
and initialize one or more functions that have the newly created objects as their argument. CrExtObj
also shows the capability of OSQL functions to contain arbitrary OSQL queries. The object created by
the function CrExtObject is an instance of the type t, which must be a subtype of the type ExtObject.

17

create type ExtObject functions (xkey Char);

create function CrExtObj(Type t, Char key) -> ExtObject as osql
begin

declare ExtObject eObj;

declare ListType(ExtObject) eObjs;

eOb] := select single atomlc o for each ExtObject o

where xkey(o) = key:;
1£f(isNull(eObj)) then
eObj := CreateObj(t,List (FUNCTION xkey),

List (Tuple(key));

endif;

return eObj;

The lattef COnstraint is entorced by a run-time typecheck on the value returned by the function
CreateObj, added by the OSQL compiler.

Using the functions described so far, it is now relatively straightforward to define the function
ReadExtSurrAttr which returns the value of an attribute of an object stored in an external MUMPS
database. The external database is accessed through the dhcp_eval function defined before. The
argument of the function dhcp_eval is an example of a MUMPS expression used to retrieve the value of
the attribute.
create function ReadExtSurrAttr (Char 1d, Type objType,
Char attrName) -> Object as osqgl
begin
declare ListType(Char) ans;
ans := dhcp_eval (strAppend(
'S DR=’,attrName, ’',0ID=',1d,’ D ENAHPRD\r'));
return CrExtObj (objType,ans[0]):;:
end;

The function above returns the value of a surrogate-valued attribute of an external object. For example,
the following call will return the oid of the spouse of the patient whose id is ‘“ADPT(A2301A2° 10,

ReadEXtSurrAttr(/"DPT("2301"2’,type patient, 'SPOUSE’)

The arguments are the external key (id) of the external object, the type of the surrogate object, and the
name of the external attribute. The function ReadExtSurrAttr invokes the function dhcp_eval to retrieve
the value of the external key of the surrogate attribute from the MUMPS database and calls the function
CrExtObj to convert the external key into a corresponding oid, which is then returned.

The next two functions show how OSQL system functions can be used to dynamically create types and
functions. In this example, the function ImpExtType creates a type whose extension maps to a set of
objects residing in an external system. It also creates, by calling the function CrAurF, a set of attribute
functions that can be used to access the attributes of the objects that reside in the external database. The
functions ImpExtType and CrAttrF access the data dictionary of the external system to determine
different properties of the attributes, for example what type of value they return and what indexes, if
any, are defined to access the data in the external system. The functions ImpExtType and CrAurF in

10. This string is an example of an external id. It contains the information necessary to uniquely identify an object
in an external database, in this case a record that contains a.o. a reference to the spouse.

18

create function ImpExtType(Char tName, Char extTypeName,
ListType (TupleType (Char /* fname */, Char /* attrName */,
Integer /* attrMod */)) attrs)

-> TupleType (Type, ListType(Function)) as osql
begin

declare Function f£;

declare ListType(Function) attrFncs;

declare Type extType;

declare TupleType (Char, Char, Integer) attr;

extType := MkExtType(tName, extTypeName):;
attrFnes := List():;
for attr in attrs do begin
f := CrAttrF(attr[0],extType,attr[l],attr[2]);
attrFuncs := attrFuncs + f£;
end;
return Tuple(extType,attrFncs);
end;

effect map the schema specified by the external data dictionary into an OSQL schema. Similar tunctions

can be defined to import other data sources and/or applications.

create function CrAttrF(Char fname, Type argtype, Char attrName,
Integer attrMod) -> Function as osql
begin
declare ExtAttr attr;
declare Type resType;
declare Functlion f;

attr := FindExtAttrByName (argtype,attrName) ;
1f (isNull (attr)) then
ralse error StrAppend(’Attribute does not exist: ’
attrName) ;

’

endif;
resType := TypeOfExtAttr(attr);
f := CreateFun(fname,argtype, resType,List());

1f (SurCategory(resType) = 0) then
ImplOsqgl(f,List(’ARG’), BACKQUOTE (ReadExtCharAttr(

xkey (ARG), UNQUOTE (attrName)))):;
else

ImplOsqgl(f,List (“ARG’), BACKQUOTE (ReadExt SurrAttr (

Xkey (ARG), UNQUOTE(resType), UNQUOTE(attrName)))):
endif;

return f;
end;

The function ImpEx(Type creates a new type by calling the function MkExtType. This function is not
shown here, but it will ultimately create the new type by calling the system function CreateType. After
creating the new type, the function CrAwF is called repeatedly to create the functions that will allow us

to access the attributes of the objects residing in the external system.

The function CrAurF creates a surrogate or character valued attribute function for an external attribute.
CrAtuF is implemented as a procedure that first checks the existence of the attribute. If the attribute
does not exist, an error will be raised. Next the function TypeOfExtAttr is called to determine the type

19

of the attribute. This information can be found by accessing the data dictionary of the external database.
Given the type, we can create the attribute function by calling the system function CreateFun. This
function takes the name of the function to be created, its argument and result type and a list of
constraints and returns the oid of the newly created function. The next step is to implement the just
created function. Essentially the body of the function will be a call to either the function
ReadExtCharAttr or ReadExtSurAttr, depending on whether the attribute’s type is a string or a surrogate
type. The body of the function is specified as a backquoted expression, to allow us to substitute the
attribute name and possibly the atuType into the function body. The function ReadExtSurAttr is the one
defined earlier. The function ReadExtCharAttr is similar to ReadExtSurAttr, except that it returns a
string object instead of a surrogate object.

The examples shown here are in many ways simplifications of the ones we have actually implemented.
Due to the fact that OSQL is computationally complete and all of the system functionality is accessible
by calling the appropriate system functions, there are few limits on what can be done. Another example
of extensions that we have implemented are functions to control caching of data residing in external
systems. This is often necessary to overcome performance limitations inherent in accessing the external
system, for example when the external system does not provide the indexes needed to efficiently
evaluate queries posed by the applications running on top of our system.

6 Alternative Approaches

In this section we want to compare the approach we have taken with OSQL to that of extending the C++
programming language with persistence mechanisms. The first observation that we make is that, due to
the fact that extension constructs provided by C++ are limited, approaches that provide a seamless
integration between programming language constructs and query constructs and that allow for the
compilation and optimization of queries (e.g. those described in [Agrawal and Gehani 1989; Blakeley
1994]) require the use of a language preprocessor. In effect, one defines a new and extended language.
Secondly, the C++ object model is at the same time more complex and less flexible as the OSQL object
model. As alluded to before, the C++ object model mixes the representation of an object with its
interface definition. Also, the C++ model does not provide support for adding or removing types from
objects, a requirement if one wants to realistically mode! persistent objects. Thirdly, the C++ language
provides only very limited mechanisms for function polymorphism and the type system requires that the
types of the identifiers in an expression be known at compile time. These restrictions, while useful at
times, also prevent the definition of functions like those discussed in section 5, where we pass types and
functions as arguments.

In our view, C++ is not a suitable basis for defining a database programming language, because it falls
short off meeting some of our essential design goals as summarized in the introduction. That
notwithstanding, C++ can be an excellent choice as an applications programming language. By
carefully designing and implementing the C++ application programming interface, taking advantage of
the data abstraction capabilities offered by C++, one can easily provide a set of classes to provide a
seamless interface to the OSQL data model.

20

7 Conclusions

We have presented OSQL, a language developed to facilitate the design and implementation of object
databases. OSQL is a computationally complete language that combines the power of relational query
languages with the expressiveness and extensibility characteristic of a functional programming
language. OSQL provides a type system that allows objects to evolve over time, acquiring new types
and losing old ones as their roles change. OSQL provides support for aggregate types and avoids the
impedance mismatch problem between programming language and query language by tightly
integrating the two. OSQL is very well suited to developing applications in a distributed world. By
providing the capability to evaluate (user-defined) functions in the database server, the application
developer can implement functions and then share these across a large number of applications. In
addition, as shown by the examples in this chapter, database functions can interact with other
application services, providing the capability to integrate data residing in external applications and/or
databases and building integrated information management systems that preserve the integrity and
autonomy of legacy applications. Moreover, by providing this capability as an orthogonal extension to
the base language, one can use OSQL’s declarative query processor to transparently query data residing
either in the object database or in one or more external databases.

The OSQL language is characterized by the fact that it can evolve by extending the set of (system) types
and functions provided. As a result, a lot of our development effort is directed towards building libraries
of functions and types that facilitate the rapid development of applications in specific application
domains and that provide the constructs needed to integrate information available in existing databases
and other types of legacy applications. This is a first step towards an approach that would allow
application developers to quickly construct information services by picking from an existing set of type
and function definitions, refining them as needed and interface them with their (application specific)
user interfaces using the communications facilities and application development tools provided in a
distributed computing environment,

Acknowledgments

We would like to acknowledge the many contributions made by our colleagues in the database
department of Hewlett-Packard Laboratories, where most of the early work on OSQL was done and
where the Iris prototype was developed, as well as the Commercial Systems Division of Hewlett-
Packard, where OpenODB was designed and implemented.

References

Agrawal, R., and Gehani, N.H. 1989. ODE (Object Database and Environment): The Language and Data Model.
ACM SIGMOD 1989, May 1989, Portland, 36-45

Ahad, R. and Dedo, D. 1992. OpenODB from Hewlett-Packard: A Commercial OODBMS. Journal of Object
Oriented Programming, Vol. 4, Number 9, Feb. 1992

Ahad, R. et.al. 1992. Supporting Access Control in an Object-Oriented Database Language. Proc. Intl. Conf. on
Extending Database Technology, Vienna, Austria, March 1992

Ahad, R. and Cheng, T. 1993. OpenODB - An Object-Oriented Database Management System for Commercial
Applications. HP Journal, Vol 44, No 3, June 1993, 20-30

Annevelink, Jurgen 1991. Database Programming Languages: A Functional Approach. ACM SIGMOD 91, May
1991, Denver, 318-327

Annevelink, J., Young, C.Y., Tang, P.C. 1991. Heterogeneous Database Integration in a Physician’s Workstation.

Proc. 15th Annual Symposium on Computer Applications in Medical Care, McGraw-Hill, New York, 1991,
368-372

21

Blakeley, J. A. 1994. ZQL[C++]: Extending the C++ Language with an Object Query Capability. this book
Ellis, M.A. and Stroustrup, B. 1990. The Annotated C++ Reference Manual. Addison-Wesley, 1990

Fishman, D. H. et.al. 1989. Overview of the Iris DBMS” in: Object Oriented Concepts, Databases and Applications.
W. Kim and EH. Lochovsky, Eds. New York, ACM, 1989

Goldberg, A. and Robson D. 1983. SMALLTALK-80 The Language and its Implementation. Addison Wesley, 1983
Hewlett-Packard 1992. OpenODB Reference Manual B3185A 1st ed 9/1992
Kent, W. 1993. A Model-Independent Query Paradigm Founded on Arithmetic. in preparation

Lyngbaek, Peter 1991. OSQL: A Language for Object Databases. Hewlett-Packard Laboratories technical report,
HPL-DTD-914

Mylopoulos, J. Bernstein, P.A. Wong, H. K. T. 1980. A Language Facility for Designing Database-Intensive
Applications. ACM TODS, 5(2), Jun., 1980.

Object Management Group 1991. The Common Object Request Broker: Architecture and Specification. Document
Number 91.12.1

Shipman, D. 1981. The Functional Data Model and the Data Language DAPLEX. ACM TODS, 6(1), Mar, 1981
Department of Veterans Affairs 1990. VA Fileman User’s Manual. Version 18, September 1990,

Wilkinson, K. Lyngbaek, P. and Hasan, W. 1990. The Iris Architecture and Implementation. IEEE Transactions on
Knowledge and Data Engineering 2(1), Mar. 1990

22

