(/2 Bacianc

Multicast RPC in Extended-C++

Michael Olsen, Robert Seliger

Intelligent Networked Computing Laboratory

HP Laboratories Bristol

HPL-93-84
September, 1993

remote procedure
call, multicast,
distributed systems,
object-oriented, C++

Internal Accession Date Only

Multicast RPC enables one object to make a single
remote procedure call which is in fact transpar-
ently executed in many remote objects. This
report describes a design and a prototype imple-
mentation of a software architecture which is
used for supporting multicast RPC in the
Extended-C++ programming language [Seliger
90]. It also describes how this architecture is
enhanced to ensure atomicity of a multicast RPC,
i.e. either all of a collection of functional objects
execute a called procedure or none of them do.
Extended-C++ is a production programming
language which is used for developing CareVue, a
distributed clinical information system product.

© Copyright Hewlett-Packard Company 1993

1 Introduction

The task of building distributed applications is facilitated by remote procedure
calls (RPC). RPC is a mechanism which transfers control and data across a
communication network, to enable an object in one address space to call the
procedures of objects in other address spaces using syntax and having semantics
similar to a local procedure call [Birrell 84].

Multicast RPC takes this a step further. It enables one object to transparently send
a single logical message which is in fact received by many remote objects. This
capability, particularly when it is reliably implemented and supported by a useful
set of correctness guarantees, can be the basis for:

® providing a richer substrate for the creation of event-based distributed
applications;

¢ simplifying the implementation of distributed and replicated software
components;

¢ providing a mechanism which increases the amount of decoupling and
independence between distributed objects to simplify designs and increase
system robustness.

In many distributed systems!, system or application services often make use of
multicast communication which is emulated by explicit implementations built on
top of other communication primitives. The intent of providing platform support for
multicast RPC is to offer a more unified and robust service which provides a richer
set of capabilities and guarantees than can be implemented by the typical
developer of a service or application for a distributed system.

Extended C++ is an object-oriented programming language which extends C++
with support for RPC,. concurrency, exception handling, and garbage collection
[Seliger 90]. It was developed to facilitate the implementation of CareVue, a
distributed clinical information system product which is used in hospital critical
care environments.

This report describes (i) how multicast RPC has been incorporated in Extended-
C+4+, (ii) how it is engineered in a software architecture, (iii) how this architecture
can be extended to ensure atomicity of multicast RPC, and (iv) a prototype
implementation of multicast RPC in Extended-C++.

Multicast RPC is supported in Extended-C++ by introducing the abstraction of a
group (of objects) [Birman 91]. The group abstraction is based on ideas from ANSA

[Olsen 91] and it is engineered using ideas from group communication in Amoeba
[Kaashoek 91].

Within the research community, the group abstraction is now well understood, and
general support mechanisms have been demonstrated in prototypes. Extended-
C++ is used for production programming, so its support for a group abstraction is
pragmatic in terms of favouring simplicity and efficiency rather than generality.

1. By system is meant a collection of objects which share a common symbolic name-space and
which are capable of communicating with each other.

The main results of this report are:

* multicast RPC can be supported by introducing very few language level
extensions;

* the engineering of groups can be substantially simplified by assuming a
reliable service for group management;

¢ the number of constituent calls of a multicast can be minimized by orgamzmg
the engineering of groups hierarchically;

* hierarchical organization of groups enable the group abstraction to scale up
well;

¢ the implementation of multicast RPC can be substantially simplified by
building it from an existing RPC implementation;

¢ the performance of the multicast RPC prototype implementation is extremely
good despite being built using existing RPC, and despite providing a strong
ordering guarantee on the order of call execution in multicast callees.

2 Aims and requirements

The aim is to provide a simple and efficient way for objects to call a procedure on a
group of objects via multicast RPC. Without simplicity and efficiency, application
programmers are less likely to use multicast RPC, and more likely to build their
own multicast facilities within applications.

2.1 Simplicity 4
To ensure simplicity, the introduction of multicast RPC must not compromise the
existing object model supported in Extended-C++. Multicast RPC must therefore

® support a fine-grain object model, — objects are C++ objects, not whole
address spaces;

¢ provide a statically typed interface to groups of objects, similar to the interface
to a single object which is provided by Extended-C++ RPC.

To enable ease of use, it must also provide easy understandable semantics,
therefore it must

¢ guarantee total ordering across all calls received by the objects in a group and
any change to the number of objects in a group.

Figure 1 illustrates how we intend to provide a simple and uniform multicast RPC
facility in Extended-C++.

group of callees

caller callee caller

res = object_p->oplargs) res_list = group_p->op(args)

Figure 1. RPC and multicast RPC invocations

A remote procedure call is programmed by
res = object_p->op(args);

where object_p is a handle to the remote object on which op is called with some
arguments. The caller is blocked while the call is carried out, and if the call is
successful then it may return a result which is assigned to res.

The intention is to be able to program a multicast RPC in Extended-C++ in a way
which is syntactically very similar to the programming of a remote procedure call,
that is

res_list = group_p->oplargs);

where group_p is a handle to a collection of remote objects on which op is called
with the provided arguments. The caller is blocked while the call is carried out, and
if the call is successful then the results which may be produced in each remote
object is collected in a list which is assigned to res_list. The ordering of the
execution of the called procedure is the same in all the objects which are called by
multicast RPC.

2.2 Application requirements

Many CareVue applications are event-based and require that replicated objects
maintain synchronized state. Multicast RPC in Extended-C++ should therefore

® support communication capabilities which facilitate the development of
event-based applications (i.e., applications which communicate
asynchronously but which still require reliable message delivery);

* support communication capabilities which facilitate the development of
replicated objects which maintain synchronized state.

Replicated objects can be used for increasing the fault-tolerance of a distributed
system in which components can fail independently. The aim is thus to be able to
use multicast RPC for implementing atomic delivery of a call to all or none of a
group of objects.

3 Object groups in Extended-C++

Support for multicast RPC in Extended-C++ is provided in terms of the group
abstraction [Kaashoek 91][Birman 91][Olsen 91]. A group is a named, typed,
interface instance which represents a collection of objects. Different groups can
have different types, and groups of the same type can have different names. The
possible types of groups is statically defined at compile time, but a particular group
with a particular name is formed at run-time by instantiating it from a group type.
Objects which wish to join a particular group must call a procedure join on the
group type and specify the name of the group they will be joining. A static type
check ensures that the type of a joining object, i.e. the collection of signatures of its
operations, is a subtype of the group, i.e. the collection of signatures of operations
that constitutes the group type. Objects which wish to leave a particular group
must call a leave procedure on the group type and specify the name of the group
that they belong to.

In traditional RPC, communication is point-to-point between a client (caller) and
server (callee) object. Although the client does not know the location of the server
object, it still must identify (via a handle) the server object of interest. In contrast,
group communication is between a client and a named group interface instance
which represents an anonymous collection of objects which may be local or remote.
The named group interface instance is (logically) responsible for the dissemination
of received calls to the objects which belongs to the group. It thus provides an
indirection point which decouples knowledge about how to invoke a collection of
objects from knowledge about which objects belong to the collection. The difference
between point-to-point RPC and group communication is shown in Figure 2.

Objects in the Group "Rob"

mecccovecma

The Object “Michael* /

O—

Point-to-Point RPC 1 / Multicast RPC

An Object Interface Instance / RS b 7/

A Group Interface Instance

Figure 2, Point-to-point RPC versus group communication

Names of object instances and group instances are used to enable objects to obtain
handles that they can use for calling the procedures of objects and groups. In the
case of groups, a group name is also a means for an object to identify which group
it wishes to join or leave.

The effect of calling a procedure on a group, i.e. multicast RPC, can be simulated
by making a RPC call to a proxy object which in turn makes a sequence of RPC calls
on the objects in the group. Multicast RPC ensures that the order in which the
objects in a group dispatch and execute calls is the same in each object in the group,
i.e. a total ordering. To simulate this with the proxy, the proxy must complete a
multicast before it can initiate another one, i.e. it must act as a sequencer (see
Section 4.1).

Extended-C++ RPC supports the ability to block a caller until the callee has
dispatched, executed and possibly produced a result which is returned to the caller
(synchronous RPC), and the ability to block a caller until a call has been delivered
but not dispatched and executed by the callee (asynchronous RPC). Asynchronous
RPC cannot return a result to the caller.

In a similar way multicast RPC can be either synchronous or asynchronous.
Synchronous multicast RPC blocks the caller until all objects in a group have
dispatched, executed and possibly produced a result all of which are returned to the
caller. Asynchronous multicast RPC blocks the caller until all objects in a group
have received, but not dispatched nor executed a call. Asynchronous multicast
cannot return a result to the caller.

4 Properties of multicast RPC

The properties of multicast RPC can best be illustrated when there are more than
one object which calls a group. Figure 3 contrasts a handcrafted solution to using
multicast RPC, in the situation when there are two callers.

callees group
caller E gg u§|'>@
handcrafted multicast support for groups

Figure 3. Handcrafted multicast contrasted to support for groups

With handcrafted multicast, a caller must obtain a handle to each object it wants
to call; it must spawn threads if these objects should be called concurrently, and it
must deal with each RPC failure that occurs. Multiple callers to the same set of
objects need to have their calls synchronized, if there is a requirements on the order
in which calls are received in each callee (for example, if each callee should execute
all calls in the same order, as the other callees). Whenever the set of callees need
to change, all callers need to modify the set of handles that they possess to callees,
and they may need to do so in a synchronized way.

With support for groups, each caller possesses a single handle, the group handle,
to a group of objects. When a caller calls the group, threads are transparently
spawned to call each group member concurrently. Each caller need only deal with
a multicast RPC failure. All calls made via the group handle are totally ordered, so
that the sequence of calls that a group member executes is the same as that of all
other group members. In addition, any membership changes to the group are
totally ordered with other calls to the group. The handle to a group does not depend
on which objects belong to a group. This means that group handles require no
modification when the group undergoes membership changes.

The independence between a group handle and the membership of a group is an
important property, because it increases the amount of decoupling and
independence between distributed objects thus enabling simpler designs and
increased system robustness.

4.1 Ordering

The total order guarantee that group support provides is illustrated in Figure 4.
With no order guarantee, and the two callers being independent, it is possible that
callee 1 has b called before a, whereas callee 2 has a called before b, and callee 3
has b called before a. Any permutation of a and b calls are possible in each of the
callees.

With the total order guarantee provided by multicast RPC, and the two callers
being independent, callee 1, 2 and 3 will all have b called before a (as in the figure),
or will all have a called before b, depending on whether the multicast RPC protocol
selects a or b to be executed first.

no order guarantee total order guarantee
Figure 4. No order versus total order

5 Group features for multicast RPC in Extended-C++

This section describes the group features that have been designed for the prototype
implementation of multicast RPC in CareVue.

The keyword group is introduced in Extended-C++ to distinguish the specification
of a class, which implicitly defines an object interface by the operations in the class,
from the specification of a group interface type. The keyword is to be used for
declaring group interfaces and for instantiating groups from them.

The instantiation of a group results in the construction of a group with no
members, and a handle to the group is returned. A group instance can be destroyed
by invoking a destroy operation on the group, but the effect is delayed until the
group has no members.

A group handle can be passed around similarly to the passing of handles to remote
object. This enables group handles to be inserted in name servers for use by
unknown third parties, and to be passed between objects.

5.1 The features
A group (interface) with a single operation op1l can be declared as follows:
?roup ABC

public:
void opl(String);
};

A group can, as opposed to a class, only have operations as members. It would not

make sense to allow a group instance to have state (what object should encapsulate

it?).

A group handle can be instantiated, and assigned to a group pointer as follows:
group ABC *abc_p = ABC::form(*Olsen");

The form operation is a standard operation which is inherited in all groups. Its

execution results in the instantiation of a group which is identified by the

argument string, in this case a group instance called "Olsen". However, if there

already exists a group instance which is identified by the given argument string,

then this instance is returned as the result of invoking form.

An object can be made a member of a group, if it is instantiated from a class which
is a subclass of a group. E.g.

class XYZ : public ABC
(

public:
XYZ();
void op2(int);
}
XYZ *xyz_p = new XYZ;

The object pointed to by xyz_p can now be made a member of the group identified
by "Olsen" by calling the standard group operation join as follows:
abc_p->join(xyz_p):
The object pointed to by xyz_p can subsequently leave the group by calling the
standard group operation leave as follows:
abc_p->leave(xyz_p);
A group handle can be destroyed by calling the standard group operation destroy
as follows:
abc_p->destroy() ;
For performance reasons, the group operation form should only be used when a
group handle will be used for joining objects as members of the group. This is
because the execution of form will cause all multicast messages, that are intended
for the group, to be sent to the address space in which form is executed (see Section
6.4.1).

If a group handle will not be used for calling join or leave operations on a group,
then it should instead be instantiated via the standard group operation locate.
Using locate, a group handle can be instantiated, and assigned to a group pointer
as follows:
group ABC *abc_p = ABC::locate("Olsen”);

The locate operation is inherited in all groups. It differs from form, in that it does
not result in the instantiation of a group if there is no group instance which is
identified by "Olsen", and it does not cause multicast RPC messages intended for
the group to be sent to the hosting address space. If there is no group instance

identified by "Olsen", then locate returns a null pointerl.

Note, how the use of locate for obtaining a group handle provides a type-safe way
of binding group handles to pointers. This is in contrast to the cast that needs to be
made, when handles are obtained via primitive name servers. Also note, that it is
possible to obtain a group handle via form, without using it for joining members.
By not joining objects as members in the address space where the execution of form
resulted in the construction of a new group, it is possible to achieve a performance
gain, because there are no members that need scheduling in the address space (see
Section 6.2).
A group instance can be called via a group handle as follows:

abc_p->opl("Hello World®");
This call is a multicast RPC which causes all members that belong to "Olsen” to
have op1 called with "Hello World" as argument.

Note that
abc_p->op2(42);

1. It may be useful to provide the 1ocate operation with an optional time out or wait-forever
parameter.

will be caught as an illegal operation during static type checking, because op2 is
not in the group interface.

It is possible to define asynchronous operations!

group ABC
(.
public:
opl(String) threadable;

This has the effect that an object which calls the group, is blocked only until each
member has received the call, but not while the members are dispatching and
executing it.

A group operation can be defined to return a result. This result needs to be a list of
the results returned by each object in the group. Because the operations that will
be called on the objects in a group must be subtypes of the operations in the group
interface, the operations in objects must return a result as a list with one element.
For example, if a group interface type is specified as follows:

group ABC
(
public:
Result (int) opl(String);
Y

where Result (int) is a list parameterized with the type of each element, in this

case int, which is equivalent to the type

struct {
int: length,
int: *data} Result;

then a call to opl on a group instance that has 3 members returns a list of length
3. This list is produced by gathering together the lists of length 1 that each member
returns.

in a group interface, e.g.

The above is only one out of many possible ways of enabling group operations to
return results to the caller. A discussion on group results can be found in [Cooper
90]. Of course, the programmer can always construct a group collector for collecting
replies from the members of a group as part of the caller program, and then pass
the collector’s handle as an additional argument when calling group operations.

Each group member can then use this handle to pass a result back to the caller’s
address space, where the caller can obtain a result that the collector produces from
the individual results.

Of the group features described above, 1eave, destroy, and group results have
not been incorporated into the prototype implementation, see Section 9.

An example application, which runs in the prototype implementation, is shown in
Figure 5, where the execution of program A will result in the members of the group
"G1" being called once, and where each execution of the B program will result in a
member being added to "G1".

1. Extended-C++ provides the key word threadable which when used as a predicate on an
operation declaration, declares that the operation will be executed by threads which are
independent of the calling threads.

program A - caller program B - callee

(graup ABC group ABC
{
public: public:
void opl(8String); void opi(String);
}: }i
main() class xyz : public aec
{ {
ABC *abc_p = ABC::locate(*ci*); public:
abc_p->opl("Hello World*"); XYz ():
b H
main()
{
gToup ABC *abc_p = ABC::fOXm(*G1*);
XYZ *xyz_p = DOW XYZ;
abe_p->join(xyz_p);
}

Figure 5. Example programs for a multicast RPC caller and callee

5.2 Transparency

The use of groups is not transparent in Extended-C++ for the obvious reason, that
the programmer must use the group keyword (when specifying group interfaces
and when instantiating groups). This is in line with the non-transparency in
Extended-C++ between handles used for local procedure calls and handles used for
RPC. The reason for making that distinction is to make the programmer aware of
the differences in failure modes and latency. Multicast RPC is differentiated from
RPC for the same reasons. This deviates from the approach taken in ANSA and
ANSAware [ANSA 89], where there is no computational notion of local calls.

In Extended-C++, a call itself does not reveal whether it will result in a RPC or a
multicast RPC being carried out. Both RPC and multicast RPC provides location
transparency (it is not known where the remote object(s) are located). With
multicast RPC it is also transparent which objects belong to a group.

6 The architecture for engineering groups in Extended-C++

The software architecture for the engineering of groups comprises (i) a set of
hierarchically organized components, (ii) multicast logic for ensuring reliably
delivery and total ordering of calls executed by the objects in a group, and (iii)
management logic for maintaining the membership information of a group. The
hierarchical organization of components serves to reduce the message traffic of the
multicast logic, and to reduce the need for membership information in each
component.

The design of the software architecture is based on three assumptions each of
which simplifies the design task significantly.

Robust Logically Centralized Service

It is assumed that there is an very robust, logically centralized, service which can
be used in lieu of (complex) truly distributed, algorithms. The idea is to define a
reasonably small set of responsibilities for this service which assumes that the
service rarely fails and that the service will not become a performance bottleneck
as its responsibilities are exercised. In doing this, the intent is to simpify the

overall problem of designing a multicast solution by making a small set of
simplifying assumptions which can in turn be supported by handcrafted, special
purpose, solutions.

Basic RPC Capabilities
It is assumed that basic RPC capabilities include:

* a highly reliable service with minimal likelihood of premature time-out due to
network or processor congestion;

* at-most-once semantics;

¢ robust clean-up of client and/or server state if a client or server fails in the
middle of performing an RPC.

Malleable White Box RPC Protocol

It is assumed that the underlying RPC protocol can be adapted and enhanced to
offer capabilities which are tailored to support multicast communication. Treating
the RPC mechanism as a malleable white box can also offer opportunities for
making end-to-end design trade-offs which result in simplifications.

6.1 Components of the software architecture
A group is engineered by the following components:

Group Member - an object which belongs to one or more groups; there can be
many Group Members in a system;

Group Representative - represents a collection of zero or more objects in a
particular address space which are members of a particular group; there is
one Group Representative per group per address space;

Group Leader - a distinguished Group Representative which is responsible for
managing Group Representatives and for sequencing all calls to the group’s
operations; there is one Group Leader per group per system,;

Group Manager - a logical object which contains the names of and lists of
Group Representatives for all of the groups in a system; there is one Group
Manager per system.

The caller of a group, a Group Client, of which there can be many for each group,
does not belong to the components that make up the software architecture for
groups.

A Group Representative and the Group Members that it represents reside in the
same address space. The Group Manager logically resides in a address space which
is assumed to be extremely robust, but it may be physically realized by a collection
of distributed objects that reside in different address spaces. A Group Leader and
a Group Client may reside in the same or different address space; either can reside
in the same address space as a Group Representative and some set of Group
Members. '

A typical distribution between these objects is shown in Figure 6.

10

A Group "

Group Members

Group Representative

Group Client Group Manager

.,

User Address Space

Very Robust
Adgsss Space

A Group

@
@ get handle for group (i.e. for Group Leader)
® call procedure using handle
client @® remote multicast call to Group Representatives
@ local multicast call to Group Members
User Address Sj ——{> local procedure call

——P remote procedure call

Figure 7. Group Invocation Logic

11

6.2 Multicast logic

The term invocation is used in the remainder of the report to denote the act of
calling a procedure on a group. An invocation is implemented by an exchange of
some set of inter-object messages which performs the distribution and coordination
necessary to deliver a call to each of a group’s members. An invocation originates
when a client object executes a procedure call on a group. Once an invocation is
complete, the called procedures can be dispatched and executed.

Assuming that a group has formed and that there is a leader, a client obtains a
group handle by calling 1ocate with an argument that denotes a group. The result
of this call is a handle to the leader of the group, which is obtained from the Group
Manager. Using this handle for an invocation, the client will in fact, but
unknowingly, call a procedure on the leader, which in turn distributes this call to
each of the group’s representatives. Each representative then distributes the call
to the members which are co-resident in the representative’s address space. This
hierarchically organization of the group components by the multicast logic is
diagrammed in Figure 7.

There are several key points about this hierarchical organization of the
architectural components

1. By having all of a group’s invocations pass through the group’s leader, it is
possible to enforce a total ordering of all the invocations that are received by
the groups members. To accomplish this, the leader simply blocks the next
invocation until the current invocation has been completed. Once the
invocation has been completed, the dispatching and execution of the function
which was called can be synchronous or asynchronous depending upon the
required semantics and desired parallelism between the group members.

2. A group with M members and R representatives, where R <=M, requires! at
most 1 + R remote messages per invocation. This is only one more message
than the theoretical minimum of one remote message per address space (R
messages), and can be significantly less than M messages.

3. The hierarchical organization of Group Members and Group Representatives
has the effect, that membership knowledge is local to the address space in
which members reside. The Group Leader only knows about the group’s
representatives, it does not know of Group Members other than those that it
represents itself.

4. Multicasts to the members of a group and membership changes are
coordinated by the Group Leader and Group Representatives. The leader can
serialize multicasts with changes to the set of representatives, and
representatives can serialize multicasts with changes to the set of members
they are responsible for.

5. At-most-once delivery of an invocation is achieved by relying on at-most-once
RPC semantics, and by restricting an object from being able to join a
particular group if it is already a member.

1. Assuming multicast is implemented using existing RPC. If true multicast is available at the
transport protocol level, it can be used here.

12

6. The packaging of the code which actually implements a group and the
computing resources consumed by the group can be readily separated from the
code and resources needed for clients. This allows the cost of using a group to
be kept to a minimum for group clients, and it allows changes to group
implementations to be made without impacting client programs.

In Section 8 it is shown, that although the Group Leader is a singular focus for
group activity, it need not become a single point of failure.

6.3 Result collection logic

If a Group Member returns a result, this can be passed to the client by first passing
the result to the Group Representative which passes it to the Group Leader which
passes it to the client. This scheme reverses the invocation logic.

It is up to an implementation to work out an appropriate result collection scheme,
of which there may be many options within a single implementation.

6.4 Management logic

The management logic is responsible for managing the components that engineer
a group.

6.4.1 Group Representative

A Group Representative manages the Group Members that reside in the same
address space as itself. The join and leave operations which are called by
Extended-C++ objects on a group are executed by the representative which resides
in the same address space as the calling object.

A Group Representative is instantiated when an Extended-C++ object calls the
form operation on a group type for which there is no representative in the address
space of the calling object. When a representative is being instantiated it requests
the Group Manager for a handle to the Group Leader of the group. The
representative uses the handle to request the leader to be joined to the set of
representatives for the group.

6.4.2 Group Leader

A Group Leader has two roles (i) it is a Group Representative for the Group
Members which reside in its address space, and (ii) it manages the other Group
Representatives. The leader serializes Group Representative membership changes
with group invocations. It is thus ensured that these membership changes are
atomic (i.e., they occur in-between invocations), and that they are part of the same
total ordenng that governs group invocations.

6.4.3 Group Manager

The Group Manager manages the Group Representatives for each group, and it
registers which Group Representative is the Group Leader of each group. When a
representative is instantiated, it requests the Group Manager for a handle to the
Group Leader, and if there are no leader for the group, the Group Manager
appoints the representative as leader. It is the Group Manager from which a client
obtains a handle to the current leader of a group.

13

The Group manager must have been instantiated before any groups can be
instantiated. When a Group Manager is instantiated, it publishes a handle to itself
in a name server.

6.4.4 Group Leader termination

Group Representatives and Group Members can terminate without affecting the
service of a group which is provided by remaining Group Members, because their
request to leave (and join) a group are totally ordered with invocations on the
group. A Group Leader can terminate by simply choosing to no longer process new
invocations. Clients which attempt new invocations will receive an exception (e.g.,
due to an RPC failure), and can then contact the Group Manager for a handle for
the new leader (as detailed in Section 7.1.1).

7 Replication

When a replicated service is provided in terms of a group in which each Group
Member is a replica which implements the service, it is necessary to ensure that
the state of the Group Members are synchronized. Extended-C++ supports the
provision of encoder and decoder functions which are operations in a class that
perform marshalling and unmarshalling of the state of an instance of the class.
These operations must be defined by the application programmer so that the group
infrastructure can copy the state of one of the Group Members to an object which
is joining the group.

The synchronization of the state of objects that join a group with the state of an
existing Group Member is carried out by the Group Representative which receives
the join request. When a Group Representative receives a join request it calls a
state encoder operation on one of the Group Members that it represents and
installs the state in the joining member by calling its decode operation with the
encode state as argument. If there are no Group Members currently being
represented by a Group Representative, then the Group Representative requests
the Group Leader to return the encoded state of a Group Member. The Group
Leader replies to this request by obtaining the encoded state from one of the Group
Members that it or one of the other Group Representative represents. If there are
no Group Members present, then the object that joins a group defines the state that
Group Members must maintain.

8 Reliability

This section describes how reliability is addressed by the group architecture. The
basic reliability objective for the architecture is to ensure that the scope of address
space failures can be constrained, so that, in general functional objects can
continue to make progress. Specifically:

e A client’s failure is atomic - either the invocation it has made is executed by
all or none of the group’s members (i.e. the group’s members discard the
invocation). Invocations made by the client, which have been queued by a

Group Leader (as part of the serialization of invocations) can be discarded by
the Group Leader.

14

® The failure of a Group Leader always results in an attempt to chose a new
leader (which may not succeed if there are no other Group Representative
capable of becoming the leader). Failure of the leader in the midst of an
invocation is not necessarily atomic: some members may receive the
invocation, others might not, and the client will see an exception instead of a
reply from the group. (Section 9 describes support for stronger guarantees.)

* The failure of a Group Representative does not affect members that it does not
represent, other representatives, or the Group Leader, but it may cause the
invocation to fail (client sees an exception) because it may not be possible for
the group to provide its delivery guarantee.

¢ Except when a software defect is to blame (e.g., the premature destruction of
a Group Representative or Group Member), a Group Representative and its
Group Members always fail together (because they reside in the same address
space).

® The failure of one Group Member does not affect other Group Members, Group
Representatives, or the Group Leader, but it may cause the invocation to fail
(client sees an exception) because it may not be impossible for the group to
provide its delivery guarantee (e.g. at least N Group Members receive an
invocation)..

¢ The Group Manager is assumed to fail rarely; when it does, a system restart
may be required to recover the Group Manager.

The remainder of Section 8 describes the various failure scenarios and protocols for
dealing with them.

8.1 Group Leader fails

A Group Leader can fail during an invocation, or between invocations. In both
cases a new leader must be chosen, but in the former case, the client and/or the
Group Representatives must deal with a potentially interrupted RPC.

The failure of a leader can be detected in three ways: (i) a client is unable to
communicate with the leader, (ii) a group representative notices, while receiving a
invocation or transmitting a reply, that the leader has failed, or (iii) the Group
Manager (which can detect the existence of address spaces in the system) notices
that the address space that contained the leader no longer exists.

If a Group Representative notices that the leader has failed, it sends a message to
the Group Manager requesting that a new leader be chosen. If the Group Manager
notices the failure, then it decides to chose a new leader. The simplest way for the
Group Manager to chose a new leader is to simply consult its membership list for
the group and pick one of the remaining Group Representatives which is capable
of being the leader. This object is then informed that it is now the leader.

A client may also notice that a leader has failed, in which case it contacts the Group
Manager to request a new handle. If the client’s current handle matches the handle
for the object that the Group Manager currently regard as the leader, then the
Group Manager must choose a new leader. If the client’s handle does not match,
then the Group Manager simply returns the correct handle to the client.

15

This simple reformation strategy obviates the need for objects other than the
Group Manager and the newly chosen leader to be involved in the reformation. The
other group representatives can just wait passively until a new leader is chosen.

The Group Manager may receive many requests to elect a new leader when the
Group Leader has failed. These requests must provide enough information to
enable the Group Manager to detect when a request is already accommodated by a
previous request.

The maintenance by the Group Manager of Group Representatives membership
lists which are consistent with those maintained by the various Group Leaders is
accomplished by using a log-then-update algorithm similar to that which is
employed in database systems. The idea is for a Group Leader to first inform the
Group Manager of any membership changes, after which the Group Leader
changes its own membership list, and then informs the Group Representative
which requested the change that the change has been granted.

If the Group Leader fails, then the Group Representative which requested the
membership change can try again with the new leader. The new leader will either
already be aware of the membership change based upon the membership list it
received from the Group Manager (because the old leader failed after telling the
Group Manager about the change), or the new leader will simply perform the
membership change.

8.2 Group Representative Fails

A Group Representative can fail during an invocation, or between invocations, but
in the latter case the failure may not be detected (by the leader) until the next
invocation if the invocation returns no reply. When the leader detects the failure,
it removes the representative from the membership list. It then ceases to include
the failed representative in the current and subsequent multicasts. The failure
may prevent the leader from providing the group’s delivery guarantee, in which
case the client will receive an exception.

8.3 Client fails

The only client failures which matter to a group are the ones that occur during an
invocation. If the client fails before sending the entire invocation, then the leader
simply discards the invocation in progress. If the leader has started to multicast
the invocation to the representatives, then they also discard the invocation. Until
the entire invocation has been transmitted, it is not possible for a representative to
have dispatched the remotely invoked function on the members it represents, so
the only clean-up necessary is to destroy any (partially) unmarshalled RPC

argumentsl.

1. A representative would not need to clean-up at all if the leader did not start a multicast until it
had received an entire invocation, but this would require the leader to be able to buffer the
entire invocation and incur the memory overhead for maintaining a potentially large amount of
transient data.

16

If the client fails after the invocation has been completed (but before the reply has
been received), then the orphan invocations are allowed to run to completion, and
the group’s reply is then discarded by the leader.

9 Atomic multicast RPC

Atomic invocation groups are groups which have the additional guarantee that ifa
group’s client or leader fails in the midst of an invocation, then either all of the
group’s extant members receive the invocation, or none of them do. Note that this
form of atomic invocation does not deal with failures of group members during an
invocation. In other words, the failure of a group member during an invocation will
not affect the invocation of the remaining group members. Atomic invocation
groups are particularly useful for implementing replicated objects where the idea
is to be able to tolerate the failure of a replica.

Atomic groups are an extension to the basic groups described so far. Atomic
invocation is provided by maintaining enough information for an invocation such
that, in the advent of a failure of the group’s leader in the midst of multicasting a
message, the members which have not received the entire message can obtain it
from another source, specifically, the Group Manager.

It turns out that the entire message does not need to be stored by the Group
Manager, and that the information that is stored needs to only describe aspects of
the most recent invocation on the group. The latter observation is based upon the
fact that Group Leaders already serialize invocations, so that there is at most one
invocation per group in progress at a time. The former observation is based upon
knowledge of how the underlying RPC protocol works, wherein the last packet
must be received before the function which was (remotely) called will be
dispatched.

9.1 Implementing Atomicity

Atomic invocation groups are implemented by having the Group Leader send the
last packet of the current invocation to the Group Manager before it sends this
packet to the various Group Representatives. The Group Manager maintains this
packet until the next last packet for the next invocation for the group is received.
There are several failure scenarios to consider:

1. The Group Leader fails before sending the last packet to the Group Manager.
None of the Group Representatives have received the last packet, so none of
the members can proceed with dispatching and executing the called
procedure. The RPC protocol allows receivers to detect the failure of senders
(as well as vice-versa), so each representative unilaterally discards the
invocation. The invocation has, in effect, never occurred.

2. The Group Leader fails after sending the last packet to the Group Manager
but before any Group Representative has received the last packet.
Each Group Representative contacts the Group Manager to obtain the last
packet and proceeds with the invocation. Prior to choosing a new Group
Leader, the Group Manager reliably sends the currently buffered last packet

17

3.

4.

to all of the group’s representatives so that they have a chance to complete the
current invocation prior to a new invocation via the new leader.

The Group Leader fails after sending at least the last packet to at least one
Group Representative.

Same as #2, but only the Group Representatives which did not receive the last
packet contact the Group Manager to obtain it; all invocations still run to
completion.

A Group Representative fails during an invocation.

The RPC detects the failure of the Group Representative and the leader ceases
to include the representative in its multicast; the leader is eventually
informed by RPC run-time that the representative has failed, so it removes
the representative from the membership list.

10 Prototype implementation of multicast RPC

The purpose of developing a prototype implementation of CareVue platform
support for multicast RPC are multi-fold:

to justify the most basic functionality of the multicast RPC architecture;

to obtain a demonstration and experimentation vehicle that effectively shows
how multicast RPC support can simplify many types of applications;

to provide performance figures that show that the performance of applications

which are built with multicast RPC support does not have an overhead which
renders platform support for multicast RPC impractical;

to provide an implementation which can serve as a basis for introducing
platform support for multicast RPC support in forthcoming releases of the
CareVue 9000 product.

The prototype implementation comprises modification to the Extended-C++
preprocessor to support the language extensions for groups, a multicast extension
to the existing RPC library, and a group management library.

10.1 Simplifications

To reduce the prototyping task without reducing its proof-of-concept value, the
following simplifications apply to the prototype:

group operations cannot return results;
once joined a group, a member cannot leave the group;

the state of objects that join a group is not synchronized with the state of
existing group members;

once instantiated, a group cannot be destroyed;
no handling of failures.

10.2 Multicast logic

The current Extended-C++ RPC implementation marshals arguments into one or
more RPC packets. Upon receipt, the arguments are unmarshalled from the
packets and the packets are discarded. For the Group Leader to propagate an

18

invocation to the Group Representatives efficiently, it needs to be able to forward
the packets that it receives without having to unmarshal and then remarshal the
arguments.

The effect of performing a group invocation using a group handle, is that a RPC
buffer is constructed in the client which is passed to the RPC layer. This buffer has
fields which instruct the RPC layer that it should, rather than performing a normal
RPC, call a special purpose operation on the Group Leader, passing the RPC buffer
as an argument.

The Group Leader’s stub does not unmarshall the RPC buffer that it receives.
Instead it prepares the buffer for being forwarded to all the Group Representatives
for the group (including itself, but this can be optimized). The leader’s stub then
passes a list of the Group Representatives along with the RPC buffer to the RPC
layer.

The RPC layer spawns a thread for each Group Representative. Each thread
executes a normal RPC that passes the forwarding buffer to each Group
Representative. This is depicted in Figure 8.

...

' Data Buffers !
Emmmmﬂonull-gmpnmhﬁnmmj

Figure 8. Muiticast RPC implementation

This Figure illustrates the threads being spawned in the leader (each thread
executes an RpcMsg object), and how each spawned thread does an RPC to each
address space in which there is a Group Representative for the group that the
leader represents.

When a Group Representative receives an invocation, the forwarded buffer is first
unmarshalled, then for each member which is represented by the Group
Representative, a thread is spawned which invokes the member via a local
procedure call.

This protocol is extended to support multicast communication by requiring that
acknowledgments from all receivers are received before the next burst is sent. If a
receiver fails to send an acknowledgment, packets are retransmitted until the
receiver either replies or is determined to have failed. Although this extension is
relatively simple, it does have the drawback that multicast performance is limited
by the slowest receiver.

19

10.3 Group Management

Group management is implemented mainly in terms of hash tables which maps
group names to list of remote handles, and dynamic arrays of remote handles.

The Group Manager’s hash table hashes group names to lists of handles to Group
Representatives the first of which is the Group Leader. The Group Manager has
operations for adding and removing handles of representatives, and for returning

a handle to the leader of a group. The Group Manager also has an operation which
allows its contents to be listed.

A Group Representative has a dynamic length array which contains the handles to
the Group Members which it represents. A representative has operations which
enables Group Members to request that their handles are added (join) or removed
(leave) from the array of handles. A Group Representative also has operations for
iteratively returning handles to its Group members. This is used to enable the
server group stub (see 9.2) to get hold of handles to the members, so they can be
invoked when a group invocation has been forwarded to the representative.

In addition to containing an array of handles for Group Members, the Group
Leader also contains a list of handles for Group Representatives; this list is a cache
of the list which is maintained in the Group Manager.

10.4 Concurrency control

The Group Manager can only process one operation invocation at a time. This is
achieved by Extended-C++ regions in the implementation of each operation. A
region prevents more than one of the Group Manager’s threads to enter it at a
time.

The Group Leader can only process one operation invocation at a time. This is

achieved by a region in the implementation of each operation, which only allows
one of the leader’s threads to be in any region at a time.

A Group Representative can receive group invocations from the leader, and
invocations that request that an Extended-C++ object is joined to the group. A
representative prevents interference between these two kinds of invocations by
way of a region in each of the operations that can be invoked. Only one of the
representative’s threads can be in any region at a time.

However, the Group Representative which is the leader of a group, will send group
invocations to all representatives, in particular, also to itself. To prevent a deadlock
from occurring in the leader while it is multicasting a group invocation which it is
blocked from processing, the regions in a Group Representative allows one of the
leader threads in a region at any time and one Group Representative thread in any
region at a time. Because the leader is blocked while it multicasts to the
representatives, the blocked leader thread cannot interfere with the Group
Representative thread.

10.5 Performance figures

Some encouraging performance figures have been measured for the prototype on a
HP730 (80 MIPS) machine running HPUX9.0. The average time for invoking a
group from an EC++ object which resides in an address space on the same machine

20

as a varying number of members each of which execute in separate address spaces,
are shown in table 1.

number of number of a_lvcrage time averz.ige .
. . in seconds for | multicast time
multicasts to members in A .
" up making a in seconds
group gro multicast per. member
1000 1 0.005 0.0050 v
1000 2 0.009 0.0045
1000 10 0.031 0.0031

Table 1: Extended-C++ multicast performance

For comparison, the average time for a RPC between two objects in different
address spaces on the same machine (measured over 1000 RPCs) is 0.003 seconds.
As seen from the last column in Table 1, the overhead of invoking a group is spread
across the members of a group, so that the average time for a multicast to reach a
member of a group converges towards the time it takes to make an RPC. Note, that
these figures are for invocations between address spaces on the same machine.
Also note that the buffer which is sent in the multicast contains only a single
packet.

Performance figures for two other systems are provided below to give an idea of
how our figures are positioned. Direct comparison of the figures should be avoided
as different conditions apply to each set of figures. The performance figures that
have been measured for ISISv3.0 [ISIS 92] on HP720 (60 MIPS) machines over
ethernet are shown in Table 2. The ISIS figures are for 1Kbyte packets which are
sent asynchronously and received in total order in the callees; the measured time
is for when the first result, as opposed to all results as in our figures, have been
returned to the caller.

average

time in multicast time
number of seconds for per member
receiving receiving the in seconds for
address spaces | first multicast | receiving the

reply first multicast

reply
[_'——'—_____-——— %

1 0. 0.00900
2 0.0105 0.00525
3 0.0115 0.00383
4 0.017 0.00425

Table 2: ISIS abcast performance

The only available performance figures for the GEX protocol which supports groups
in ANSAware [Oskiewicz 92] is that a multicast invocation of a group with two
members on a HP425T (20 MIPS) machine takes 0.071 seconds. This figure
includes an overhead caused by the generation of debugging information.

21

11 Related work

The conceptual design of multicast RPC in Extended-C++ is based on ideas from
ANSA [Olsen 91]. ANSA groups are interfaces which are indistinguishable from
singleton interfaces. The ANSA architecture for groups is much more general than
the architecture described in this report. ANSA’s architecture covers issues such as
result collection, collation of multiple results into a single result, collation of replica
invocations into single invocations, and synchronization of replica state. The ANSA
architecture for groups also generalizes the separation of mechanisms from policies
to enable provision of most appropriate policy and default policies [Oskiewicz 93].

The architecture for engineering groups in CareVue is based on ideas from Amoeba
in which one kernel among a set of machine kernels can have a sequencer enabled
while the others are disabled. This idea gave rise to our notion of a group leader
which acts as the sequencer of group invocations.

Our architecture deviates from most others by assuming that the logically
centralized Group Manager service can be implemented as a robust service which
is independent of the architecture. ANSA’s GEX protocol is a contrasting example,
where Chang and Maxemchuck’s protocol [Chang 84] is the inspiration for a
distributed algorithm for providing total ordering of messages, which is executed
by the members of a group.

Our support for multicast RPC provides total ordering of messages sent to the
group members. ISIS takes great effort in enabling the programmer to select the
minimum ordering required for a given application by providing various protocols
with differing ordering guarantees. By chosing one ordering option, we restrict
generality so the way multicast RPC is supported in Extended-C++ is very simple.

12 Conclusion

This report has described how multicast RPC is supported in Extended-C++ by a
few simple and easy to understand language extensions. The notion of a group of
objects was introduced as a concept for programming multicast RPC. The
engineering of an object group is realized by a software architecture in which the
components are hierarchically organized. This organization serves to minimize the
number of messages that constitutes a multicast, and to minimize the information
that each component maintains. The software architecture therefore scales well.

The provision of support for groups in Extended-C++ is not just an academic
exercise. Extended-C++ is a language used for production programming in which
the introduction of groups is a welcome abstraction for building event based
applications and/or applications which are composed of replicated software
components. Therefore the approach to supporting groups is pragmatic: simplicity
and efficiency is favoured to generality. The architecture deviates from other
approaches by assuming the availability of a very reliable service which is called
the Group Manager. The information that this service maintains is well-defined, so
it is feasible to hand-craft this service in devoted address spaces and/or machines.

The reliability of the architecture was discussed and it was shown how it could be
extended to support atomic multicast RPC.

22

A prototype which is a simplified implementation of the architecture for multicast
RPC was described. The performance figures that have been measured are very
encouraging. They compare well to available figures for ANSA and ISIS, though
the latter two systems provide additional support for fault-tolerance that are not
yet available in the prototype.

13 Acknowledgements

Thanks to Robert Cole, Nigel Edwards, and John O’Connell for reviewing an
earlier version of this report. Thanks are also due Nigel Edwards and Paul Harry

for making available the performance figures for ANSAware GEX and ISIS,
respectively.

14 References

[ANSA 89] "An Engineer’s Introduction to the Architecture", ANSA, Poseidon
House, Castle Park, Cambridge, U.K., 1992.

[Birrell 84] Birrell, A., Nelson, B., "Implementing Remote Procedure Calls", ACM
Transactions on Computer Systems, Vol. 2, No. 1, February 1984.

[Birman 91] Birman, K.P, "The Process Group Approach to Reliable Distributed
Computing", July3, 1991. Available from Cornell University.

[Chang 84] Chang, J., Maxemchuck, N., "Reliable Broadcast protocols", ACM
Trans. on Computer Systems, Vol. 2, No. 3, 1984.

[Cooper 90] Cooper, E., "Programming Language Support for Multicast
Communication in Distributed Systems", Proceedings of the 10th International
Conference on Distributed Computing Systems, 1990.

[ISIS 92] ISIS Reference Manual Version 3.0.

[Kaashoek 91] Kaashoek, M. F., and Tannenbaum, A. S., "Group Communication
in the Amoeba Distributed Operating System", IEEE, 1991.

[Olsen 91] Olsen, M.H., Oskiewicz, E., Warne, J.P., "A Model for Interface Groups",
Proceedings of the Tenth Symposium on Reliable Distributed Systems, IEEE,
1991.

[Oskiewicz 92] Oskiewicz, E., and Edwards, N.J., "GEX Design Notes - revised",
ANSA Report RC.328.00, ANSA, Poseidon House, Castle Park, Cambridge,
UK, 1992.

[Oskiewicz 93] Oskiewicz, E., and Edwards, N.J., "A Model for Interface Groups",
ANSA Architecture Report AR.002.01, ANSA, Poseidon House, Castle Park,
Cambridge, U.K., 1992.

[Seliger 90] Seliger, R., "Extending C++ to Support Remote Procedure Call,
Concurrency, Exception Handling, and Garbage Collection", Proceedings of the
1990 Usenix C++ Conference, 1990.

23

