
1

1 Introduction

IVD, Interactive Visualization Debugger, is intended to provide on-line and integrat-
ed mechanisms for debugging, performance analysis, and data visualization for mes-
sage-passing parallel applications.

FIGURE 1. The overall environment

Figure 1 illustrates the overall environment in which the debugger will operate. The
“probes” collect performance and computational data from system and application re-
sources. The “monitors” aggregate and manipulate data from multiple probes before
they are fed to the “analyzers”. The “controllers” provide a feedback loop to adapt the
application or system. The “display” modules provide data and performance visualiza-
tion to the user. Our approach is to use existing sequential debuggers, performance
analysis tools, and data visualization packages and to provide the essential glue to
make them operate as described above. Where necessary, we will make minimal
changes to the component tools and publish interface specifications that will allow
other tools to be plugged in if they meet these specifications.

IVD is “on-line” in the sense that all debugging and visualization functions are avail-
able during program execution as opposed to afterwards. When this would introduce
significant program perturbation, we use “program replay” in combination with the
on-line tools. During an initial execution of a parallel program, the essential program
behavior, consisting of message ordering and time-stamps of significant events, is
traced with minimal overhead. During re-execution of the program, this trace is used
to guide the program to the same behavior and to tag events with time-stamps from
the initial execution. It is even possible during re-execution to collect more perfor-
mance or application data and halt/restart various processes using the debugger
without introducing any program perturbation.

Our tool will provide “integrated” debugging, performance analysis, and data visual-
ization. Debugging, performance analysis, and data visualization can be synchro-
nized. Processes in the parallel application can be halted by the debugger at the same
point that performance and data visualization is being done. In addition, events from

monito r
control

analyze

system and
application
resourcesprobes

display

Internal Accession Date Only

Company Confidential

2

some tools may trigger actions in other tools. For example, performance and data er-
rors detected by performance and data analyzers may automatically cause the debug-
ger to halt processes.

IVD will also provide parallel application checkpointing so that applications do not
have to be re-executed from the beginning for cyclic debugging. They can be restarted
from the last checkpoint before the point of interest. Without this feature, debugging
long-running applications would be impractical.

Currently, IVD works with the PVM (Parallel Virtual Machine) message-passing li-
brary but it could be easily modified to support other message-passing systems. IVD
does not support the full functionality described above now. The main accomplish-
ments to date have been the following:

(1) IVD uses ESP, which is a novel mechanism to multicast window-based commands
from a single control window to some subset of existing, unmodified debuggers and
visualizers attached to various processes. Existing debuggers and visualizers do not
have to be modified, recompiled, or relinked. ESP makes IVD extremely portable and
allows heterogeneous tools to be used within a single debugging session.

(2) IVD provides program replay for PVM [2] programs by modifying the PVM
library.

(3) IVD includes the capability to visualize application arrays distributed over the
application processes. Arrays may be selected in an ad hoc manner at run-time and
the design allows existing data visualization packages such as Gnuplot, Mathemat-
ica, or AVS to be used.

We describe each of these features in the following sections of the paper and provide
some comparisons to existing parallel debuggers at the end.

2 Event Sense Protocols (ESP)

Current GUIs (graphical user interfaces) [1] are based on a single-threaded dialog,
where the user operates on one single command button to invoke one application and
to execute one single function at a time. There has been a need to have a mechanism
to sense user commands and window events, and to control, manage, and multicast
them to a set of selected multiple debuggers and visualizers for executing some func-
tions simultaneously.

We want an interface that will support debugging functions for all selected processes
using a single window. Such an interface will be very valuable for actions such as

3

simultaneous single-step execution in all selected instances. At present, PVM uses a
separate window for each selected process. Users have to enter commands in each
debugging window.

ESP solves the problem of how to sense user actions, to control, and to distribute input
window events to each selected process’ window for simultaneous execution in a
distributed environment.

Figure 2 illustrates the host screen displaying a selected set of the debugging win-
dows corresponding to a set of the running processes on different workstations. The
host can control and manage the debugging steps for each running application
through the IVD control window using buttons, text fields, etc.

FIGURE 2. A parallel visualization debugging session

2.1 Architecture Overview

ESP is built on a multiple client-single server model. There are two components we
define in the IVD architecture: (1) A Concurrency Control Window (CCW); and (2) an
Event Sense and Muticast Processing Manager.

FIGURE 3. An IVD architecture overview

Figure 3 shows that IVD with ESP appears as a single visualization debugger to the
user. ESP manipulates the user input events, such as keyboard and mouse, and then
multicasts these events to each running visualizer and debugger. IVD automatically
triggers the visualizers/debuggers to execute received events from the user. User

 2 9 11

ESP

CCW

Host Screen

A group of workstations

debuggers

Processdebug

visualize

debuggers

application

sync
steering

tracing

replay

CCW

visualizers

ESP
Manager

Company Confidential

4

events are processed as if the window events had been directly entered into the visu-
alizer/debugger windows.

2.2 ESP features

IVD uses ESP to integrate existing debuggers and visualizers to observe parallel
application execution behavior in a distributed, shared-nothing multicomputer envi-
ronment with the following features:

2.2.1 Heterogeneous processing

IVD is designed for heterogenous processing. Using ESP input event sense and mul-
ticasting capability enables IVD to access existing debuggers across various plat-
forms to debug large, complex problems.

2.2.2 Scalability by grouping

IVD is scalable. IVD is built on a shared-nothing multicomputer environment. Each
process has its own debug-ging and visualization facilities. ESP provides different
“contexts” for the user to dynamically select the multicasting scope. By sending com-
mands only to relevant processes within a context rather than all processes simulta-
neously, the user may also use contexts to limit the amount of overhead generated by
running multiple processes.

With a context, the user can group certain debugger instances together. Each context
then receives the same debugger commands entered on the IVD concurrency control
window. By grouping the debugger instances, the user can indicate the execution
order of groups of debugger instances. The user is not restricted to work only with
individual debugger instances. This becomes useful when certain debugger instances
are naturally associated with one another. For example, one context may contain all
the slaves while another context contains only the master. Alternatively, there may
be many contexts, each containing the debugger instances that are functionally
related to one another. A given debugger may belong to more than one context or no
context.

2.2.3 Portability

IVD uses standard X window system and OSF/Motif appearance and behavior. With
ESP, IVD is independent of the underlying tools.

3 Program replay

3.1 What is program replay?

5

Most parallel programs produce deterministic output. If they are given the same
input, they will produce the same output. But if one looks inside the program at the
actual computations performed during different runs of the program on the same
input data, the computations can be wildly different. This non-deterministic internal
behavior is usually caused by race conditions that get resolved differently in differ-
ent runs of the program even if the input data is the same each time. An example of
a race condition is shown in Figure 4. The messages m1 and m2 could arrive in
either order at P2 and the order may change from one run of the program to another.
This non-deterministic behavior is bad for debugging. It may not be possible to
reproduce the resolution of the races that resulted in a defect when the program is
re-executed using a debugger.

Program replay solves this problem through a two step process. First, the program is
executed and a trace is made recording how all of the races were resolved. The pro-
gram is then re-executed using the trace. The information in the trace is used to
ensure that each race is resolved as it was during the initial execution when the
trace was made.

FIGURE 4. Example of a race condition

This way the internal behavior of a parallel program becomes deterministic and the
cyclic debugging techniques used for sequential programs can be used to debug par-
allel programs. To isolate any defect, the only requirement is that a trace was taken
when the defect occurred.

For program replay to be completely successful, all sources (e.g. system clock, user
input) of non-determinism must be traced during the initial execution and then con-
trolled during re-execution to ensure the same behavior.

Program replay is not new. LeBlanc et al. [3] describe Instant Replay, a mechanism
to do program replay for parallel programs in which all communication is through
shared objects. Leu et al. [4] describe a method of doing program replay for parallel
programs made up of sequential processes that communicate through message pass-
ing.

3.2 Program replay in PVM

Program replay was implemented in PVM 3.0 by modifying the PVM library, dae-
mon, and console. One modification was to provide the functionality of program

P1 P2 P3
send(P2,m1)

send(P2,m2)
m1

m2

Company Confidential

6

replay. Another was to provide a user interface that allows program replay to be used
with or without the rest of IVD. Details can be found in [5]. Here is an overview.

During the initial execution of a PVM program, each PVM process and daemon
writes its own private trace file. In its trace file it records the order in which it
received its messages. For this to be possible, each message sent during the execu-
tion of the program must have a unique identifier. To guarantee this, each message
sender maintains an “event counter.” Every time a message is sent, the sender incre-
ments its event counter and stores the new value into the message’s header, giving
the message a unique identifier made up of the sender’s process id and the value of
the event counter stored in the header. See tracing in Figure 5. The value of the
event counter is shown by event and the sender’s process id shown by src. When the
receiver receives a message, it appends the pair <src, event> identifying the mes-
sage to the end of its trace file.

FIGURE 5. How program replay works

When the program is re-executed during replay, the information in the trace files is
used to force the messages to be received in the same order as they were during the
initial execution. See replaying in Figure 5. The sender behaves as before, tagging
each message that it sends with the value of its event counter. But the receiver
behaves differently. This time it reads its trace file. When a message arrives, it com-
pares the unique identifier in the message with the identifier at the head of the trace
file. If they match, it advances to the next identifier in the trace file and receives the
message. If they do not match, it adds the message to a pool of waiting messages.
Hence, this message pool contains messages that arrived earlier during replay than
they did during the initial execution. The message stays in the pool until its identi-
fier appears at the head of the trace file. At that time, the receiver advances its trace
and receives the message, removing it from the pool.

Notice that the receiver does nearly all the work of program replay, both during trac-
ing and replay. Notice also that the trace files do not need to be merged to do replay.

tracing sender
event++

src event

receiver’s trace file

receiver

src event

replaying sender
event++

src event

receiver’s trace file

receiver

src event

compare

src event
src event

waiting messages

7

It may seem that it would not be necessary to trace the PVM daemons, but this is
wrong. The daemons maintain shared state that is readable and modifiable by the
processes. The daemons must be traced and replayed to ensure that the processes
have the same view of this state during replay.

4 Data visualization

Existing debuggers are fine tools for finding errors in simple programs; they are
inadequate when dealing with large, scientific codes. The problem is in looking at the
data. Today’s debuggers allow the user to look at the program variables one at a time
or at arrays as a whole. As long as the arrays are small or the errors obvious, this
view is all we need. As soon as we need to find a subtle error in an array of millions of
elements, we are out of luck.

The problem is even worse for parallel programs. The current technology of debug-
ging a distributed memory multi-computer consists of invoking an instance of the
debugger for each process. If we dump the part of the array held by each process to a
separate file, we can invoke a visualizer, but we may not be able to see what we need.
It all depends on how the data is distributed.

For example, consider a one dimensional array of length 100 distributed over 4 nodes
in blocks of 5 elements. Figure 6 shows a plot of the data held on each node. The
array should look like a cosine function, but we purposely introduced a small error. It
is not obvious where the error is.

FIGURE 6. A plot of the data held on each node

If the application required visualization of this array, the programmer would have
written the code necessary to gather the data together and plot it. During a debug-
ging session, though, we don’t know ahead of time what arrays the user will want to
see. Hence, we want an ad hoc scheme [6] that gathers the data without requiring
the user to modify the application.

In order to put the data back together again, we need some information. First, we
need to know which process produced which output file. Next, we need to know the

Company Confidential

8

logical distribution of the array. Finally we have to know the user’s logical ordering
of the processes.

Our present implementation assumes that the array is distributed in a regular grid
with arbitrary blocking in each of up to 4 dimensions, allowing us to follow the time
evolution of 3 dimensional objects. For each dimension, the user gives the length, the
block size, and the number of processes. In addition, we allow the segments to over-
lap by an arbitrary amount. When the segments overlap, we accommodate toroidal
distribution by allowing the last segment in each dimension to overlap the first. In
the example we are using, there is one dimension of length 100. There are 4 pro-
cesses and 5 contiguous elements are given to each process in turn, so the block size
is 5.

While this simple scheme doesn’t cover all possible data distributions, most of the
common ones like those found in High Performance Fortran [7] can be described. In
the other cases, we allow the user to define an explicit data distribution which pro-
vides a lot of flexibility.

We now have all the data in files, one per process; we know which file corresponds to
each entry in the process id array; and we know the data distribution. We can now
read the individual files and produce a single file with the data in the same order the
debugger would have produced had we dumped it during a uniprocessor run.

FIGURE 7. The reconstructed complete array

Figure 6 shows how difficult it can be to find a small error by looking at the pieces of
the array held by each process. Figure 7 shows the reconstructed array. The data
points in error are easy to spot. Simply counting the points indicates that process 2 is
the culprit. We can now go about identifying the source of the error. (In this case it is
easy. We added 0.1 to all the points computed by process 2). A more sophisticated
visualization could have used a different color or plot symbol for each process
because the output file we create has the process id associated with each data point.

The ability to visualize the array as a whole is even more important for higher
dimensional problems. For example, a 3 dimensional array might be displayed as a
movie showing how 2D slices change with time.

Error found!

9

Our tool lacks some of the features we could have added had it been fully integrated
with the debugger. File I/O is slow compared to having the visualizer and debugger
work together on data stored in memory. On the positive side, with IVD any debug-
ger that can redirect its output to a file and any visualizer that can read data from a
file can be used. This feature makes our tool completely portable and as flexible as
most people will ever need. It also made the tool much simpler to develop.

5 Conclusions

IVD provides unique features not found in other parallel debuggers. For example,
Convex’s PVMdb provides a single console for controlling execution of individual
existing debuggers but does not have global commands, contexts, data visualization,
replay, etc. Also, PVMdb does not support window-based debuggers.

IVD is an on-going experiment in Hewlett-Packard Research Labs. IVD provides
standard window interfaces to existing visualizers/debuggers with deterministic
replay and data/performance visualization. In addition, IVD has the ability to group
processes into various contexts and perform simultaneous debugging operations
(e.g., go, stop, single-step). Programmers may use their favorite visualizers and
debuggers. Our studies have been promising. With IVD as a vehicle, we will continue
to develop the overall environment shown in Figure 1.

Acknowledgment & references

Thanks to Dr. Chris Hsiung for his encouragement and suggestions.

[1] Communications of ACM, Special Section on “Graphical User Interfaces: The Next
Generation”, Apr. 1993, Vol. 36, No. 4.

[2] G. A. Geist et al., “PVM 3.0 User’s Guide and Reference Manual” ORNL/TM-
12187, February, 1993.

[3] Thomas J. LeBlanc and John M. Mellor-Crummey. Debugging parallel programs
with Instant Replay. IEEE Transactions on Computers, C-36(4):471-82, April 1987.

[4] Eric Leu and André Schiper. Execution replay: a mechanism for integrating a
visualization tool with a symbolic debugger. Lecture Notes in Computer Science, vol-
ume 634, Berlin, 1992.

[5] Milon Mackey, Program replay in PVM. 1993 PVM User’s Group Meeting (Knox-
ville, TN), May 1993. Available from netlib.

[6] Alan H. Karp, Ming C. Hao, “Ad Hoc Visualization of Distributed Arrays” HPL-
93-72, 1993.

Company Confidential

10

[7] David B. Loveman “High Performance Fortran”, IEEE Parallel & Distributed
Technology, 4:25-42, 1993.

11

IVD, Interactive Visualization Debugger, is intended to
provide on-line and integrated mechanisms for debugging,
performance analysis, and data visualization for message-
passing parallel applications. The current IVD includes: (1)
ESP, a mechanism to multicast window-based commands
from a single control window to some subset of existing
debuggers / visualizers on various processes; (2) program
replay to reproduce program runs deterministically to enable
cyclic debugging; and (3) ad hoc data visualization of
distributed arrays using existing visualizers.

On-the-Fly Visualization and
Debugging of Parallel Programs
Ming C. Hao, Alan H. Karp, Milon Mackey,
Vineet Singh, Jane Chien
HPL–93?
October, 1993

Event sensing,

Parallel processing,

Program replay,

Data visualization

 Copyright 1990 Hewlett-Packard Company

