(ﬁ, HEWLETT

PACKARD

The SMART Approach for Software
Process Engineering

Pankaj Garg, Peiwei Mi*, Thuan Pham
Walt Scacchi*, Gary Thunquest**
Software Technology Laboratory
HPL-93-93

October, 1993

process-centered Software engineering practices can be improved by explicitly
software engineering modeling and analyzing the processes used to develop,
environments, maintain, and evolve large-scale software systems. Such
software process models can be embedded within software engineering

environments to provide Process-Centered Software
Engineering Environments (PSEEs). The PSEEs can help
automate, enforce, and monitor aspects of the software process.

monitoring, software

architectures, process

life-cycle
In this paper we describe a methodology for software process
engineering — the process life-cycle — and an environment,
SMART, that supports it. SMART supports the modeling and
analysis of software processes and uses the process models to
generate a PSEE. SMART's process monitoring capabilities can
be used to provide feedback from the process execution to the
process model. SMART represents the integration of three
separately developed process mechanisms, and it uses two
modeling formalisms (object-oriented data representation and
imperative-style programming language) to bridge the gap
between process modeling, analysis, and execution. In this
manner, SMART demonstrates the meta-environment concept,
using a process modeling formalism as input specification to a
generator that produces PSEEs. Furthermore, SMART also
supports a team-oriented approach for process modeling,
analysis, and execution.

mﬁ?ﬁ?@éﬁé@%ﬁ %?%%&i‘f&n? ré)tlalifornia, Los Angeles, California, also issued report as IOM-93-16.
**Software Engineering Systems Division, Hewlett-Packard Company, Fort Collins, Colorado, also
issued report as SESD-93-06.

© Copyright Hewlett-Packard Company 1993

Contents

1 Introduction 1
2 Process Life-Cycle 2
3 SMART Architecture and Implementation 4
4 SMART Support for Process Engineering Life-Cycle 6
4.1 Modeling, Analysis and Simulation L., 6
4.1.1 Modeling L e e 6

4.1.2 Analysis L e e e e e e e 7

4.1.3 Simulation L. L e e e e e e e e e 7

4.2 Process Embedding L e 8
4.3 Process Execution and Monitoring L L Lo L. 9
44 Process Feedback L e 10

5 A Detailed Example Use 10
5.1 Task Analysisof the Process Model 15
5.2 Agent Analysis of the Process Model 16
5.3 Resource Analysisofthe Process 17

6 Related Work 21
7 Status and Future Work 23
8 Acknowledgments 23

9 References 23

1 Introduction

In a typical large-scale software engineering effort, a variety of activities are carried out by several
people over extended time periods. Process models, as representations of these activities and their
characteristics, provide the following benefits:

e With the use of a process model, the steps that need to be carried out for a project can be
made explicit to answer questions such as, what should be done next?.

o Often, to ensure the quality of a software system, quality guidelines suggest that a set of
activities be carried out in a particular order. A process model can help in determining the
relationship between the quality guidelines and the process, e.g., whether the process is in
conflict with the quality guidelines or not.

o A process model can be analyzed with respect to its internal consistency, completeness, cor-
rectness, and so forth. For example, a process model can be analyzed to find out the maximum
number of parallel activities that can be carried out in the process (for scheduling purposes),
or whether there are any redundant activities in the process (the outputs of which are not
being used).

o Usually, a software process involves routine, automatable activities that are mixed with ac-
tivities requiring creative thought. Based on a process model, such routine activities can be
extracted from the process and embedded within a computing environment such that they
can be automated.

¢ A large-scale software effort requires coordinating the work of several people over extended
time periods. An explicit process model helps team members understand and coordinate
who is doing what and when. Similarly, communication between people can be improved as
individuals can better understand the information needed by other activities and individuals.

e With the use of a process model, process objectives can be developed, and measurements
defined, to collect data to analyze the process execution against these objectives. These can
be used for both continuous process improvement or to radically change the process.

A common hypothesis within the process modeling research community is that the benefits of
process models will be easier to realize with the use of a multi-formalism approach to process
modeling (for example, see [2, 7, 10, 25]). In order to experiment with this hypothesis, we have
developed the SMART approach for software process engineering. SMART combines two formalisms
for process modeling within a single framework.

Within the SMART approach, we use both an object-oriented knowledge-based formalism for process
modeling and an imperative-style programming language for process programming. The roles of the
formalism are made clear with a methodology supporting the process life-cycle. The ob ject-oriented
representation is used mainly for process analysis and quality assurance, while the programming
language representation is used to provide process guidance, automation, and measurement.

SMART provides a mechanism to semi-automatically derive the process programming language rep-
resentation from the ob ject-oriented representation. This is akin to the code-generation capabilities
of common application generators. In this regard, SMART is a meta-environment that accepts a
process model as its input specification, then generates a process program which produces an exe-
cutable PSEE [23]. However, since there is additional information available in the process program
representation regarding activities, this step cannot be fully automated in all cases.

Early results of working with SMART have successfully demonstrated the utility of the approach.
For example, we have used SMART for modeling the change management process that has been
used in the research community [24], as well as more complex processes, such as those conforming
to MIL-STD-2167A. In each case, the programming language version of the process model was
automatically generated from the object-oriented representation.

In this paper we describe the various concepts underlying SMART and their implementation. We
start in Section 2 with a description of the SMART process engineering life-cycle. An overview of
the architecture of SMART is given in Section 3. In Section 4, we describe the SMART support
for the various stages of the process life-cycle, including: process modeling, analysis, embedding,
execution, and feedback. We then illustrate the SMART concepts in Section 5 using a subset of
the change management process example problem, which was developed for the 6** International
Workshop on Software Process [24].

We discuss related work in Section 6. Finally, we conclude with some suggestions for future work
along these directions in Section 7.

2 Process Life-Cycle

One approach to process modeling is to consider the models as programsin the traditional program-
ming sense [33]. An important benefit of process programs is that they can be machine executable
and therefore automated. However, much like the development of complex software systems entails
more than programming, similarly the development of complex software processes—those needed to
support the development of large or very large software systems—entails more than process program-
ming. As such, our work has led to an initial formulation of a software process engineering life-cycle
that is founded on the incremental development, iterative refinement, and spiraling evolution of
software process models, as shown in Figure 1.

Four stages of the software process engineering life-cycle, which we focus in this paper are process
modeling, analysis, embedding, and execution with monitoring.

¢ Process Modeling

Process modeling involves eliciting and capturing informal process descriptions and converting
them into formal process models. The concepts used in defining a process model usually
depend on the considerations that are important for the organization, and the process model
is best developed in conjunction with the people who are participants in, or are affected by,
the process. Therefore, at this stage of the process life-cycle, it is important that the concepts
used in the language for process modeling be familiar to the people affected by the process

Develop Process Model

i

Analyze Process Model

Process A
Feedback

Embed Process Model

A

Execute and Monitor
Process

Figure 1: The SMART Software Process Engineering Life-cycle

and well understood by them. For this reason, we advocate the use of meta-modeling wherein
a process modeler can specify the vocabulary and concepts used for process modeling,.

Process Analysis

This involves the evaluation of the static and dynamic properties of a process model, including
its consistency, completeness, internal correctness, and traceability. Examples of useful static
analysis are to find out: the maximum number of activities that can be carried out in parallel
within a process, the number of activities that use the output of a particular activity, and
other descriptive statistics.

At this stage, one might want to carry out a simulation that involves symbolically executing
process models in order to determine the path and flow of intermediate state transitions in
ways that can be made persistent, replayed, queried, dynamically analyzed, and reconfigured
into multiple alternative scenarios. For example, hypothetical agents and resources can be
assigned to the process and the process engine started. During the execution, one can discover
dependencies between activities and agents, e.g., Agent; cannot start any work unless Agent,
has finished the requirements activity.

Multiple graphic views or visualizations of the software process at this stage help in under-
standing process flow relationships. For example, sometimes it is useful to view the process
from an activity viewpoint, while at other times it might be useful to view it from a data-flow
or role-specific viewpoint.

Process Embedding

Once a process has been successfully analyzed for various properties, it can be embedded and
executed within a software engineering environment. This involves assigning and scheduling

specified users, tools, and data objects to the process.

A shift in process representation needs to occur at this stage. While the process model in
the modeling and analysis stages of the life-cycle is mainly used for communication, under-
standing, and analysis, the process model at the embedding stage is mainly used to derive
an executable PSEE. Therefore, specific software tools, such as Emacs, need to be associated
with the process model, whereas in the earlier stages it would have been sufficient to say that
a tool of class “text-editor” is required. Similarly, in the earlier stages we could have modeled
a “Requirements Document” in the abstract, while at this stage that will be bound to some
data object identifier, which eventually resolves to a path specification or named file in the
local network file system [14, 15].

¢ Process Execution and Monitoring

Finally, the process is executed within the organization. The PSEE that was generated in
the stage above is used to guide or enforce the process. While the process is being executed,
it can be monitored by the PSEE such that information regarding the ordering and duration
of activities can be tracked. In addition, any departures from the specified process can be
collected. Such information can be abstracted and fed back to the first stage of developing
the process model.

¢ Process Feedback

An important aspect of our process engineering life-cycle is that it does not assume that once
a process model has been developed it remains fixed forever. On the contrary, we anticipate a
process engineering life-cycle in which the process models can evolve to accommodate changes
in the execution environment of the process. An example change in the environment could
be when a new way of doing a particular aspect of the process is discovered. For instance,
suppose that programmer modifies code by using an edit-compile-debug cycle, and that this
has been modeled in the embedding knowledge-base. Therefore, whenever there is a task of
modifying code, it is embedded within the PSEE with the activities of edit, compile, and
debug. At some point during the execution of these activities, a programmer may discover
a static analysis tool and start using that with the edit activity. Therefore, the task of
modifying code gets into an edit-analyze-compile-debug cycle. The new activity of analyzing
the code can be recognized by the PSEE, and an appropriate message can be sent to the
process embedding tool.

This feedback can be utilized by the process embedding tool to improve its transformation of
future process models. Therefore, future programmers need not discover the use of the static
analysis tool themselves, since that knowledge of its use will be available for them from past
experience with the process embedding tool.

In this manner, the process life-cycle is an evolutionary life-cycle in which the processes developed
are incrementally enhanced and continuously improved.

3 SMART Architecture and Implementation

The high-level architecture of SMART is shown in figure 2. The major components of SMART are:

A Team Database that maintains the process model developed during the modeling and
analysis stages of the process life-cycle. This is a multi-user object-oriented database.

o A set of workspaces called Workshops [6] that maintain a role-specific process model for
each person on the process modeling team.

e A set of Editors and Browsers for each person on the process modeling team that allows
them to manipulate the process model.

o The SynerVision process execution and monitoring tool connected to a host of SoftBench
compatible tools through a Broadcast Message Server (BMS). SynerVision, SoftBench, and
BMS are commercially available products from Hewlett-Packard. However, a large number
of CASE vendors now provide tools that are compatible (i.e., encapsulated to run) with
SoftBench, thus the range of possible PSEEs built with SMART is substantial.

Other ﬁ
Workshops
(Users) ile System(s)

Other
SynerVision’s
Broadcast Message Server
(BMS) / (Users)

User

Figure 2: The Architecture of SMART

SMART represents the integration of three separately developed process mechanisms: SynerVi-
sion from HP’s SESD product division, Matisse from HP Laboratories, and the ARTiculator from
USC. SynerVision is a process execution and monitoring tool that operates with the SoftBench
programming environment. Matisse is a knowledge-based team programming environment [13].
The Articulator is a knowledge-based process modeling, analysis and simulation system [30]. This
combination was facilitated by three main characteristics of the systems being combined: (1) the
eztensibility of Matisse [13], (2) the Articulator’s meta-modeling formalism, and (3) the openness of
SynerVision. The Matisse team programming environment maintains an object-oriented team in-
formation base of software related information. This ob ject hierarchy was extended to incorporate

the concepts and mechanisms of the Articulator meta-model formalism. In this way, all process
modeling and analysis functionality, as well as all process models operational with the Articulator’s
formalism, were ported with little effort. Last, SynerVision is an open tool that broadcasts infor-
mation about its activities on a Broadcast Message Server. Appropriate messages can therefore be
sent to SynerVision and messages from SynerVision can be used for process feedback.

As shown in the figure, SMART is a multi-user system that spans and supports the process life-
cycle. At the process modeling and analysis stages, the multi-user capabilities are provided by the
maintenance of the process model within the Matisse team programming environment. Matisse
supports multiple users by providing optimistic concurrency control on a shared information space
with each user having their own individual information spaces. The information spaces (both
shared and individual) contain medium-grained versioned software objects with automation and
consistency rules on their property modifications [13]. At the process execution and monitoring
stages, SynerVision provides multi-user capabilities by using the capabilities of the Network File
System (NFS). SynerVision supports both individual and team tasks as well as task delegation.
Therefore, SMART provides role-specific workflow management for all team members with process
guidance (or enforcement), automation, and performance feedback.

4 SMART Support for Process Engineering Life-Cycle

Based on the description of the process engineering life-cycle in Section 2, it is clear that the
life-cycle is as complex as, or perhaps more complicated than, the traditional software product
life-cycle. Therefore, much as the software product life-cycle requires a comprehensive complete
solution [14] so does the PE life-cycle. The SMART approach represents a step in this direction by
providing support which spans the process life-cycle.

In this section, we present an overview of the support capabilities of SMART for the four stages of
the process engineering life-cycle identified earlier.

4.1 Modeling, Analysis and Simulation

SMART utilizes the knowledge-based Articulator approach for modeling, analyzing, and simulat-
ing complex organizational processes [30]. The Articulator utilizes an object-oriented knowledge
representation scheme for process modeling.

4.1.1 Modeling

The Articulator’s resource taxonomy, explained in detail elsewhere [15, 29, 30, 32], serves as a
process meta-model that provides an ontological framework and vocabulary for constructing soft-
ware process models (SPMs) [29]. At the base level, the process meta-model states that software
processes can be modeled in terms of agents who perform tasks using tools or systems that con-
sume (utilize) or produce (modify) resources. Further, agents, tools, and tasks are resources (i.e.,
resource subclasses), which means they can also be consumed or produced by other agents and
tasks. For example, a project manager may produce staff through staffing and allocation tasks
that consume departmental budgets. These staff may then assigned to other routine or creative

production tasks using the provided resources (e.g., computer workstations, CASE tools, desktop
publishing packages, schedules, and salary) to construct the desired products or services (e.g., ap-
plication programs and documents). Instances of SPMs can then be created by binding values
of corresponding real-world entities to the classes of corresponding entities employed in the SPM.
For instance, Mary may be the project manager who is responsible for getting a set of documents
produced for an external client, and she is authorized to assign 2-3 individuals in her department
to use their desktop Unix workstations that run Motif 1.2 and FrameMaker software in order to
get the reports produced by the end of the week.

The agents, tasks, product resources, tools, and systems are all hierarchically decomposed into
subclasses of arbitrary depth that inherit the characteristics of their parent classes. Further, these
resource classes and subclasses are interrelated in order to express relationships such as: control-
flow relationships (sequential, iterative, conditional, optional, or concurrent), task/resource pre-
and post-conditions, authority relationships among agents in different roles, product compositions,
SE tool/system aggregations, and others [30, 32]. Thus, in using these classes of process modeling
entities, we are naturally led to model SE processes as a web of multiple interacting tasks that are
collectively performed by a team of developers using an ensemble of tools to consume and produce
products [27].

In addition, the meta-model enables us to model other complex phenomena associated with or-
ganizational processes, such as agents’ resource sovereignties (i.e., the set of resources under the
control of an agent), authority relationships among agents, articulation strategies [31, 29], technol-
ogy transfer strategies, etc. Accordingly, these relationships are defined in the meta-model, used
and then instantiated in the SPMs. Then, we can use SMART to query, analyze, and simulate
process models (cf. [30]).

4.1.2 Analysis

As the process meta-model provides the semantics for SPMs, we can construct computational
functions that systematically analyze the consistency, completeness, traceability and internal cor-
rectness of SPMs [30]. These functions represent batched or interactive queries to the knowledge
base. At present, we have defined a few dozen parameterized query functions that can retrieve in-
formation through navigational browsing, direct retrieval, or deductive inference, as well as what-if
simulations of partial or complete SPMs [30]. Further, most of these analysis functions incorporate
routines for generating different types of reports (e.g., raw, filtered, abstracted, paraphrased, or
publication format) that can be viewed interactively or incorporated into publishable documents.

4.1.3 Simulation

Simulation entails the symbolic performance of process tasks by their assigned agents using the
tools, systems, and resources to produce the designated products. Using the previous example,
this means that in the simulation, Mary’s agent would “execute” her project management tasks
according to the task precedence structure specified in the SPM instance, consuming simulated
time and effort along the way. The simulation makes progress as long as task pre-conditions or
post-conditions are satisfied at each step (e.g., for Mary to be able to assign staff to the report

production task, such staff must be available at that moment, else the simulated process stops,
reports the problem, then waits for néw input or command from the simulation user).

We have used the Articulator environment to model, analyze, and simulate a variety of large-
scale SE processes, including those in use in industrial organizations (e.g., [37]). However, at
present, our focus in on supporting symbolic rather than analytical (e.g., discrete event) simulation
capabilities, whereas analytical simulation capabilities are required to simulate a large sample of
process instantiations.

4.2 Process Embedding

The process embedding stage involves the semi-automated transformation of the process represen-
tation from the object-oriented representation, of the analysis stage, to a representation suitable
for execution within a PSEE. Figure 3 shows this transformation process.

Process Design-Engineer
-

Model » Process Template s Visi
Tranformer Temp_ly TnstanGation o ynerVision

BMS

Text-Editor

SoftBench
Tools

Process-Engineer
Process-Centered SoftBench

Figure 3: The Embedding of a Process Model in a Process-Centered Software Engineering Environment.

As shown in the figure, the ob ject-oriented process model is first automatically transformed into
a process template via the model transformer. This template is a description of the process
in an extended Bourne shell script language [4] that is understood by SynerVision [18]. The
process template can be modified by the process-engineer to provide additional information,
perform name substitutions, etc. These are typically once-only modifications; changes that are
more commonly used can be specified as rules to the model transformer.

The process template is then instantiated within SynerVision, resulting in a process-centered
software engineering environment. In this manner, SMART illustrates the capabilities of a meta-
environment [23], i.e., an environment for the generation of an environment.

The model transformer needs to convert the various abstract representations, i.e., process model
classes, to actual instances of environment components. For example, whereas in the analysis stage
it would suffice to say that a text-editor is required for the modify-code activity, for the template
we need to specify the exact editor from the environment, e.g., SoftEdit from SoftBench, that will
be required for the process execution. Similarly, we need to associate the object identifiers (e.g.,
file path name) that will represent the various modules of the target system.

Some of the knowledge required by the generator can be coded into the object hierarchy for the
process models. For example, an organization can a priori specify the various text-editors that
are available for use. In cases where the constraints identify only one choice for a class of objects,
that choice can be made automatically by the generator; otherwise, a multiple choice menu can be
generated for the process engineer’s assistance.

In this manner, over a period of time, an organization can evolve a rich knowledge-base for au-
tomating future processes. If a project has embedded, successfully used, and refined process models
through sMART, then subsequent projects can be aided by the choices made in prior projects. Sim-
ilarly, the generation of a changed process model that has been evolved within SMART can benefit
from the choices made in the previous embeddings of the model. Thus, SMART is designed to both
facilitate process improvement and to iteratively mature process models.

4.3 Process Execution and Monitoring

Process execution within SMART is supported through HP’s process execution product called Syn-
erVision [18]. Details on this tool can be obtained from the technical literature on the product.
As such, we present highlights to illustrate the process execution and monitoring capabilities of
SynerVision.

SynerVision presents the user with an agenda-based window that lists the tasks for that user
and possibly the tasks of other people in the project team. The tasks are displayed with a set of
attributes that are determined by the user using a rich filter mechanism. The tasks can be displayed
either in a graphical task hierarchy or they can be presented as a nested list.

The user clicks the mouse at task representations to perform various operations on them which
check and/or modify task attributes. The semantics of an attribute modification determine the
actions that need to be taken for the PSEE. For example, an attribute modification of the status
of a task from New to Execute means that work on the task is started. SynerVision checks to
make sure that this transition does not violate any constraints that may have been specified in
the process. Also, a menu called Actions is activated with a list of activities available with the
currently executing task. The user can then use that menu to instantiate process actions. A simple
action may be to invoke another tool in the PSEE using the Broadcast Message Server (BMS).
A complicated action may involve the execution of a Unix Shell script [4] that may run over a
period of time. Finally, users can also add new tasks to a process template already instantiated in
SynerVision. However, tasks in an instantiated process template that a user chooses not to perform
can be marked as “abandoned” but cannot be deleted.

SynerVision allows process users to both estimate and track time for task completion. A clock

mechanism tracks the amount of time spent in “executing” a task. In order to ensure privacy of
time data, the time a user spent on a particular task is visible to that user only. The user can
at her discretion choose to share that information with other team members. Timing information
is also generated as a log file that can be edited for sharing purposes. Thus, SynerVision helps
process users identify variances in estimated versus actual time allocation, whereby high variances
indicate tasks or task steps whose definition could be revised or otherwise improved.

There are pre-defined attributes that characterize each tasks, e.g., status, owner, duration, etc.,
and additional attributes can be added by the user. Tasks can be delegated to other members of
the project by modifying certain task attributes (e.g., changing the owner), then dispatching the
task. In turn, users who receive delegated tasks can then accept or refuse them. Tasks also have
a text attribute called Notes. Users of the PSEE can use this field to enfer rationale for actions
taken or feedback about the process, e.g., how useful a particular task description was, whether a
task needs to be decomposed into several smaller activities, useful hints that help when performing
the task, etc.

The execution of the process is tracked by SynerVision for various information such as time spent
on an activity, tools invoked, users who have worked on different tasks, and any user notes or
feedback. This data is made available to the users in a variety of standard report formats.

4.4 Process Feedback

Process feedback is implemented within SMART by exchanging messages through the Broadcast
Message Server (BMS) between SynerVision and the process modeling knowledge-base. For exam-
ple, when a new action is added to a task, or a new person is added to the access list for a particular
task, SynerVision broadcasts a message on the BMS indicating that the particular modification has
been made to the task. This message can be unparsed by the modeling tool to add to its knowledge
base. When a new action has been added, the knowledge-base adds this fact to its task decom-
position. When a new user is added to the access list, the knowledge-base adds this information
to its agent specification for the task. Over a period of time, this information can be used to help
characterize how the process evolved, which is useful for subsequent model development.

Another useful feedback mechanism is the process activity logs. As each activity is performed
by a user, SynerVision’s messages can be used to log the frequency with which each activity has
been executed, the ordering of activities with respect to each other, and the objects on which the
activities have been invoked. This information can then be analyzed by an automated tool to infer
redundant activities of the process model, incorrect dependencies or ordering of activities in the
model, and so forth, all of which can be used to revise and improve modeled processes.

5 A Detailed Example Use

In this section we will use parts of the process example from the 6t* International Workshop on
Software Process to illustrate some capabilities of SMART. This example is meant to give the
reader a flavor of the capabilities that SMART encompasses. From a description of the example
problem [24][pp.2):

10

The core problem is scoped as a relatively confined portion of the software change
process. It focuses on the designing, coding, unit testing, and management of a rather
localized change to a software system. This is prompted by a change in requirements,
and can be thought of as occurring either late in the development phase or during the
support (maintenance and enhancement) phase of the life-cycle. In order to confine the
problem, we assume that the proposed requirements change has already been analyzed
and approved by the Configuration Control Board (CCB) or other appropriate authority.
It has been determined that only a single code unit (e.g., module) is to be affected. The
problem begins with the project manager scheduling the change and assigning the work
to appropriate staff. The example problem ends when the new version of the code has
successfully passed the new unit tests.

The SMART model for this process is a network of objects, representing activities, inputs, out-
puts, constraints, and so on. We present an activity-centered viewpoint, with two main activities
modeled: (1) Develop-Change-and-Test-Unit activity, and (2) Modify-Code. Figure 4 shows the
objects and relationships representing these activities.

The process model input to SMART is a table describing the process, as shown in Table 1. To
facilitate the entry of this table, we use the FrameMaker WYSIWIG document preparation tool [12],
the output of which is directly incorporated into SMART. The empty cells in the table are represented
by a special symbol (e.g.,n/a) in the actual input.

Since the tabular input is at the process model level, the agents responsible, inputs, outputs, and
tools required, are all specified at the level of classes rather than instances. The activities and
tasks, however, are instances of the appropriate class of objects. For example, Modify-Code is
an instance of the class Activity while Develop-Change-and-Test-Unit is an instance of the
type Task-Chain. Usually, an input, output, agent, or tool with the same identifier is assumed to
model the same instance within the eventual process instance. However, two different instances
can be modeled using a colon (:) symbol as the distinguishing feature. For example, the activity
Modify-Code produces two objects of the type Module-Class, one would represent the source code
of the system and another the object code. These two instances of the same class are distinguished
in the table using the identifiers Module-Class:S and Module-Class:0.

11

Authorization (V)
Develop—Change—and—Test-Unit)——V System-Code
Requirements-Change (HC) t
Project-Team
G C Cs

Modified-Design (HC) —— ?
System-Code » Modify-Code [System-Code
Code-Feedback (V)

Design-

Engineer

Legend:
C;-Cs: Constraints
Cj: Need authorization to start
C,: Ends when unit testing is done or when authorization revoked
C3: Design has to be approved before code can be modified
C,: Task must be scheduled and assigned before it can be started
Cs: Done when a clean compilation of software is done and all the modified tests are passed
V: Verbal
HC: Hand Carried

AR Expansion —% Input or Output » Agent Responsible ”“"h’ Constraint

Figure 4: A sample process model in SMART

12

Le

Provided-

Task Predecessor Agent Required-Resource Tool
vel | pe Resource
0 TC Develop-Change-and-Test-Unit
1 A Schedule-and-Assign-Task Project-Man- Requirements-Change Requirements-
ager Change
Authorization Project-Plan

— Project-Plan Project-Sched-

@ ule
1 A Modify-Code Schedule-and- Design-Engi- Requirements-Change Module-Class:S | Editor

Assign-Task neer

System-Design-Doc

Module-Class:O

Module-Class:S

Test-Feedback

Table 1: Process model input fragment for the example Change Management Process

From the tabular specification of the process, a set of objects is constructed that represents the
process. For example, the object representing the Modify-Code activity has the following at-
tributes/relationships:

Object,

Has-class: Activity

Has-Name: Modify-Code

Resource-Has-Neighbor: Test-Unit

Task-Has-Input-Spec: Modify-Code-Input-Spec
Modify-Code-Input-Spec-1
Modify-Code-Input-Spec-2
Modify-Code-Input-Spec-3

Task-Has-Successful-Output-Spec: Modify-Code-Output-Spec

| Modify-Code-Output-Spec-1

Task-Has-Tool-Spec: Modify-Code-Tool-Spec
Modify-Code-Agent-Spec

Resource-Neighbor-of: Schedule-and-Assign-Task

Resource-Component-of: Develop-change-and-test-unit

Articulating-Status: Non-Agendaed

Resource-Contrel: Shared

Resource-Status: Idle

Resource-Type: Reusable

The inputs, outputs, and agents for the activity are specified using process specification objects.
This provides one level of indirection so that we can develop models that contain information for
both the modeling and analysis stages as well as from the embedding and execution stages.

For example, if we look at the activity Modify-Code, then the model suggests that the activity
requires a design-engineer to perform the activity. This can be modeled by putting a link between

14

Modify-Code and the object that represents the class of Design-Engineers. Then following this
in the execution stage, some particular Design-Engineer would be required for this activity. The
link between Modify-Code and Design-Engineers would not be able to capture that. One could
think of putting in two links, one for the resource class and another for resource instance. However,
this does not work if we want to capture the semantics of two activities sharing the same resource
specification. Therefore, we need the level of indirection that specification objects provide, as shown
in Figure 5.

Modify-Code

Task-Has-Agent-Spec

. Resource-Class
Modify-Code-Agent-Spec h------------------- #+{ Design-Engineer
o
_\4 <
\'\,\ s - ~N
Resource-Instance ™. ’ N
" _ " Has-Instance ~ ~_

., , :
‘ Ninja Turtle

Figure 5: Resource Modeling in SMART

The ob ject representation of the process, naturally lends itself to various static analysis capabilities.
For example, we can ask the questions: How many tasks do not have any output specifications
associated with them?, How many tasks use the output for a particular task?, Which agents are
responsible for producing what outputs?, and so forth. Moreover, the representation can be viewed
from different perspectives to give different views of the model. For example, we present the task,
agent, and resource analysis of our example process (these are clips from SMART outputs). For
conciseness of presentation, we have clipped out portions of the analysis that do not directly relate
to our two sample activities of the process.

5.1 Task Analysis of the Process Model

A task analysis of the process describes the hierarchy of activities in the process. For each activity,
aspects of the activity, such as: agents responsible, inputs and outputs, and tools required, are
listed. The list of activities that are listed is extensible and modifiable. Finally, a summary of
interesting statistics of the process, such as: the number of different classes of activities in the
process, the number of activities without input or output parameters specified, is presented. In
practice, the summary information has been found to be quite useful for large processes. A portion
of the output from the task analysis of the sample process is given below.

Activity Hierarchy for DEVELOP-CHANGE-AND-TEST-UNIT

15

DEVELOP-CHANGE-AND-TEST-UNIT

TEST-UNIT
Agents: QUALITY-ASSURANCE-ENGINEER DESIGN-ENGINEER
Tools: DEBUGGER
Inputs: UNIT-TEST-PACKAGE MODULE-CLASS REQUIREMENTS-CHANGE
Outputs: TEST-O0UTCOME TEST-RESULT TEST-PACKAGE-FEEDBACK TEST-FEEDBACK

MODIFY-CODE
Agents: DESIGN-ENGINEER
Tools: EDITOR
Inputs: TEST-FEEDBACK MODULE-CLASS SYSTEM-DESIGN-DOC REQUIREMENTS-CHANGE
Outputs: MODULE-CLASS

SCHEDULE-AND-ASSIGN-TASK
Agents: PROJECT-MANAGER

Statistical Information about the Process

Total Number of Tasks: 3
Total Number of Activities: 8
Total Number of Iteration Pairs: 1

Total Number of Conditional Pairs: O

Total Number of Subtasks: 11

Activities that miss some kind of Information
Total Number of Subtasks without Agents: 1
Total Number of Subtasks without Tools: 4
Total Number of Subtasks without Inputs: 1
Total Number of Subtasks without Outputs: 1

S5 rules fired

Run time is 2.4 seconds

WORKSHOP>

5.2 Agent Analysis of the Process Model

The agent analysis of the process presents a view of the process from the agents perspective. For
each agent in the process, a description of all the activities that the agent is responsible for is
presented. The activity descriptions are the same as for the task analysis. A clipping of the agent

analysis of the example process, limited to our sample activities, is presented below.

Agent/Role Information for DEVELOP-CHANGE-AND-TEST-UNIT

16

Assigned Agents for Process DEVELOP-CHANGE-AND-TEST-UNIT
Agent: DESIGN-ENGINEER

Activity: REVIEW-DESIGN
Inputs: SYSTEM-DESIGN-DOC REQUIREMENTS-CHANGE
Outputs: DESIGN-REVIEW-OUTCOME REVIEW-FEEDBACK
Tools: EDITOR

Activity: TEST-UNIT
Inputs: UNIT-TEST-PACKAGE MODULE-CLASS REQUIREMENTS-CHANGE
OQutputs: TEST-O0UTCOME TEST-RESULT TEST-PACKAGE-FEEDBACK TEST-FEEDBACK
Tools: DEBUGGER

Activity: MODIFY-CODE
Inputs: TEST-FEEDBACK MODULE-CLASS SYSTEM-DESIGN-DOC REQUIREMENTS-CHANGE
Outputs: MODULE-CLASS
Tools: EDITOR

Activity: REVIEW-DESIGN
Inputs: SYSTEM-DESIGN-DOC REQUIREMENTS-CHANGE
Outputs: DESIGN-REVIEW-OUTCOME REVIEW-FEEDBACK
Tools: EDITOR

Activity: MODIFY-DESIGN
Inputs: REVIEW-FEEDBACK SYSTEM-DESIGN-DOC REQUIREMENTS-CHANGE
Outputs: SYSTEM-DESIGN-DOC

S rules fired

Run time is 2.0 seconds
WORKSHOP>

5.3 Resource Analysis of the Process

In the resource analysis, the process is analyzed from a resource viewpoint - what different resources
are produced and consumed in the process, the agents who are responsible for producing certain
resources, the agents who are at the end of the food-chain for a resource, and so forth. A clipping
of the analysis for the example process, restricted to our sample activities, is presented below.

Resource Usage for Process DEVELOP-CHANGE-AND-TEST-UNIT

Resource: TEST-FEEDBACK
Provided by: TEST-UNIT

17

Producing Agents: QUALITY-ASSURANCE-ENGINEER DESIGN-ENGINEER
Resource required by: MODIFY-CODE
Dependent Agents: DESIGN-ENGINEER

Resource: MODULE-CLASS

Provided by: MODIFY-CODE

Producing Agents: DESIGN-ENGINEER

Resource required by: TEST-UNIT

Dependent Agents: QUALITY-ASSURANCE-ENGINEER DESIGN-ENGINEER

Resource: MODULE-CLASS

Provided by: MODIFY-CODE

Producing Agents: DESIGN-ENGINEER

Resource required by: MODIFY-UNIT-TEST-PACKAGE MODIFY-CODE
Dependent Agents: QUALITY-ASSURANCE-ENGINEER DESIGN-ENGINEER

Resource: SYSTEM-DESIGN-DOC

Provided by: MODIFY-DESIGN

Producing Agents: DESIGN-ENGINEER

Resource required by: MODIFY-UNIT-TEST-PACKAGE MODIFY-CODE REVIEW-DESIGN MODIFY-DES
IGN

Dependent Agents: ENGINEER QUALITY-ASSURANCE-ENGINEER DESIGN-ENGINEER

Resource: REQUIREMENTS-CHANGE

Provided by: SCHEDULE-AND-ASSIGN-TASK

Producing Agents: PROJECT-MANAGER

Resource required by: MONITOR-PROGRESS TEST-UNIT MODIFY-UNIT-TEST-PACKAGE MODIFY-TE
ST-PLAN MODIFY-CODE REVIEW-DESIGN MODIFY-DESIGN SCHEDULE-AND-ASSIGN-TASK

Dependent Agents: QUALITY-ASSURANCE-ENGINEER DESIGN-ENGINEER PROJECT-MANAG
ER

Statistic Information about the Resources
Total Number of Resources: 15
Total Number of Resources without Producers: 2
Total Number of Resources without Consumers: 2

5 rules fired

Run time is 3.3 seconds

WORKSHOP>

Once the process model has been analyzed, it is then converted into a process template for Syn-
erVision. The template is specified using a language that is an extension to the Unix Bourne Shell

language [4].

TASK ’develop_change_and_test_unit’

18

develop_change_and_test_unit=$last_TASKID

CHILDREN_BEGIN
DEPENDENCY $schedule_and_assign_task Complete $modify_test_plan Begin
Prerequisite

TASK ’modify_code’
modify_code=$last_TASKID

MANUAL_ACTION ’edit_source’ <<’EQF’
softedit server.c
EOF

MANUAL_ACTION °build_object’ <<’EOF’
softbuild server
EOF

MANUAL_ACTION ’debug_object <<’EOF’
softdebug server
EOF

CHILDREN_END

The template is instantiated as a process within SynerVision, such that if SynerVision is being run
with the SoftBench environment, then we obtain a Process-Centered SoftBench.

For example, Figure 6 shows the screen image of the SynerVision window that is available to the
design-engineer, manager, and other user roles in the project team. The design-engineer can then
choose to work on the task of modify-code, by selecting the task and changing its status from New
to InProgress. If the pre-requisite task Schedule-and-Assign-Task has not been completed,
the status change is not allowed by SynerVision.

19

the example process

1ng

centered SoftBench screen show

igure 6: A process-

F

na

tool and tools 1ike SoftEdit and SoftStatic be

1s10n

within the SynerV

coordinated with that process.

20

The menu under the Actions button then contains the three actions that the user can perform:
(1) edit the source code, or (2) invoke the build tool, or (3) invoke the debugger on the executable.
Because the specific tools to be invoked and the objects that are to be manipulated were specified
in the process template, the design-engineer does not need to specify them again. Instead, all the
design-engineer must do is to select the menu-item for one of the actions, e.g., edit-source-code.
SynerVision automatically sends a BMS message to invoke the appropriate tools on the appropriate
objects. This provides a task-specific work environment for the user. While the action is under
progress, SynerVision keeps track of the time that is being spent on the action which can be used
for process monitoring purpose.

6 Related Work

The PRISM project [28], which has a methodology for developing process models and a PSEE, is
the work most closely related to ours. The process engineering life-cycle that we suggest is similar
to the four vertices of the PRISM approach. However, the PRISM approach does not support the
concept of meta-modeling, which is an important aspect of our approach. Using meta-modeling,
a process modeler can define the concepts that will be used for process modeling. In the PRISM
approach, the modeler uses the concepts of FUNSOFT nets for process modeling. An important
aspect, missing from the PRISM approach described in [28], is the stage of process execution
feedback for improving the process model and aiding in the development of future process models.

The process engineering life-cycle that we suggest, as part of the SMART approach, is similar to the
improvement paradigm suggested by Basili and Rombach, in the TAME approach [3]. Both the
SMART and the TAME approach share the idea of building up an experience base that can be useful
for future software project planning. However, the emphasis in the TAME approach is on collecting
metrics based on the Goal-Question-Metric (GQM) paradigm; the emphasis in the SMART approach
has been to provide a general framework in which different kinds of analysis are possible. In this
regard, we hypothesize that a GQM paradigm can be implemented in SMART, using its meta-
modeling capabilities. Moreover, the supporting environment described in the TAME approach
was quite weak, a reflection of the state-of-the-art in Software Engineering Environments at that
time [3]. The SMART support environment with SynerVision, Matisse, Articulator, and SoftBench,
overcomes this limitation.

Another tool that uses multiple formalisms to support the different stages of the process life-cycle
is Process WEAVER, built by Cap Gemini Innovation of France [11]. However, the multiple for-
malisms in Process WEAVER are used for different purpose - they are used to model different
aspects (and details) of a process. Therefore, automatic generation of a process template, or con-
cepts of process feedback are not relevant within the Process WEAVER context. Moreover, Process
WEAVER uses a modified Petri-net based approach (transition nets) for modeling the activities
of a process, which limits it to an activity-centered view of the process. The object-oriented, rule-
based representation of SMART can simultaneously provide a product-centered, activity-centered,
or a resource(agent)-centered view of the process, as shown in Section 5. As with SMART, Process
WEAVER supports the integration with other tools in the environment using the services of a
BMS, and Process WEAVER provides an agenda based view of a user’s work context.

21

The MELMAC [9] environment also supports the notion of using multiple formalisms for process
representation. In the MELMAC environment, multiple application views or layers of the process
model are represented in the same intermediate level. The intermediate layer is represented using
an extended Petri-net formalism of FUNSOFT nets. MELMAC also supports the ideas of process
visualization, simulation, and to some extent feedback. However, in the SMART approach, the
process models are not simply views of the process-in-execution, but they are a totally different
representation of the process. In this manner, the SMART models can be quite different from their
process-in-execution counterparts, thereby permitting a greater degree of freedom in supporting
the different stages of the process life-cycle.

Process modeling, analysis, and simulation have been a research topic in a number of efforts [29]. At
the Software Engineering Institute, Kellner [26] has employed an explicitly enumerated state-space
approach to process modeling, using the commercially available Statemate system. His approach to
modeling and simulation has been successfully demonstrated on moderate sized project management
processes.

A number of programming language representations of software processes have been prototyped
in recent years. All of these representations have been built to support the execution of process
programs, with very little support for process modeling, analysis, and monitoring. For example,
APPL/A [36] is a process programming language developed in the Arcadia project [20]. It ex-
pands Ada to include process constructors, relations, and other constructs to describe procedural
aspects of a software process. Since APPL/A is targeted at process integration and execution in an
Ada-based environment, it is not at present well-suited for upstream process engineering life-cycle
activities, such as incremental process modeling or simulation. However, other components of the
Arcadia project, such as the Amadeus measurement system and related analysis tools, surpass the
monitoring capabilities that we currently provide. The PSS project in England [5] has developed
a process modeling and enactment language based on an object-oriented knowledge representation
notation. Grapple [19] relies on a set of goal operators and a planning mechanism to represent soft-
ware processes. These are used to demonstrate goal-directed reasoning about software processes
during execution. AP5 [16], Marvel [22], the Workshop System [6], Matisse [13], and Merlin [34] use
automation and, or consistency rules to model and trigger software process actions during process
enactment. While Marvel has been extended to support the creation of process models [21], its
strength lies in its ability to support rule-based process execution.

Several research projects in Europe are also advocating the use of some extended form of Petri-nets
for modeling and analyzing software processes [1, 17]. In contrast, we advocate a knowledge-based
approach to process modeling and analysis, for several reasons. The knowledge-based approach
provides for incremental specifications of the process models such that we can query, analyze,
and reason about a partial specification of a process model. Using a knowledge-based approach,
information about the organizational setting can be captured once and encoded in the knowledge-
base. Subsequently, that information does not need to be repeated for each new process model.
Finally, a knowledge-based approach supports abstraction mechanisms for data products, processes,
and organizational structures much more easily than Petri-nets can. On the other hand, Petri-nets
are best at representing issues about concurrent activities and their analysis.

To summarize, none of the prevailing software process engineering environments today supports

22

the full process engineering life-cycle. However, we have been able to demonstrate supporting
mechanisms for the process life-cycle activities described in Section 2. Similarly, it should be noted
that though our focus is targeted at software process engineering, our approach can also be applied
to other engineering domains (e.g, Electronic Design Automation, Agile Manufacturing) and to
conventional business processes, albeit in a radically innovative way [8].

7 Status and Future Work

The SMART prototype is currently operational. We have used it to model several processes and
generate process programs from them. So far we have not experimented with it for executing
and monitoring any actual industrial software projects, which we hope to do in the future. Such
experiments will be able to test the veracity of the feedback mechanisms that we have built.

Early trial experiments, within our group, suggest that an important support aspect missing from
SMART is that of process acquisition. The SMART approach assumes that a process definition exists
that can be encoded in at least a tabular form with activities, their inputs, outputs, and resource
requirements. However, in real situations, the issues of which activities to include in the model, and
at what level of granularity, are very complicated. This is compounded by the fact that different
participants of the process have different viewpoints on the process. Organization design theorists
have developed some manual techniques to address this issue, for example see [35]. We need
to incorporate such techniques within frameworks like SMART to more fully support the process
engineering life-cycle. Thus, this represents an important area for future research.

8 Acknowledgments

We would like to thank Martin Griss and Kevin Wentzel of HP Labs for their support of this project.
We would like to thank Ralph Hyver and Joe O’Brien from HP’s University Affairs department
who have significantly contributed in simplifying the logistics of our collaboration and providing
support for it. We thank Tom Christian, Dave Pugmire, and Chung Tung of SESD for their support
of this project.

9 References

[1] S. Bandinelli and A. Fuggetta. Computational Reflection in Software Process Modeling: the
SLANG Approach. In Proceedings of the 15" International Conference on Software Engineer-
ing, pages 142-144-153, Baltimore, MD, May 1993. IEEE Computer Society.

[2] S. Bandinelli, A. Fuggetta, C. Ghezzi, and A. Morzenti. A Multi-Paradigm Petri Net Based
Approach to Process Description. In Proceedings of the 7t International Software Process
Workshop, Yountville, CA, October 1991. IEEE Computer Society Press.

[3] V. R. Basili and H. D. Rombach. The TAME Project: Towards Improvement-Oriented Soft-
ware Environments. IEEE Transactions on Software Engineering, 14(6):758-773, June 1988.

[4] S. R. Bourne. The UNIX Shell. The Bell System Technical Journal, 57(6):1971-1990, July-
August 1978.

23

[5] R. H. Bruynooghe, J. Parker, and J. Rowles. PSS: A System for Process Enactment. In 1%

International Conference on Software Process, pages 128-141, Los Angeles, CA, 1991. IEEE
Computer Society.

[6] G. M. Clemm. The Workshop System: A Practical Knowledge-Based Software Environment.
In Proceedings of the 3rd ACM software engineering environments conference, pages 55-64,
December 1988.

[7] R. Conradi, C. Liu, and M. Jaccheri. Process Modeling Paradigms: An Evaluation. In
Proceedings of the T International Software Process Workshop, Yountville, CA, October 1991.
IEEE Computer Society Press.

[8] T. Davenport. Process Innovation: Re-engineering Work through Information Technology.
Harvard Business School Press, Cambridge, MA, 1993.

[9] W. Deiters and V. Gruhn. Managing Software Processes in the Environment MELMAC.
In Proc. of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, pages 193-205, 1994.

[10] W. Deiters, V. Gruhn, and W. Schifer. Process Programming: A Structured Multi-Paradigm
Approach Could be Achieved. In Proceedings of the 5% International Software Process Work-
shop. IEEE Computer Society Press, September 1989.

[11] C. Fernstrom. Process WEAVER: Adding Process Support to Unix. In 2"¢ International
Conference on Software Process, pages 12-26, Berlin, Germany, 1993. IEEE Computer Society.

[12] Frame Technology Corporation, 1010 Rincon Circle, San Jose, CA 95131. FrameMaker User
Guide.

[13] P. K. Garg, T. Pham, B. Beach, A. Deshpande, A. Ishizaki, K. Wentzel, and W. Fong. Ma-
tisse: A Knowledge-based Team Programming Environment. Technical Report HPL-92-104,
Hewlett-Packard Company Labs, Palo Alto, August 1992. To appear in International Journal
of Software Engineering and Knowledge Engineering.

[14] P. K. Garg and W. Scacchi. A Hypertext System to Manage Software Life Cycle Documents.
IEEFE Software, pages 90-98, May 1990.

[15] P. K. Garg and Walt Scacchi. ISHYS: Designing an Intelligent Software Hypertext System.
IEEFE Ezpert, pages 52-63, Fall 1989.

[16] N. Goldman and K. Narayanaswamy. Software Evolution through Iterative Prototyping. In
Proceedings of the 13t" International Conference on Software Engineering, pages 158-172, May
1992. -

[17] V. Gruhn. Validation and Verification of Software Process Models. PhD thesis, University of
Dortmund, Germany, 1991.

[18] Hewlett-Packard Company, Palo Alto, CA. Developing SynerVision Processes, May 1993. Part
number: B3261-90003.

24

[19] Karen E. Huff and Victor R. Lesser. A Plan-Based Intelligent Assistant that Supports the
Software Development Process. In Peter Henderson, editor, Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Sympostum on Practical Software Development Envi-
ronments, pages 97-106, Boston, Massachusetts, 1988.

[20] R. Kadia. Issues Encountered in Building a Flexible Software Development Environment. In
Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practi-
cal Software Development Environments, pages 169-180, Tyson’s Corner, Virginia, December
1992. '

[21] G. E. Kaiser, N. S. Barghouti, and M. H. Sokolsky. Preliminary Experience with Process
Modeling in the Marvel Software Development Kernel. In Proceedings of the 237 International
Conference on System Sciences, pages 131-140, Hawaii, January 1990.

[22] Gail E. Kaiser, Peter H. Feiler, and Steven S. Popovich. Intelligent Assistance for Software
Development and Maintenance. IEEFE Software, pages 40-49, May 1988.

[23] A. S. Karrer and W. Scacchi. Meta-Environments for Software Production. International
Journal on Software Engineering and Knowledge Engineering, 3(1):139-162, 1993.

[24] M. Kellner, P. Feiler, A. Finkelstein, T. Katayama, L. Osterweil, M. Penedo, and H. D. Rom-
bach. Software Process Modeling Example Problem. In Proceedings of the 6" International
Software Process Workshop, Hakodate, Hokkaido, Japan, October 1990.

[25] M.I. Kellner. Multi-Paradigm Approaches for Software Process Modeling. In Proceedings of the

7th International Software Process Workshop, Yountville, CA, October 1991. IEEE Computer
Society Press.

[26] M. L. Kellner. Software Process Modeling Support for Management Planning and Control. In
1%t International Conference on Software Process, pages 828, Los Angeles, CA, 1991. IEEE
Computer Society.

[27] Rob Kling and Walt Scacchi. The Web of Computing: Computing Technology as Social
Organization. In M. Yovits, editor, Advances in Computers, volume 21, pages 1-90. Academic
Press, Inc., 1982.

[28] N. H. Madhaviji, V. Gruhn, W. Dieters, and W. Schifer. PRISM = Methodlogy + Process-
Oriented Environment. In Proceedings of the 12t* International Conference on Software En-
gineering, pages 277-289, March 1990.

[29] P. Mi. Modeling and Analyzing the Software Process and Breakdowns. PhD thesis, Univeristy
of Southern California, 1992.

[30] P. Mi and W. Scacchi. A Knowledge Base Environment for Modeling and Simulating Software
Engineering Processes. IEEE Trans. Knowledge and Data Engineering, 2(3):283-294, 1990.

[31] P. Mi and W. Scacchi. Modeling Articulation Work in Software Engineering Processes. In 1%
International Conference on Software Process, pages 188-201, Los Angeles, CA, 1991. IEEE
Computer Society.

25

[32] P. Mi and W. Scacchi. A Unified Model of Software Systems, Agents, Tools, and Processes.
Submitted for publication, June 1992.

[33] Leon Osterweil. Software Processes are Software too. In Proceedings of the 9% International
Conference on Software Engineering, pages 2-13, April 1987.

[34] B. Peuschel and W. Shafer. A Knowledge-based Software Development Environment Sup-
porting Cooperative Work. International Journal on Software Engineering and Knowledge
Engineering, 1992.

[35] G. A. Rummler and A. P. Brache. Improving Performance: How to Manage the White Space
on the Organization Chart. Josey-Bass Publishers, San Francisco, 1990.

[36] Stanley M. Sutton Jr., Dennis Heimbinger, and Leon J. Osterweil. Language Constructs for
Managing Change in Process-Centered Environments. In Richard N. Taylor, editor, Proceed-
ings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, pages 206-217, Irvine, California, December 1990.

[37] L. G. Votta Jr. Comparing One Formal to Informal Process Description. In W. Schéfer,
editor, Proceedings of the 8" International Software Process Workshop, Wadern, Germany,
March 1993. IEEE Computer Society Press.

26

