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Process-driven software development environments (PSDE's)
provide support for the software (life-cycle) processes within
which the environment is embedded and operational. This
support includes tools and mechanisms for: modeling, analysis,
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In this paper, we concentrate on the mechanisms that a PSDE
can provide for the evolution of software processes.

We envisage a PSDE with a repository of process programs that
are applicable in different situations. The repository needs to
be evolved with additional process programs when: (1) a new
automatable process fragment is discovered, or (2) the
programming tools or policies have changed. We discuss the
evolution of this repository wherein the environment plays a
helping role - it assists by generalizing the history sequence of
user actions that led to the discovery of the new process
fragment.

The contributions of this paper are: a formal model of a PSDE,
and an explanation-based generalization algorithm that helps
in a PSDE's self-evolution. For experimental purposes, the
algorithm has been implemented for the UNIX programming
environment, with specialized shell scripts as process
programs. We present empirical evidence, based on this
implementation, that suggests the practicality of our approach.
In addition, we suggest that if shell scripts, i.e., process
fragments, were developed using our approach then they will
be more generally applicable and reusable.
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1 Introduction

A software development environment (SDE) provides computational support for the software devel­
opment process by providing a collection of tools or operations, each of which performs a primitive
action that can be used to achieve goals in some higher-level processes. Process-driven software
development environments (PSDE's) seek to provide support for the automation, analysis, op­
timization, human understanding, communication, and execution of these higher-level processes.
In this paper we concentrate on the need to provide automation support for the generation and
evolution of software processes within PSDE's.

Towards the end of process automation, researchers have developed process programming languages
(e.g., APPL/A [23] and HFSP [24]) and plan- or rule-based formalisms (e.g., GRAPPLE [12] and
MARVEL [14]) that can be used to relate primitive actions (also called processing steps) to some
processing goal in the form of a process program or plan. Since these languages are machine
executable such process programs enable one to automate the execution of routine aspects of the
software development process thus relieving some of the burden on the software developer.

Process programs embedded within process driven environments need to be evolved for two main
reasons. First, it is difficult to a priori specify all process programs [15]. The difficulty arises from
several factors including the non-availability of comprehensive application domain models, the
skills of the various people involved, the degree to which the artifacts and resources of a software
development effort have been institutionalized, and so on.

Second, process programs need to be evolved to keep up with changes in the environment. In other
words, even when successful process programs have been developed, the advent of new tools and
technology, and changing software practices and policies would require that these process programs
be continually revised and updated.

In this paper we present an approach that provides automated support in the evolution of process
programs in a PSDE. The approach is based on the intuition that even though process programs are
difficult to specify a priori they are much easier to describe in hindsight after a particular sequence
of processing steps has been successfully applied in a novel task or situation [9].

We envision, as part of a process-driven environment, a process repository (see Figure 1) that
contains reusable process fragments annotated with conditions of their applicability and the goals
achieved by the process fragment. The process fragments are composed from a set of atomic opera­
tions called primitive actions. These process fragments and the primitive actions are made available
to a user by the process-driven environment. It is up to the user to make use of these in order
to perform a more abstract, higher-level process. The process-driven environment automatically
keeps track of the actions invoked by the user in a work session in the form of a process history.
Given such an environment, most stages in a process could be characterized as belonging to one
of two cases: Case 1, in which one or more pre-defined process fragment is applicable to the given
situation, and case 2 in which a novel situation is encountered and none of the pre-defined process
fragments is applicable. In case 1, the user can simply apply a relevant process fragment. In case 2,
the user may continue to work by using the primitive actions available in the environment. Eventu­
ally, the user may realize that the situation and the subsequent sequence of actions taken is likely
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to be repeated in the future. The user can use this hindsight to formulate the specific goal that
was achieved by his actions. From this goal and the process history, a process fragment generator
can help the user in creating a general process fragment which can be used in a class of situations.
This process fragment would then be added to the reusable process repository and made available
for future use.

1.1 Motivating Example

We introduce a simple motivating example to illustrate our approach; the example will also be used
later to explain our technique for generating a process program.

Suppose there are two users Ul and U2 working off a shared pool of files, P S' Suppose that Ul has
a working pool of files, PI, and U2 has a working pool of files, P 2 • The normal mode of operation
is that either U1 or U2 locks a file F1 in P s- If U1 has locked FI, then U1 is allowed to make
modifications to his copy of F l while U2 has a read-only copy of Fl. Ideally, when Ul has finished
making his modifications, he creates a new version F't of F1 in Ps- At this point, U2 has two
options: she can either continue using FI, or check out F'l from P s-

One of the ways in which this normal process can break down is when both Uland U2 have checked
out a file F1 and neither of them have locked the file. Assume that both Uland U2 are allowed
to make modifications1 to their version of Fl' However, at some point, changes made in the two
versions have to be consolidated. There are two alternative approaches to achieve this: (1) Use the
changed version of either Ul or U2 , or (2) Try to merge the changes made by both Ul and U2 •

The steps carried out in Alternative 1 are:

1. Login into UI 's machine.
2. Go to pool Pl.
3. Move F I to FI.cp
4. Lock F 1 in P $ and obtain the shared version of Fl.
5. Move FI.cp to Fl.
6. Check in FI to p$.
7. Login into U2 's machine.
8. Goto P 2 •

9. Check out Fl.

This is an example of a process which might be repeated quite often in situations where Uland
U2 have forgotten to lock F l and have inadvertently made modifications to Fl. Thus, it would be
useful to generalize the activity history into a process fragment, e.g., a UNIX shell script shown in
figure 2.

This process fragment, call it forced-cheek-in, generalizes the history as follows: For each element
in a given set of files, it determines if the shared version of that file is different from the user's version.
If it is, then it checks if that file is locked by any user or not. If the file is not locked, then the script

1This is possible because typically version control systems cannot exercise control over the users' copy of the files which are
maintained by the host's file system.

2



Process
History

Process
Fragment
Generator

o 0
o 0

Primitive
Actions

o 0 0

o

File System(s)

Process-Driven Software Development Environment (PSDE)
------------------------------------------------------------------------------------------------------------ - - - - - - - - - ~

I,,,,,,,,,,,,
I
I
I
I
I
I
I
I
I
I,,,,,
I
I
I,,,,,,,,,,,
I
I
I,
I
I
I
I,,,,,,,,,
I
I
I
I,,,,,,,,,,
I
I
I,
I,,,,,,,,,,,,___________________________________________________________________________________________________________________ 1

Environmen Commands

Q Work Session(s)

Figure 1: A Self-evolving Process-driven Software Development Environment

3



foreach file ($argv)
set lock = 'rlog - L $file'
if ({ rcsdiff $file >& / dev / null }) then

echo $file is same
else

echo $file ss different
if ( $lock == $file ) then

echo $file is locked
else

mv $file $file.cp
co -1 $file
mv $file.cp $file
ci -u -m II II $file
echo $file checked-in.

endif
endif

end

Figure 2: Example process fragment: forced-cheek-in

renames the user's version of the file. It then checks out the shared version of the file and locks the
shared copy. Finally, it moves the changed copy which it had saved in a temporary location, to be
used as the latest version of the file.

Our goal is to provide a mechanism that can provide automated support in creating such a process
fragment by generalizing the process history.

1.2 Background

The idea of synthesizing a program from a trace of computations is quite old and dates back to the
Autoprogrammer system developed by Biermann and Krishnaswamy [2]. The Autoprogrammer
system was based on the idea of dividing the responsibility of program construction by assigning
to a human the task of furnishing a trace of an algorithm on example problems and the system the
task of generating code that is consistent with the examples.

In the past decade, the idea of reusing the trace of a problem solving activity has been successfully
applied by researchers in program transformation, design, and plan-based problem solving in a
variety of domains (e.g., [1, 3, 11, 13, 18, 19, 22, 26]). Instead of generalizing a problem solving
history into a program, most of these systems (with the exception of [13]) simply record the history
of a problem-solving activity. This history is then replayed to increase the efficiency of the problem
solving process in a new, analogous context. Some of the earlier replay systems (e.g., [26, 18])
do not explicitly represent the goals of each step of the process; in such systems it is difficult to
generalize a process script which can be automatically replayed in other situations and typically
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such systems are used for design iteration. More recent systems (e.g., [1, 13, 3]) explicitly represent
the goals of the problem-solving steps, and can obtain generalizations of a particular design history
which can be used to solve several analogous problems.

In the process programming domain, the idea of viewing process programming as a mapping be­
tween explicitly represented goals and a sequence of environment actions was first proposed by Huff
and Lesser [12]. Their system, GRAPPLE, uses the planning paradigm for planning (constructing
a sequence of actions to achieve a given goal) as well as plan recognition (inferring a plan and its
goal from a sequence of actions). The domain knowledge in GRAPPLE consists of a library of
pre-defined higher level planning operators (e.g., build a system) which can be used to map the
goal of building a system to a sequence of primitive operations (e.g., unit-cheek-in, check-out). A
similar plan-based program synthesis approach is described by Bhansali and Harandi to synthesize
UNIX shell scripts from user defined goals [1, 10].

However, for the same reasons that it is difficult to a priori specify algorithms for process programs,
it is difficult to build a plan library with useful, pre-defined process plans. The approach we propose
seeks to learn these plans by observing and analyzing a process history against a user-defined goal.

1.3 Explanation Based Generalization

Our approach is based on a well known learning technique called explanation-based generalization
(EBG). Explanation based generalization is a technique to formulate a general concept on the
basis of a specific training example. Our approach was inspired by the application of EBG to the
problem of learning from untutored observation (e.g., [21, 27]). Such a learning situation enables
a programmer to work unencumbered without having to articulate the rationale for each step of
a process; the system unobtrusively observes the programmer's actions and learns by creating
an explanation of how those actions satisfy a given goal. Of the several systems that learn from
un tutored observation, the one most similar to our work is the ARMS system developed by Segre [21]
which learns sequences of manipulator motions of a robot arm. The algorithm described in this
paper can be considered an adaptation of the algorithm used in ARMS, extended to handle a finer
notion of operator (with conditional effects and different kinds of preconditions).

We first introduce some terminology from the planning and explanation-based learning literature.
Objects are entities which may have certain properties and relations to other objects. A specification
of all the objects and their properties and relations is termed a world state. There is a finite set of
operators that map one world state into another by creating or deleting objects or modifying their
properties or relations. An operator is specified by specifying the conditions under which it can be
applied and its effects. A problem is specified by specifying a partial world state, called the goal
state and another partial state called the initial state. A plan is a partially ordered set of operators,
linked causally, and a solution to a problem is a plan, that transforms the initial problem state into
a goal state.

The input to the EBG algorithm is the following:

• Goal: A specification of the goal state.
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• Initial State: A specification of the initial state of objects and their properties.

• Domain theory: A set of inference rules and problem-solving operators that can be used to
form a plan for achieving the goal state.

• (Optional) Observed operator/state sequence: A sequence of operator applications/ states
which achieves an instance of the goal.

Given these four inputs, the task of the EBG algorithm is to determine a plan and a generalization
of the plan that achieves the goal in a general way. The EBG algorithm consists of two stages:

Explain: If there is no observed operator input, construct a plan which achieves the goal state.
Otherwise, build a causal explanation of how the operators in the input sequence achieve the goal.

Generalize: Determine a set of conditions under which the explanation holds. This is typically
done by regressing the goal through the explanation structure using a modified version of the goal­
regression algorithm described by Waldinger [25] and Nilsson [20]. The conjunction of the resulting
expressions determine the conditions under which the generalized plan can be used to achieve the
goal. See [7], [17], and [21] for further details.

These two steps can be summarized as follows: The first step creates an explanation structure that
determines the relevant steps in a sequence of operations that are necessary to achieve the goal.
The second step analyses this explanation to determine the constraints that are sufficient for this
explanation to apply in general.

Since a process history may be defined as a sequence of low-level activities, one could use the EBG
approach to create an explanation of how a subsequence of an arbitrary sequence of these activities
achieves a specific goal, and then generalize this explanation to create a general process fragment
which would be applicable in several different situations.

In the rest of this paper we will first define a formal model of a process driven environment. The
model is not meant to be definitive - it is used to delineate the scope of our work and make the as­
sumptions and limitations explicit. We then describe our algorithm as an extension of explanation­
based generalization and illustrate the application of the algorithm on the forced-cheek-in ex­
ample. Subsequently we discuss an empirical study that was performed to investigate the utility
and generality of our approach. Finally, we conclude with a summary of the main contributions
and suggestions for future work in this direction.

2 Process model

Although our approach is independent of any particular process-driven environment, we need a
concrete environment in which to assess the utility of the approach. In order to make the examples
accessible to a wider audience we have chosen the UNIX programming environment with commonly
available version control systems such as ReS. The relevant objects in this domain are the generic
objects in the UNIX environment including files, directories, strings, users, and the file-system.
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The file system is a rooted directed acyclic graph of files. Each file in a file system can have a finite
number of versions. The process programs are shell scripts.

A condition is a formula in first-order logic and can be in one of the following forms:

• a(x)

• OR (at (x), a2(x))

• 'txa(x)

where a is a signed or unsigned predicate over the arguments X. All free variables in a condition
are existentially quantified.

A state is represented as a set of (conjunctive) conditions specifying the properties and relationships
between objects.

A primitive action is an operation on state s, to yield state si+t.

Definition 2.1 (Primitive Action) A primitive action, A, is represented as a tuple
< Ps,Ph,F,O,E,CE > where:

• Ps , Ph (soft and hard preconditions, respectively) and F (filters) are conditions that must be
true for A to be applicable in a given state, S. The difference between Ps , Ph, and F is as
follows: if P, (or Ph) is not true in S, then one may first create a sub-plan that transforms
S into a state Sf such that P, (or Ph) is true in Sf and then execute A, whereas if F is not
true then A must be rejected, and an alternative action or plan must be found. If P, cannot
be satisfied, even then A can be applied (possibly with some undesirable side-effects 2) , while
if Ph cannot be satisfied, A cannot be applied.

· ° is an operation with 0 or more arguments.

• E (effect) is a set of conditions which are true in the state resulting from the application of
A in S.

• CE (conditional effect) is a condition-effect pair < Cc, C; >, such that if the condition C; is
true in state S, then the effect Ce will be true in the state resulting from the application of A.

An example definition of such a primitive action is the following:

(defaction (copy ?f1 ?f2 ?p1 ?p2)
:prehard (AND (= (contents ?p1 ?f1 1) ?k1)

(file ?f1 ?p1)

2 For example, the operation move(f 1, h) can be applied even though f 2 exists, but has the harmful side-effect of overwriting
f2.
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(readable ?f1 ?p1)
(readable ?p1)
(writable ?p2))

:presoft (not (file ?f2 ?p2))
:effect (AND (= (contents ?p2 ?f2 1) ?k1)

(file ?f2 ?p2)
(readable ?f2 ?p2))

:ceffect «(writable ?f1 ?p1)
(writable ?f2 ?p2))))

The above action copies a file? f1 in pool ?p1 to file? f2 in pool ?p2. The hard preconditions for
the action are that the file? f1 exists and is readable, the pool ?p1 is readable, and the pool ?p2
is writable. The soft precondition is that there does not already exist a file? f2 in pool ?p2. The
effect of the action is to create a file? f2 in ?p2 which is readable and has the same contents as the
file fl. In addition, if file ?fl is writable, then so is file ?f2.

We make the simplifying assumption that a primitive action does not change the truth value of
a predicate unless explicitly stated in the effects of the primitive action (this is the well-known
STRIPS assumption [8]). In addition, we assume that a primitive action is instantaneous and there
are no other agents in the world. This allows us to model time as a sequence of discrete points,
where each point corresponds to a distinct state.

Definition 2.2 (Process History) A Process History is a total order

< {Ob02,···,On},~>

where each O; is an operation w~th non-variable arguments and ~ is the "temporally-precedes"
relation.

Definition 2.3 (Process Fragment) A Process Fragment, P, is a tuple < P,O,G >, where:

• P (pre-condition) is a set of conditions which must be true in a state for P to be applicable.

• 0 is a partial order:
< {Ol,02,···,On},~>

where each Oi is an operation (with variable or non-variable arguments).

• G (Goal) is a set of conditions that are true in the state resulting from the application of any
total ordering of the operations comprising 0.

Definition 2.4 (Domain Theory) A domain theory, 1) is specified as a tuple < N,P,F,A >,
where:

• N is a set of Objects.
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• P is a set of predicates on N.

• F is a set of functions which take arguments from N.

• A is a set of primitive actions.

The generalization problem that we are interested in, can now be summarized as follows:

Given:

• A domain theory.

• A goal-state (or post-condition) and an initial-state;

• An observed process history that is known to achieve the post-condition;

Determine:

• A process fragment that achieves the post-condition in a general way.

3 The modified EBG algorithm

The algorithm we use for generating a process fragment from a process history is an extension of
the general EBG algorithm mentioned earlier, and consists of two steps:

• Explanation construction: Construct an explanation to show how the process history achieves
the given post-conditions.

• Generalization: Generalize the explanation to determine a process fragment and a set of
conditions that are sufficient for the process fragment to achieve a generalized post-condition.

We introduce some notation necessary to describe the explanation construction process.

Definition 3.1 (Satisfies) Satisfies(a, 13) is defined recursively as follows:

• satisfies(a , a)

• satisjies(T/x a(x), [a(x)l~=c)

• satisjies(a, 0 R(13},132)) if satisfies(a, 131) or satisfies(a , 132)

where x denotes a set of variables and [a(x)]x=c denotes a formula in which all occurrences of
variables x have been replaced by constants C. Analogously, we define denies(a, 13):
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Definition 3.2 (Denies) Denies(a, (3) is defined recursively as follows:

• denies(" ...,,)

• denies(...",,)

• denies(ifx a(x), [...,a(x)]x=c)

• denies(ifx ...,a(x), [a(x)]x=c)

• denies~...,a(x)]x=c, \;fX a(x))

• denies~a(x)]x=c' \;fX ...,a(x))

• denies(a, OR(f31, (32)) if deniesia, fh) and denies/a, (32)

Here, represents an arbitrary condition. We use a; to denote the substitution of all free variables
in the effects and preconditions of the primitive action Ai. Similarly, we use E; to denote the
effects, C E; to denote the conditional effects and PCi to denote the filter and hard preconditions
of a primitive action Ai.

We will describe the explanation construction algorithm using the notion of supported effects and
supported preconditions of a primitive action. Informally, if an effect is supported then it can be
used to infer predicates that form the preconditions of subsequent primitive actions in a process
history. A precondition is supported if it can be inferred from the effects of a set of preceding
primitive actions. We assume that each process history begins with a primitive action start which
has no preconditions and whose effect is the INITIAL-STATE and ends with a primitive action end
which has no effect, and whose precondition is the GOAL-STATE.

Definition 3.3 (Supported Effect) E; is supported if all PCi 's are supported.

Definition 3.4 (Supported Conditional effect) Let < Ce , C, >E CEi. Ce is supported if all
PCi 's are supported and Ce is supported.

The definition of supported preconditions is based on the modal truth criterion in [4].

Definition 3.5 (Supported Precondition) Let C E PCi. C is supported if:
(1) there exists E E Ej, Aj f- Ai, Ej is supported, E(1'j satisfies C(1'i,

OR
there exists < Ce , C; >E CEj, Aj f- Ai, C; is supported, Ce(1'j satisfies C(1'i, and
(2) there does not exist E', Ek, such that Aj f- Ak f- Ai, E' E Ek, Ek is supported, and E'(1'k
denies C (1'i, and
(3) there does not exist < Ge, C; >, GEk such that < Ce, C; >E GEk, Aj f- Ak f- Ai, C, is
supported, and Ce(1'k denies Cai,
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A clobbered precondition, which refers to a precondition known to be false in a state, is defined
analogously as above (substituting clobbered for supported, denies for satisfies, and satisfies for
denies). A precondition that is neither supported or clobbered is said to be unsupported.

Definition 3.6 (Conditionally supported) Let E E Ei. E is conditionally supported if none
of the PCi 's are clobbered and there is atleast one C E PCi that is unsupported. C is called a
supporting-condition of E.

Let < Ce , C; >E CEi. Ce is conditionally supported if none of the PCi'S or C; is clobbered, and
at least one of C E PCi or C; is unsupported.

The explanation construction algorithm can now be simply described as determining a set of sub­
stitutions of the free variables in the primitive actions belonging to the process history, such that
each condition in the goal-state is supported. The network of all the supporting links used in
determining the set of supports for the goal conditions constitutes an explanation. If there is no
explanation in which none of the conditions in the goal-state is clobbered, then the explanation
phase fails. (Thus, an explanation is considered valid even if some of the goal conditions are not
supported, as long as none of them is clobbered.) Otherwise, the explanation with the maximum
number of supported goals is selected and is generalized in the second stage of the algorithm.

The generalization algorithm begins with generalizing the postconditions of the problem (replacing
all the constants by variables) as far as possible while ensuring the correctness of the supporting
links. This algorithm is similar to the classical EBG generalization and consists of matching an
expression with the effect of an operator to yield a set of substitutions; the substitution which
preserves the validity of the explanation is then applied to the preconditions of the rule to yield
a new set of regressed expressions. Preconditions that are not supported are simply added to the
regressed expression (with the substitutions applied to them). The set of regressed expressions left
at the end become the preconditions for the process fragment.

Next, starting with the generalized preconditions, the algorithm rederives the explanation to obtain
the generalized goals. See [7] for an explanation of why this step is necessary. Intuitively, it is needed
to ensure that we do not overgeneralize the postconditions of the the problem.

Finally, the EBG algorithm derives the ordering constraints between primitive actions. We will say
that a primitive action Ai supports another primitive action A i using E; if E; is an effect/conditional­
effect of Ai that supports a precondition of Aj. The ordering constraints are determined as follows:

(1) If Ai supports Aj then Ai <- Aj.

(2) If Ai supports Aj using Ei' and there exists E' E Ek such that E'er denies E; for some substitu­
tion o , then either Ak <- Ai or Aj <- Ak. (In planning terminology, the interval between the states
just after Ai and just before Aj is called a protection interval for Ei. E' is a conflicting action and
the conflict is resolved by placing E' either before or after the protection interval.)

Once these constraints are determined, it can be used to determine a generalized process fragment
in the form of a shell script.
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4 The forced-cheek-in Example Revisited

We now illustrate the application of the modified EBG algorithm to generate a process fragment for
the forced-cheek-in example given in section 1.1. We first describe the relevant domain theory,
'D.

N consists of a set of symbols denoting users, components of the File System, the set of integers,
and the set of arbitrary text strings.

P contains the following predicates:

!ile(f,p) which is true iff ! is a leaf node and p is an internal node and there is an edge from p
to ! in the File System.

locked(u, !,Pa,P, n) where u is a user,! is a leaf node, Pa, and P are internal nodes, n is an integer,
and the nth version of ! in Pa can be modified only by user u,

F contains the following functions:

contentsip.], m) whose arguments are an internal node, P, of the File System, a leaf node, i, of
the file system and an integer, m, and whose output is a text string. If! does not exist under
P, contentsip.]; m) returns a special symbol nil.

lasLversion(p, j) which returns the last version of the leaf node! in p.

We assume the availability of an '=' predicate for arbitrary text strings. We also assume that all
versions of a file can be put into one total ordering according to their creation time.

The set, A, of primitive actions used in our example consist of move, lock, check-in, and check-out
(defined in Appendix 1).

4.1 The example problem

The initial state and the goal state (or postcondition) of our example problem is:

GOAL-STATE:

1. contents( PI, FI , 1) = contents(Pa, FI , M + 1)

2. M + 1 = last-version(r; FI )

3. contents(PI, FI , 1) = C

INITIAL-STATE:
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GOAL:

1. contents(PI,FI, 1) = contents(p., F I, M+I)
2. M+! = Last-Version(P., F I)
3. contents(PI, F I> 1) = C

S5: S4:

4. contents(PI, FI, 1) = contents(p., FI, ?x+I) 8. file(Fl.CP PI)
5. ?x+I = Last-Version(Ps.FI) 9. file(FI, PI)

I CHECK-IN(UI' FI, r, PI) I
10. contents(pI> F 1> 1) = ?y

I I6. Iocked(UI' FI, p., PI' ?x) MOVE(Fl.CP FI' PI)

7. file(FI, PI) 11. contents(Pl, F1.CP 1) =?y
12. file(F1.cp PI)

S3:
13.1ocked(U1>FI>p., PI, M)

SI:

I I
27. file(Fl.CP PI)

LOCK(UI' FI' p., PI, M) 28. ...,fI1e(FI,PI)
29. contents(PI, F1.cp 1) =

?

14. 'v'?u-Jocked(?u,FI'Ps'PI, M) I MOVE(FI, Fl.CP PI) I
16. contents (Pl , FI, 1) = contents(ps, FI, M)

15. OR
30. contents(PI, F I, 1) =?z

17. -Jile(FI 'pI) 31. file(FI' PI)

S2:
19. contents(Pi> F1> 1) = contents (P., F1> M)
20. file(F1> PI)

I CHECK-OUT(UI> FI>p., PI,M) I
22. -Jile(FI,PI)

21. OR
23. contentsd'], F1> 1) = contents(p., F1> ?n)

25. -Jile(FI,PI)
24. OR

26. ?n,;;M

32 INfTIAL-STA1E:

Figure 3: The process history of the training example. 81-85 are the states resulting after each primitive
action in the history.
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Figure 4: An example showing precondition-clobbering. Precondition 15 which represents a disjunction can
be satisfied either by 16 or 17. 17 has a support from effect 28. However, this gets clobbered by effect 20 of
the CHECK-OUT action, which lies in the interval from MOVE(Fl.CP, Fl, PI) to LOCK(Ul, Fl, Ps, r; M).
The correct explanation is through 16 which is supported by effect 19 of CHECK-OUT.
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Figure 5: The complete explanation structure for the example. The numbers in the figure refer to conditions
in figure 2
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1. contents( PI , FI , 1) = C

Figure 3 shows the process history containing the 5 primitive actions and the initial and goal
states. Since each primitive action in the initial process history is a ground action (i.e., having
non-variable) arguments, the substitution CTi is nil for most primitive actions. The substitution for
the remaining variables is obtained by determining the most specific substitution needed to satisfy
the preconditions of a supported primitive action. For example, the substitution
{ ?x = M} is used to form a support from effect 5 to the goal condition M +1 = last-version(Ps , FI ).

The example also illustrates an instance of precondition clobbering shown in figure 4. The complete
explanation structure generated after the explanation stage is shown in figure 5. There are two
preconditions that are unsupported (condition 14 and 31). Whenever the system is unable to
generate a complete proof, it queries the user for the truth value of conditions that would enable
it to complete the proof. Thus, in the above explanation, the system generates the following two
queries during the proof:

• Is the following condition true in the initial state:
'V ?u ..,(locked(?u, Fb Ps, PI, M)?

• Is the following condition true in the initial state:
(file H,Pd?

If the user answers yes to the above queries, the system marks them as assumptions and continues
with the proof. Note that because of this interactive nature of the proof generation, it is not
necessary for a user to give a complete specification of the initial state; the missing conditions are
automatically identified and verified during the proof. Thus, in the above program even when no
initial conditions are specified, the system can generate the initial state that would explain the goal
(see Appendix 2).

Next, the explanation is generalized using goal regression. The generalized preconditions left at
the end of this step are (all lowercase arguments denote variables):

• 'V u ..,(locked(u,fI,ps,pbx)

• file(fI, PI)

• contents(pI,fI,1) = c

The free variables in the above preconditions form the parameters for the generalized process
fragment.

Finally, the system generates the ordering constraints between the primitive arguments. The final
process fragment < P,0, g > that is generated for this example is:

• P = 'Vu.., (locked(u,fbps,pbx) /\ file(fI,pI) /\ contents(PbfI, 1) = c
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Al = MOVE(II,h,pI,pd
A2 = CHECK-OUT(uI,II,ps,pI,x)
A3 = LOCK(uI, II ,Ps, PI, x)
A4 = MOVE(h, !I,PI,pd }
As = CHECK-IN(UI, lI,ps,pd
.- = {(AI, A2)(A2 , A3)(A2 , A4)(A3 , A s)(A4 , As)}

• G = contentstpj , 1I,1) = contentstpe, lI,x+1) 1\

x-l-I = last-versionlpe, II) 1\

contentstpj, 1I,1) = c

The system then prompts the user for an annotation for the processs program in terms of the free
variables in the goal and initial state:

System: Name of the process program:

User: forced-cheek-in

System: Give an annotation for the process program in terms of the variables: h, PI, 12, Ps·

User: (Given a file, II in a pool PI, make the last version of II in Ps equal to II, without changing
the contents of II in Pl. Use h as a temporary file name.)

When this generalized process program is to be reused, the system displays the annotation as­
sociated with the process program and asks the user to provide values for instantiating the free
variables in the annotation. It then instantiates the process program with the given values and
executes the process program.

5 Empirical Validation

We have implemented the above algorithm fully and have used it to successfully synthesize several
shell scripts which gives us confidence in the robustness of the implementation. The variety of shell
scripts that we could synthesize also indicated the potential for the practicality of our approach. Our
next goal was to obtain evidence to empirically assess the practicality of our approach. Towards
this end we have conducted some experiments using the UNIX computing environment. Even
though the UNIX environment is limited in its support for process programming, it provides a
Shell language (e.g., csh), that can be used to write process programs (shell scripts or simply
scripts).

The ideal technique for evaluating our approach would be: (1) build a system that records users'
actions in the UNIX environment and guides them in building process programs, and (2) monitor
the system's effectiveness in evolving a set of process programs through actual usage. However, such
an experiment is expensive and could be be in vain if a negative result is obtained. An alternative
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approach is to evaluate existing Shell scripts that people have written and retrospectively evaluate
the benefits of our approach. Such an experiment can be used to justify the expense involved in
conducting the former experiment.

We have conducted the second experiment with three questions in mind:

• How useful are the process fragments/shell scripts that could be generated by our system in
the context of an overall process model?

• How many of such process programs could have been synthesized from a passively acquired
history of user actions?

• What are the benefits of using our approach versus the current approach, i.e. the user foresees
the repeated need for a particular process at some point and manually writes and debugs a
script for it?

The first question helps us in obtaining a quantitative justification for using our approach - if there
are very few useful shell scripts that can be generated within our framework then there would be
little point in continuing with this approach. The second question helps us in determining the
technical feasibility of generating process fragments using our approach. As a side-effect, it also
points out the limitations of the approach and directions for further work in order to overcome
these technical limitations. The third experiment helps us in obtaining qualitative justification for
(or against) using the approach. For example, if the shell scripts generated using our generator are
qualitatively superior to those obtained using current techniques, then one might still be justified
in pursuing this approach. Note that we expect the answers for the first two questions to be
more favorable for a software development environment that has specifically been designed to be
process-driven.

5.1 Quantitative Justification for synthesizing Shell Scripts

Figure 6 shows the space of all process fragments comprising the software engineering activity.
From a process-oriented perspective, the processes can be grouped into two broad categories ­
those that can be represented as a machine-executable program in some computational formalism
(e.g., plans, rules, or programs in some process-oriented language) and those that cannot (e.g.,
processes that consist primarily of human interaction). The boundary between these two kinds of
processes is fluid and we expect that as process-driven software environments mature, the fraction
of machine-executable software engineering processes will increase. The goal of our first experiment
was to estimate what fraction of the executable process fragments could be synthesized using our
approach.

For the experiment we analyzed 199 Shell scripts collected from two experienced UNIX users. We
identified three interesting categories into which the various shell scripts could be placed from a
process-modeling perspective:

1. Process programs: These are scripts that can be specified using the primitives available in the
domain theory (section 2).
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Machine non-executable
Process Fragments

Machine
Executable
Process Fragments

P: Programs

PP: Process Programs

A: Aliases

Figure 6: Space of Software Process Fragments

2. Programs: These are scripts that cannot be specified using the primitives available in the
domain theory.

3. Aliases: These are simple customization of tool invocations and could be either process
programs or programs. The distinguishing feature of aliases is that they consist of just one
or two commands that get called with the same set of arguments.

Based on these definitions, the classification of a script as a process program or a program depends
on the knowledge encoded in a domain theory. Increasing the amount of knowledge leads to a corre­
sponding increase in the number of scripts that can be classified as process programs. The following
example should make this point clear: Suppose there is a file, call it proj ect-members-address-file,
in which the names, e-mail addresses, and phone numbers of members of a software project are
maintained in a specific format. One may write a shell script that, given a name, extracts the tele­
phone number(s) of all persons with the given name from the project-members-address-file. If
the proj ect-members-address-file is modeled as part of the domain theory with a description of
how the file is formatted in terms of records and the fields for each record, together with operators
that can extract particular fields from the record (e.g., the awk operator in UNIX) then the above
script would be a process program. Otherwise, it would be considered a program.

Clearly, scripts that are programs cannot be generalized by our approach and so we discounted
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them as beyond the scope of our work. The other two categories - process programs and aliases ­
were considered potential candidates to benefit from the approach. We found that about 80% of all
scripts belonged to categories 1 or 3. This gives us a sound reason to continue with the experiment
based on shell script usage.

A second, perhaps more important observation, was that shell scripts that were classified as process
programs were those that are potentially reusable in many different contexts and by many different
users. On the other hand, shell scripts that were classified as programs were those that had been
customized to perform a very specific task. Such scripts are usually of interest only to a small set of
individuals (often just the writer of the script) and/or are applicable within a very narrow context.
This addresses one of the potential limitations of the approach - the difficulty of identifying and
representing the relevant domain theory for the EBG algorithm. Our observation suggests that a
large number of the most reusable scripts can be generated by a relatively small domain theory.

5.2 Applicability and Generality of approach

For the second part of the experiment, we analyzed the scripts belonging to categories 1 and 3.
We found that 93% of the analyzed scripts could have been synthesized based on a history of user
actions. Appendix 2 shows a representative sample of some of these process programs.

The scripts that could not be generalized were of three kinds: (1) scripts whose goals could not
be expressed within our language, i.e., as a conjunct of simple conditions; (2) scripts that involved
the if-then-else construct in the script; and (3) scripts that contained loops. Scripts that contained
if-then-else require the user to give two or more examples of process histories that differ in the
condition of the if-then-else construct. Since one of our goals was to unobtrusively acquire pro­
cess fragments by trying to explain and generalize what a user does in the normal course of his
work, rather than ask him to provide specific examples, we do not consider such scripts in our
approach. Moreover, such scripts can sometimes be represented as two different scripts having
different preconditions for their applicability - therefore this is not a serious limitation.

On the other hand, scripts containing loops are quite useful. The generalization mechanism for
such scripts is quite different from our approach. Instead of deductive reasoning (employed in
explanation-based generalization) the synthesis of such scripts requires induction. This kind of
generalization is performed by the EAGER [6] system. We plan to extend our algorithm by incor­
porating loop generalizations.

5.3 Qualitative Justification for synthesizing Shell Scripts

The main benefit that we perceive in using an automated approach like ours is that it reduces errors
and the consequent effort in debugging and testing shell scripts that are written manually.P Since
our experiment was based on already synthesized (and presumed correct) shell scripts there was
no way of validating this claim directly. However, we could indirectly obtain evidence to support
this claim by comparing each shell script with a corresponding script that was synthesized by our
system.

3 The need for testing is not entirely eliminated since the original specification provided by a user may not be correct and
hence the user may still need to verify that the script's behavior agrees with the desired requirements.
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We did the comparison based on two features: pre-condition determination and reusability.

One of the features of our appraoch is that it automatically enables one to determine pre-conditions
for the applicability of the scripts. This ensures that the script is not inadvertently used in a wrong
context. We found that about 27% of the sample scripts (belonging to categories 1 and 3) did not
have appropriate pre-conditions defined. This implies that users of such scripts have to be quite
careful - they may have undesirable side-effects, or they may not be utilized in situations were a
small action to fulfill a pre-condition could have made the script applicable. These scripts could
have been improved (from a pre-conditions viewpoint) had our approach been used to synthesize
them.

Scripts that are written by people sometimes have limited reusability because they are not ade­
quately parameterized. For example, names of particular files are hard-wired in the script. Our
approach improves the reusability of scripts by providing the maximal possible generalization (of
constants appearing in a process history). Of course, it is possible to over-generalize and it is debat­
able whether people actually require such generalizations. An argument against over-generalization
is that it is cumbersome to have to instantiate each parameter before the script can be used. This
is particularly true when the script is going to be used only within a very narrow context. However,
the benefit of our approach is that the system automatically identifies the maximal generalization;
it is then quite easy to customize the script for individual users (e.g., by providing default val­
ues for certain parameters or hard-wiring them). We found that many of the scripts we analyzed
could have been made more general. However, we cannot provide any quantitative results without
performing a cost-benefit analysis of such generalizations based on actual usage.

There are other routine automation benefits which we envisage from our approach - automatically
pre-pending and post-pending history sequences with fixed templates, renaming files, cataloging
scripts, etc. The real benefit of such aspects of our approach is user dependent. In some cases it
might make the difference between a user using sripts versus not using them, in other cases it may
not matter. A systematic cost-benefit analysis of such factors requires actual usage experiments
which we leave for future work.

6 Summary and Future Work

In this work we have addressed the issue of evolution of process-driven software development envi­
ronments. In our approach, the evolution is supported by not requiring an a priori specification of
all possible process fragments applicable within the environment. Instead, the environment mon­
itors users' activities and if a situation arises, where a sequence of activities may potentially be
useful as a process fragment, the environment helps the user in generalizing the history sequence
into a process fragment. The environment, therefore, helps in its own evolution. This approach
is based on the intuition that process fragments are easier to describe in hindsight rather than by
foresight. We have described an adaptation of the well-known explanation based learning algo­
rithm to synthesize a process fragment from a process history. We have shown the generality and
potential utility of this approach through empirical studies of shell scripts written for the UNIX
programming environment.

The approach has certain limitations. Some of these require minor modifications whereas others
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are open issues indicating directions for future work. In our work, we have focused on how useful
process fragmen ts can be acquired to build a process repository. An issue that we have not addressed
is how to organise and retrieve the generalized process fragments in the process repository. One
technique is to use higher-level process abstractions to organize the process fragments [16]. We
believe that in a complete process-driven environment, higher level process model definitions will
be available within the environment for such purposes. Moreoever, most of the process programs
that are acquired using our approach will be specific to particular users and would reside in their
private repositories. We believe that the use of meaningful, user-specified names and annotations
would largely be adequate for such usage.

In order to make the system practical a user-friendly interface needs to be built. The minimal
requirement for an interface would be a front-end that can translate a user's actions into the
internal notation used in our process model. Additional capabilities of the interface would be to
assist a user in formulating the goals of a process program formally. Rudimentary capabilities
that can be currently implemented include providing a list of relevant predicates and functions
to a user based on the most recent history of operations performed by the user. More advanced
capabilities would include building a front end to translate a user's goal expressed in restricted,
natural language into the logical notation understood by the system.

Our system may be viewed as a tool that can assist a user in verifying the correctness and in
generalizing a sequence of processing steps. It is most likely to be useful for mechanizing frequently
performed, general processes. The approach would not be very practical for acquiring process
fragments that require detailed application specific knowledge, e.g., processes specific to require­
ments elicitation or design construction. Other techniques (based, for example, on an IBIS style
design rationale representation [5]) might be more appropriate for such processes. We believe that
eventually a variety of different tools, based on different techniques and representations, would be
needed to provide automated support for the execution of processes spanning the entire software
development lifecycle. Our approach provides one tool in such a repertoire.

A UNIX Commands Modeled in the Environment

The following are the (28) UNIX commands that we modeled in order to perform our empirical
validation. Each command is preceded by a comment paraphrasing the effects of the command.

Move.Move a file ?fl in pool ?pl to file ?f2 in pool ?p2.

(defaction (move ?f1 ?f2 ?p1 ?p2)
:prehard (AID (= (contents ?p1 ?f1 1) ?k1)

(writable ?p2)
(readable ?f1 ?p)
(writable ?f1 ?p)
(file ?f1 ?p1»
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:presoft (NOT (file ?f2 ?p2»
:effect (AND (NOT (file ?f1 ?p1»

(= (contents 1p 1f2 1) ?k1)
(file ?f2 ?p2)
(readable ?f2 ?p2)
(writable ?f2 1p2»)

Copy. Copy a file ?fl in pool ?pl to ?f2 in pool ?p2.

(defaction (copy 1f1 ?f2 1p1 1p2)
:prehard (AND (= (contents 1p1 1f1 1) 1k1)

(file 1f1 1p1)
(readable 1f1 ?p1)
(readable 1p1)
(writable ?p2»

:presoft (NOT (file ?f2 ?p2»
:effect (AND (= (contents ?p2 ?f2 1) ?k1)

(file ?f2 ?p2)
(readable ?f2 ?p2»

:ceffect «(writable ?f1 ?p1)
(writable ?f2 1p2»»

Lock.Lock the ?nth version of a file ?f in pool ?p. ?v is the user doing the lock and ?ps is the shared pool.

(defaction (lock ?v ?f ?ps ?p ?n)
:prehard (OR (= (contents ?p ?f 1) (contents ?ps ?f ?n»

(NOT (file ?f ?p»)
:filter (FORALL (?u) (NOT (locked ?u 1f ?ps 1n»)
:effect (locked 1v 1f 1ps 1p 1n)

)

Check-in. Check in a file ?f from pool ?Pfrom to pool ?Pto by user ?u.

(defaction (check-in ?u ?f ?p_from ?p_to)
:prehard (AND (file 1f 1p_from)

(locked 1u ?f ?p_to 1p_from ?m»
:ef1ect (AND (= (contents 1p_1rom 11 1) (contents 1p_to 11 (+ 1m 1»)

(= (+ 1m 1) (last-version ?p_to 1f»)
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Check-out. Check out the '?mth version of file 'If from pool ?Pfrom to pool ?Pto by user '?u.

(defaction (check-out 1u 1f 1p_from 1p_to 1m)
:prehard (AID (OR (lOT (file 1f 1p_to»

(= (contents 1p_to 1f 1) (contents 1p_from 1f 1n»)
(OR (lOT (file 1f 1p_to»

(leq 1n 1m»)
:effect (AID (file 1f 1p_to)

(= (contents 1p_to 1f 1)
(contents 1p_trom 1f 1m»)

)

Delete-file.Delete a file 'If in pool '?p.

(detaction (remove-file 1f 1p)
:prehard (AID (writable 1f 1p) (writable 1p»
:presoft (file 1f 1p)
:etfect (not (tile 1f 1p»)

Catenate. Catenate a file 'If in pool '?p to another file 'lout Note that we treat files and streams interchangeably
in our model. In particular, the standard output and standard input to/from the terminal are both treated as
files. This also allows us to handle the pipe mechanism ny, the redirection operators (», «) cleanly.

(detaction (cat 1f 1p 1out)
:prehard (AID (= (contents 1p 1f 1) 1k1)

(file 1f 1p)
(readable 1t 1p)
(readable 1p)
(writable 10ut 1p»

:effect (and (= (contents 1p 10ut 1) 1k1)
(tile 10ut 1p)
(readable 10ut 1p»)

Append.Append file 'If out 'lout in pool '?p. This models the> > operator in UNIX.
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(defaction (append 1f 1p 1out)
:prehard (AND (= (contents 1p 1f 1) 1k1)

(= (contents 1p 10ut 1) 1k2)
(file 1f 1p)
(readable 1f 1p)
(readable 1p)
(writable 10ut 1p»

:effect (and (= (contents 1p 10ut 1) (append 1k2 1k1»
(readable 10ut 1p»)

Change-directory. Change the current directory to ?p. Note, that we have not modeled the user explicitly
and it is assumed to be a constant. A more detailed model would explicitly model the user.

(defaction (change-directory 1p)
:prehard (readable 1p)
:effect (in-directory 1p»

Change-mode. Make a jile ?f in pool ?p writable. There are analogous commands to make the jile readable
and executable.

(defaction (change-mode+w 1f 1p)
:prehard (AND (file 1f 1p)

(writable 1p»
:effect (writable 1f 1p»

Change-mode. Make a file ?f in pool ?p non-writable. There are analogous commands to make the file
non-readable and non-executable.

(defaction (change-mode-w 1f 1p)
:prehard (AND (file 1f 1p)

(writable 1p»
:effect (not (writable 1f 1p»)

Echo. Copy ?arg into jile/stream ?out in pool ?p.
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(defaction (echo ?arg ?out ?p)
:prehard (writable ?out ?p)
:effect (= (contents ?p ?out 1) ?arg»

Expand.Make the contents of file 'lout equal to the contents of file 'If of pool '?p except that the Tabs are
replaced by spaces.

(defaction (expand ?f ?p ?out)
:prehard (AND (file ?f ?p)

(readable ?f ?p)
(= (contents ?p ?f 1) ?K»

:effect (= (contents ?p ?out 1) (substitute?k "TAB" " "»)

Latex.Produce the .dvi, .aux, .log and .bbl file for the latex file 'If in pool '?p. This command has two
conditional effects: (1) If the .bbl file already exists and contains the bbl information of 'If, then a cited .dvi
file is produced; (2) If the .aux file already exists and contains the aux information of 'If, a labelled .aux file
is produced.

(defaction (latex ?f ?p ?f-dvi ?f-aux ?f-log ?f-bbl)
:prehard (AND (file ?f ?p)

(writable ?p)
(readable ?f ?p)
(= (contents ?p ?f 1) ?K»

:effect (AND (= (contents ?p ?f-dvi 1) (latex-dvi-of ?K»
(= (contents ?p ?f-aux 1) (latex-aux-of ?K»
(= (contents ?p ?f-log 1) (latex-log-of ?K»
(file ?f-dvi ?p)
(file ?f-aux ?p)
(file ?f-log ?p»

:ceffect «(= (contents ?p ?f-bbl 1) (latex-bbl-of ?K»
(cited-dvi-file ?f-dvi»

«= (contents ?p ?f-aux 1) (latex-aux-of ?K»
(labelled-aux-file ?f-aux»»

Bibtex.Produce the .bbl file of 'If containing the bbl information of 'If's contents.

(defaction (bibtex ?f ?f-bbl ?p)
:prehard (AND (file ?f ?p)

(writable ?p)
(= (contents ?p ?f 1) ?K»

:effect (and (= (contents ?p ?f-bbl 1) (latex-bbl-of ?K»
(file ?f-bbl ?p»)
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Print. Print the contents of file 'If on printer '?printer.

(defaction (lp ?f ?p ?printer)
:prehard (AND (file ?f ?p) (readable ?f ?p) (= (contents ?p ?f 1) ?k»
:effect (printed ?printer ?k»

List-files.List the contents of pool '?p into file 'lout.

(defaction (Is ?p ?out)
:prehard (and (readable ?p)

(= (files-of ?p) ?file-list)
(in-directory ?d»

:effect (= (contents ?out ?d 1) ?file-list»

Create-directory. Create a subdirectory '?p of directory '?d.

(defaction (mkdir ?p ?d)
:prehard (writable ?d)
:effect (AND (pool ?p ?d) (writable ?p»
:ceffect «(readable ?d)

(readable ?p»
«executable ?d)
(executable ?p»

«not (readable ?d) )
(not (readable ?p»)

«not (executable ?d) )
(not (executable ?p»»)

Help.Produce the documentation for command '?operator into file 'lout.

(defaction (man ?operator ?out)
:prehard (file ?out ?p)
:effect (= (contents ?p ?out 1) (documentation ?operator»)

Remove the subdirectory ?p of ?d.
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(defaction (rmdir ?p ?d)
:prehard (and (pool ?p ?d) (writable ?d) (empty ?p»
:effect (not (pool ?p ?d»)

Spell. Check the spelling of the contents of file ?f in pool ?p. If the file is correctly spelt, set a flag ?out to
"F", otherwise set ?out to "T".

(defaction (spell ?f ?p ?out)
:prehard (and (file ?f ?p) (readable ?f»
:ceffect (((not (correctly-spelt ?f» (= ?out "F"»

((correctly-spelt ?f) (= ?out "Til»»

Substitute.Replace all occurrences of a regular expression ?patl by ?pat2 in file ?f of pool ?p.

(defaction (sed ?f ?p ?patl ?pat2)
:prehard (and (file ?f ?p)

(= (contents ?p ?f 1) ?k)
(writable ?f ?p»

:effect (= (contents ?p ?f 1) (substitute ?k ?pat1 ?pat2»)

Sort.Sort the contents of file ?f of pool t». into file ?out. The sorting order is implicit.

(defaction (sort ?f ?p ?out)
:prehard (and (file ?f ?p)

(readable ?f ?p)
(= (contents ?p ?f 1) ?k»

:effect (= (contents ?p ?out 1) (sorted ?k»)

Edit.Edit a file ?f in pool ?p. The effect of the edit action is simply to modify the file.

(defaction (edit ?f ?p)
:prehard (and (writable ?p)

(writable ?f ?p)
(= (contents ?f ?p 1) c»

:effect (and (not (= (contents ?f ?p 1) c»
(modified ?f ?p»)
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B Representative Sample of Processes

The following is a representative sample of the problems for which our algorithm was used to
synthesize process programs. Except the first program, the others were obtained from the collection
of shell scripts used for the empirical validation of our approach.

This is a variation of the forced-cheek-in example in the paper, where the initial conditions are omitted.
The necessary initial conditions are automatically identified during the explanation stage.

(definput forced-cheek-in
:initial-state nil
:history '«move F1 F2 P1 P1)

(check-out u1 f1 ps p1 m)
(lock u1 f1 ps p1 m)
(move F2 F1 P1 P1)
(check-in U1 F1 P1 Ps»

:goal ,«= (contents P1 F1 1) (contents Ps F1 (+ M 1»)
(= (contents P1 F1 1) C)
(= (+ m 1) (last-version ps f1»»

Generalized process program produced by the system:

Initial State:-

Program:-
(MOVE ?F1-37 ?F1-56 ?P1-23 ?P1-23)
(CHECK-OUT ?U-64 ?F1-37 ?PS-36 ?P1-23 ?M-34)
(LOCK ?U-52 ?F1-37 ?PS-36 ?P1-23 ?M-34)
(MOVE ?F1-56 ?F1-37 ?P1-23 ?P1-23)
(CHECK-IN ?U-52 ?F1-37 ?P1-23 ?PS-36)

Goal:-
(= (CONTENTS ?P1-23 ?F1-37 1) (CONTENTS ?PS-36 ?F1-37 (+ ?M-34 1»)
(= (CONTENTS ?P1-23 ?F1-37 1) ?C-33)
(= (+ ?M-34 1) (LAST-VERSION ?PS-36 ?F1-37»

Provided the following assumptions are valid:­
(WRITABLE ?P1-23)
(READABLE ?F1-37 ?P1-23)
(WRITABLE ?F1-37 ?P1-23)
(FILE ?F1-37 ?P1-23)
(FORALL (1U) (BOT (LOCKED 1U 1Fl-37 1PS-36 1M-34»)
(= (CONTENTS ?P1-23 ?F1-37 1) ?C-33)
[Soft] (NOT (FILE ?F1-56 ?p1-23»
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Use of a sequence of latex and bibiez commands to create a cited and labelled .dvi and .aux file. The system
detects the redundancy of one latex command.

(definput run-latex
:initial-state '«file myfile dir)

(= (contents dir myfile 1) K))
:history '«latex myfile dir myfile-dvi myfile-aux myfile-log myfile-bbl)

(latex myfile dir myfile-dvi myfile-aux myfile-log myfile-bbl)
(bibtex myfile myfile-bbl dir)
(latex myfile dir myfile-dvi myfile-aux myfile-log myfile-bbl))

:goal '«= (contents dir myfile-dvi 1) (latex-dvi-of K))
(= (contents dir myfile-aux 1) (latex-aux-of K))
(= (contents dir myfile-log 1) (latex-log-of K))
(= (contents dir myfile-bbl 1) (latex-bbl-of K))
(cited-dvi-file myfile-dvi)
(labelled-aux-file myfile-aux)))

Generalized process program produced by the system:

Initial State:-
(FILE ?F-128 ?DIR-100)
(= (COBTEITS ?DIR-100 ?F-128 1) ?K-103)

Program:-
(LATEX ?F-128 ?DIR-100 ?F-DVI-130 ?MYFILE-AUX-109 ?F-LOG-132 ?F-BBL-133)
(BIBTEX ?F-128 ?F-BBL-124 ?DIR-100)
(LATEX ?F-128 ?DIR-100 ?MYFILE-DVI-108 ?MYFILE-AUX-109 ?MYFILE-LOG-101 ?F-BBL-124)

Goal:-
(= (COBTEITS ?DIR-100 ?MYFILE-DVI-108 1) (LATEX-DVI-OF ?K-103))
(= (COITEITS ?DIR-100 ?MYFILE-AUX-109 1) (LATEX-AUX-OF ?K-103))
(= (COBTEITS ?DIR-100 ?MYFILE-LOG-101 1) (LATEX-LOG-OF ?K-103))
(= (COITEITS ?DIR-100 ?F-BBL-124 1) (LATEX-BBL-OF ?K-103))
(CITED-DVI-FILE ?MYFILE-DVI-108)
(LABELLED-AUX-FlLE ?MYFILE-AUX-109)

Provided the following assumptions are valid:­
(WRITABLE ?DIR-100)
(READABLE ?F-128 ?DIR-100)

Copy a non-readable file into another (readable) file. The file that is copied should remain non-readable at
the end. The system identifies an important condition that was implicit in the shell script: the directory
should be readable and writable.
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(definput copy-non-readable
:initial-state '«file foo dir)

(not (readable foo dir»
(= (contents dir foo 1) C»

:history '«cat foo dir out1)
(change-mode+r foo dir)
(cat foo dir out2)
(change-mode-r foo dir»

:goal ,«= (contents dir out2 1) C)
(not (readable foo dir»»

Generalized process program produced by the system:

Initial State:-
(FILE ?FOO-220 ?DIR-221)
(lOT (READABLE ?FOO-224 ?DIR-226»
(= (COITEITS ?DIR-221 ?FOO-220 1) ?C-219)

Program:-
(CHAIGE-MODE+R ?FOO-220 ?DIR-221)
(CAT ?FOO-220 ?DIR-221 ?OUT2-217)
(CHAIGE-MODE-R ?FOO-220 ?DIR-221)

Goal:-
(= (COITEITS ?DIR-221 ?OUT2-217 1) ?C-219)
(lOT (READABLE ?FOO-220 ?DIR-221»

Provided the following assumptions are valid:­
(WRITABLE ?DIR-221)
(READABLE ?DIR-221)
(WRITABLE ?OUT2-217 ?DIR-221)

Replace all TAB character by spaces, sort a file, and print it out. Note that the goal can be stated very
concisely using nested expressions.

(definput expand-and-print
:initial-state '«= (contents dir phones 1) p)

(readable out2 dir)
(readable out1 dir»

:history '«sort phones dir out1)
(expand out1 dir out2)
(cat out2 dir pr-phones)
(lp pr-phones dir printer»

:goal '«= (contents dir pr-phones 1) (substitute (sorted P) II TAB II II II»
(printed printer (SUbstitute (sorted P) "TAB" II II»)
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Generalized process program produced by the system:

Initial State:-
(= (CONTENTS ?DIR-235 ?PHONES-243 1) ?P-253)
(READABLE ?OUT2-237 ?DIR-235)
(READABLE ?OUT1-240 ?DIR-235)

Program:-
(SORT ?PHOIES-243 ?DIR-235 ?OUT1-240)
(EXPAND ?OUT1-240 ?DIR-235 ?OUT2-237)
(CAT ?OUT2-237 ?DIR-235 ?PR-PBOIES-234)
(LP ?PR-PHOIES-234 ?DIR-235 ?PRINTER-252)

Goal:-
(= (COITEllTS ?DIR-235 ?PR-PHOIES-234 1) (SUBSTITUTE (SORTED ?P-253) "TAB" " II»~

(PRINTED ?PRIITER-252 (SUBSTITUTE (SORTED ?P-253) "TAB" " ,,»

Provided the following assumptions are valid:­
(FILE ?PBOIES-243 ?DIR-235)
(READABLE ?PBOIES-243 ?DIR-235)
(FILE ?OUT1-240 ?DIR-235)
(FILE ?OUT2-237 ?DIR-235)
(READABLE ?DIR-235)
(WRITABLE ?PR-PHOIES-234 ?DIR-235)
(FILE ?PR-PHOIES-234)
(WRITABLE ?OUT1-240 ?DIR-235)
(WRITABLE ?OUT2-237 ?DIR-235)

Produce three named files that contain the .dvi, .aux and .log information of a latex file.

(definput copy-and-run-latex
:initial-state ,«= (contents dir a 1) K»
:history '«copy a lat-body dir dir)

(latex lat-body dir lat-dvi lat-aux lat-log lat-bbl)
(copy lat-dvi b dir dir)
(move lat-aux c dir dir)
(move lat-log d dir dir)
(remove-file lat-body dir»

:goal '«file b dir)
(= (contents dir b 1) (latex-dvi-of K»
(file c dir)
(= (contents dir c 1) (latex-aux-of K»
(file d dir)
(= (contents dir d 1) (latex-log-of K»
(not (file lat-body dir»»
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Generalized process program produced by the system:

Initial State:-
(= (CONTENTS ?DIR-320 ?Fl-297 1) ?K-318)

Program:-
(COpy ?Fl-297 ?LAT-BODY-319 ?Pl-299 ?DIR-320)
(LATEX ?LAT-BODY-319 ?DIR-320 ?Fl-287 ?Fl-284 ?Fl-281 ?F-BBL-296)
(COPY ?Fl-287 ?B-304 ?Pl-289 ?DIR-320)
(MOVE ?Fl-284 ?C-310 ?DIR-320 ?DIR-320)
(MOVE ?Fl-281 ?D-316 ?DIR-320 ?DIR-320)
(REMOVE-FILE ?LAT-BODY-319 ?DIR-320)

Goal:-
(FILE ?B-304 ?DIR-320)
(= (COBTENTS ?DIR-320 ?B-304 1) (LATEX-DVI-OF ?K-318»
(FILE ?C-310 ?DIR-320)
(= (COBTENTS ?DIR-320 ?C-310 1) (LATEX-AUX-OF ?K-318»
(FILE ?D-316 ?DIR-320)
(= (COBTEBTS ?DIR-320 ?D-316 1) (LATEX-LOG-OF ?K-318»
(BOT (FILE ?LAT-BODY-319 ?DIR-320»

Provided the following assumptions are valid:­
(FILE ?Fl-297 ?DIR-320)
(READABLE ?Fl-297 ?DIR-320)
(READABLE ?DIR-320)
(WRITABLE ?DIR-320)
(READABLE ?Fl-287 ?DIR-320)
(READABLE ?Fl-284 ?DIR-320)
(WRITABLE ?Fl-284 ?DIR-320)
(READABLE ?Fl-281 ?DIR-320)
(WRITABLE ?Fl-281 ?DIR-320)
(WRITABLE ?LAT-BODY-319 ?DIR-320)
[Soft] (NOT (FILE ?LAT-BODY-319 ?DIR-320»
[Soft] (NOT (FILE ?B-304 ?DIR-320»
[Soft] (BOT (FILE ?C-310 ?DIR-320»
[Soft] (BOT (FILE ?D-316 ?DIR-320»
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