
@
HEWLETT
PACKARD

Ad Hoc Visualization
of Distributed Arrays

Alan H. Karp

Ming C. Hao

HPL-93-72

September 8, 1993

Parallel processing, debugging, visualiza-
tion

We have incorporated data visualization
in a debugger for parallel programs writ-
ten with PVM. We use features of the de-
bugger to write the requested data to a
�le for each PVM task, provide a simple

menu for the user to describe the data dis-
tribution, and create a single �le with the
data in natural order. The user then in-
vokes any existing visualizer to look at the
data.

cCopyright Hewlett-Packard Company 1993

Internal Accession Date Only

1 Introduction

Existing debuggers are �ne tools for �nding errors in simple programs; they are inadequate

when dealing with large, scienti�c codes. The problem is in looking at the data. Today's

debuggers allow the user to look at the program variables one number at a time or at arrays

as a whole. As long as the arrays are small or the errors obvious, this view is all we need.

As soon as we need to �nd a subtle error in an array of millions of elements, we are out of

luck.

Only recently have vendors started to provide the kind of views of their data that appli-

cations programmers need. The Prism debugger[9] for the Connection Machine allows the
programmer to view the data in a number of di�erent ways, including surface plots and
color maps. The debugger from MasPar[8] does gray scale and color maps. An interface to

AVS[11] is provided for more sophisticated visualizations.

There are a number of data visualizers available, ranging from the comprehensive to the
simple. Virtually all of these tools can read the data to be displayed from a disk �le. Many

debuggers have the ability to dump the output of a display command to a �le instead of to
the screen. Hence, a program variable can be visualized by using the debugger to write the
data to a �le and then invoking a visualizer. However, this simple scheme doesn't work well
for irregularly spaced data, particularly in more than one dimension.

The problem is even worse for parallel programs. The current technology of debugging a
distributed memory multi-computer consists of invoking an instance of the debugger for each
task. If we dump the part of the array held by each node to a separate �le, we can invoke a
visualizer, but we may not be able to see what we need. It all depends on how the data is

distributed.

A variety of data distributions are often used[1, 2, 7]. An array distributed by blocks has

contiguous elements assigned to each task; one distributed cyclically has elements dealt in
round-robin fashion as in a card game. The data can also be distributed in a block-cyclic

manner where contiguous blocks of elements are dealt out to tasks, round-robin assignment
being used for the blocks. Additionally, each dimension of a multidimensional array can have

a di�erent distribution. Even for block distribution in one dimension, �nding the error in a
distributed array may be di�cult.

As an example, consider a one dimensional array of length 100 distributed over 4 nodes in

blocks of 5 elements. Figure 1 shows a plot of the data held on each node. The array should

look like a cosine function, but we purposely introduced a small error. It is not obvious
where the error is.

If the application required visualization of this array, the programmer would have written

the code necessary to gather the data together and plot it. During a debugging session,

though, we don't know ahead of time what arrays the user will want to see. Hence, we want

2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

"p0.data"
"p1.data"
"p2.data"
"p3.data"

Figure 1: An array of length 100 distributed over 4 nodes with a block size of 5

has been dumped to 4 disk �les and plotted with gnuplot[12]. Although there is an

error in the data, it is not immediately apparent.

an ad hoc scheme that gathers the data without requiring the user to modify the application.

The work described here is part of an e�ort to build an Interactive Visualizing Debugger
(IVD) for distributed memory, parallel programs[5]. A key feature of IVD is that it is
independent of the underlying tools. For example, any performance visualizing system can

be used without modi�cation. In keeping with this philosophy, we have designed the data

visualization to work with existing debuggers and data visualizers in the same way that users
have been visualizing their data on uniprocessors. We provide simple schemes to dump the

data held by each node to disk and for the user to describe the data distribution. Next, we
use the data distribution to produce a single �le containing the data to be visualized and

invoke the user's favorite data visualizer.

2 Reconstructing the Data

In order to put the data back together again, we need some information. First, we need

to know which task produced which output �le. Next, we need to know which part of the
array was held by each task. Finally, we need to know the sequence in which the tasks were

assigned.

3

This last point is worth explaining. We are working with programs written using PVM[10]

for distributing work over a cluster of workstations. PVM programmers make a call to a

routine to spawn new tasks. This routine returns an integer containing a unique identi�er for

each task. If I want to send a message to the 7'th task, I would code pvm send(tid[7],...).

This is the way the programmer thinks of the tasks { tid[7], not the actual task id contained

in the tid array. We must allow the user to describe the data distribution in terms of the

index in the task array, not the numeric values.

There are two possible ways to determine which �le was produced by which task. If our

version of PVM is being used, the spawn routine captures the order of the tasks in the

task array and informs IVD. If this modi�ed version of PVM is not available, the user must
initialize the data visualization by having the debugger controlling each task write that task's
tid to its output �le. The user also dumps the contents of the tid array from one of the
tasks. We can now read the individual tids and determine the index of each task in the
array.

Next, we need to �nd out how the data is distributed. Our present implementation assumes
that the array is distributed in a regular grid with arbitrary blocking in each of up to
4 dimensions, allowing us to follow the time evolution of 3 dimensional objects. For each

dimension, the user gives the length, the block size, and the number of tasks. For the example
we are using, there is one dimension of length 100. There are 4 tasks and 5 contiguous
elements are given to each tasks in turn, i.e., the block size is 5. A pure, block distribution
would have a block size of 25; a pure cyclic one, a block size of 1. In addition, we allow the
segments to overlap by an arbitrary amount. When the segments overlap, we accommodate

toroidal distribution by allowing the last segment in each dimension to overlap the �rst.

Figure 2 shows the menu presented to the user. The data requested is similar to that needed
to describe a data distribution in ScaLAPACK[3]. There are several features of note. Since

several arrays are often distributed the same way, we save data distributions on disk. When

data visualization is requested, a list of all saved data distributions is displayed. If one is
selected, the menu is �lled in with the corresponding values. The user may then change
any of the values, including the distribution name, and save the new de�nition. A default

distribution is used if the user does not select one from disk.

Most debuggers will dump the data to disk in storage order. Since C stores data in row major

order and Fortran uses column major order, we need to know the number of dimensions and
the storage order. In addition, some data distributions can not be described in our notation,

so we allow the user to specify an explicit distribution. In this way we can let the user

visualize arrays which do not have regular data distributions.

We also allow for cases in which some tasks hold no part of the array. For example, in a

master-slave program, the master task usually does not participate in the calculation and
holds no relevant data. We allow the user to select a subset of the tasks to reect this type

4

Distribution name block5

Number of dimensions 3

Order Row Column Explicit

Group Slaves

Read Save Use

Dimension 1 2 3 4
Length 100 100 50 |

Block Size 5 6 50 |
Tasks 4 5 1 |
Overlapped 0 2 0 |

Overlap ends? | y | |

Figure 2: A data distribution menu �lled out for a three dimensional array. See the

text for a description of the various distributions.

of distribution using the grouping feature of IVD, similar to that in the proposed message

passing interface[4].

While this simple scheme doesn't cover all possible data distributions, most of the common

ones can be described. (Explicit distributions described below cover the rest.) For example,
in Figure 2 we see that dimension 1 is distributed in blocks of 5 elements over 4 tasks with no
overlap. Dimension 2 is in blocks of 6 elements over 5 tasks with neighboring tasks sharing
2 elements. Since periodic overlap is speci�ed, the last task shares 2 elements with the �rst.
The third dimension is not distributed. Since only 3 dimensions were requested, we do not

allow the user to enter data for Dimension 4. Figure 3 illustrates an array distributed in

two dimensions over 4 tasks with overlap in both directions. Note that the points in the

intersections of the shared blocks are held by 4 tasks.

An explicit data distribution provides a lot of exibility. It is implemented using a special
form of the data distribution description saved on disk. If the user speci�es that the order is

explicit, then we assume the rest of the �le tells us where to �nd the data. Each subsequent

line in the distribution �le for an explicit description contains the index of the task holding
a word in the complete array and the coordinates along each dimension. While the entries

for data held by di�erent tasks can be interleaved in any order, entries for data held by a
single task must appear in the order they are dumped by the debugger.

For example, 8 elements of a one dimensional array distributed over 3 tasks could have the

explicit distribution shown in Figure 4. Since the data to be visualized are not equally

spaced, we have used the explicit form to allow us to associate the value of the independent

5

P1 P2 P1 P2

P3 P4 P3 P4

P1 P2 P1 P2

Figure 3: Two dimensional array distributed over 4 tasks with overlap in both

directions.

variable with each data point. We can also use an explicit distribution to allow us visualize
an array distributed so as to improve the load balancing. Note that the explicit distribution
need not be known before run time if the user's code produces a valid data distribution
description.

We now have all the data in �les, one per task; we know which �le corresponds to each entry
in the task id array; and we know the data distribution. We can now read the individual �les
and produce a single �le with the data in the same order the debugger would have produced

had we dumped it during a uniprocessor run.

3 Examples

Figure 1 shows how di�cult it can be to �nd a small error by looking at the pieces of the

array held by each task. Figure 5 shows the entire array reconstructed using the procedure
described in Section 2. The data points in error are easy to spot. Simply counting the points

tells me that task 2 is the culprit. We can now go about identifying the source of the error.1

A more sophisticated visualization could have used a di�erent color or plot symbol for each
task because the output �le we create has the task id associated with each data point.

1In this case it is easy. We added 0.1 to all the points computed by task 2.

6

Data distribution name: scattered

Number of dimensions : 1

Order (row/col/exp) : e

0 -0.5

0 -0.2

1 0.0

1 0.2

2 0.25

2 0.5

2 0.9

1 0.8

Figure 4: An example of an explicit data distribution of a one dimensional array.

The two numbers in each subsequent line are the task holding the data and the

value of the independent variable for this one dimensional array. The values of the

dependent variable will be read from the �le produced by the task holding them.

The ability to visualize the array as a whole is even more important for higher dimensional
problems. In Figure 6 we can spot two errors. The small bumps near the right hand side
were introduced intentionally. The discontinuity, which is clearly much larger, is an actual
bug that was not noticed until this plot was made.

Higher dimensional arrays can also be visualized by tools more advanced than gnuplot. For
example, a 3 dimensional array might be displayed as a movie showing how 2D slices change
with time. Visualizing the data would bring the brain's power to detect visual patterns that

would be undetectable by looking at lists of numbers.

Errors such as the ones illustrated here occur in real programs all the time. The code

produces reasonable results, but they are wrong. One of us (AHK) encountered just such a

situation 20 years ago when modeling pulsating stars.[6] A model was evolved for 50 hours of
CPU time until it reached a limit cycle. A surface plot of velocity versus time and position
showed that one of the layers in the interior stood out above the others. It turned out

that a typographical error had been made in specifying the grid spacing. When the error

was corrected, the amplitude of the pulsation increased signi�cantly and a wave that had

erroneously been absorbed reected back to the surface. This error would have been nearly

impossible to �nd without good data visualization. Had the visualization been integrated
with the debugger, the error would have been found much sooner.

7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

"reconst.1d.data"

Figure 5: An array of length 100 distributed over 4 nodes with a block size of 5 has

been dumped to 4 disk �les. These �les were combined to produce a single �le with

the data as it would have been dumped on a uniprocessor run. The error is easy to

spot.

4 Conclusions

Data visualization should become a part of all interactive debuggers. So far it has not, but

users have been able to work around this de�ciency on uniprocessors. Our work makes it

easier for users to visualize data on distributed memory parallel systems.

Our tool lacks some of the features we could have added had it been fully integrated with

the debugger as is Prism[9]. File I/O is slow compared to having the visualizer and debugger
work together on data stored in memory. We plan to provide an interface for tool developers

that would more closely integrate the debugger and visualizer.

On the other hand, this weakness of our tool is one of its strengths. Since our interface is

independent of any of the tools used, we did not have to write a debugger or a visualizer. Had
we written our own, they would have been primitive compared to those currently available.

With IVD, any debugger that can redirect its output to a �le and any visualizer that can

read data from a �le can be used. This feature makes our tool completely portable and as

exible as most people will ever need. It also made the tool much simpler to develop.

8

"2d.data"

0 5 10 15 20 25 30 35 0
5

10
15

20
25

30
35

40

-0.5

0

0.5

1

Figure 6: A two dimensional array with two errors. The small bumps near the right

hand side were introduced intentionally to make a point. The discontinuity near the

left hand side is an actual bug that was not noticed until this plot was made.

Acknowledgements

Thanks to Milon Mackey for explaining how PVM spawns tasks across multiple processors,
and Rich Title of Thinking Machines, Bob Brown of Silicon Graphics, Danny Franklin of
Parasoft, and Je� McDonald of MasPar for help �nding debuggers that incorporate data

visualization. Milon Mackey and Vineet Singh suggested signi�cant improvements to the

paper.

5 References

[1] David Callahan and Ken Kennedy. Compiling Programs for Distributed-Memory Mul-
tiprocessors. Journal of Supercomputing, 2:151{169, October 1988.

[2] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scienti�c
Programming, 1(1):31{50, August 1993.

[3] J. Choi, J. Dongarra, R. Pozo, and D. Walker. LAPACKWorking Note 55, ScaLAPACK:
A Scalable Linear Algebra Library for Distributed Memory Concurrent Computers.
Technical Report CS-92-181, Computer Science Department, University of Tennessee,
November 1992.

9

[4] J. J. Dongarra, R. Hempel, A. J. G. Hey, and D. W. Walker. A Proposal for a User-
Level, Message-Passing Interface in a Distributed Memory Environment. Technical
Report CS-93-186, Computer Science Department, University of Tennessee, January
1993.

[5] Ming C. Hao, Vineet Singh, Alan Karp, Milon Mackey, and Jane Chien. IVD: An
Integrated Performance Visualizing and Debugging Tool for Parallel Applications. In
ONR/ACM Workshop on Parallel Debugging, San Diego, CA, May 1993.

[6] Alan H. Karp. Hydrodynamic Models of a Cepheid Atmosphere: I. Deep Envelope
Models. Astrophysical Journal, 199:448, 1975.

[7] C. Keobel and P. Mehrota. An Overview of High Performance Fortran. Fortran Forum,
11(4):9{16, December 1992.

[8] Jonathan B. Rosenberg and Kent L. Beck. A Massively Parallel Programming Environ-
ment. Submitted to IEEE Computer.

[9] Steve Sistare, Don Allen, Rich Bowker, Karen Jourdenais, Josh Simons, and Rich Title.
Data Visualization and Performance Analysis in the Prism Programming Environment.
IFIP Transactions A, A{11:37{52, April 1992.

[10] V. S. Sunderam. PVM: A Framework for Parallel Distributed Computing. Concurrency:
Practice and Experience, 2(4):315{339, December 1990.

[11] Craig Upson, Thomas Faulhaber, Jr., David Kamins, David Laidlaw, David Schlegel,
Je�rey Vroom, Robert Gurwitz, and Andries van Dam. The Application Visualization
System: A Computational Environment for Scienti�c Visualization. IEEE Computer
Graphics & Applications, July 1989.

[12] Thomas Williams and Collin Kelley. GNUPLOT Version 3.2. NASA Ames Research
Center.

10

