
rl~HEwLETT
~~ PACKARD

A Fuzzy Inference Design on
Hewlett-Packard Logic
Synthesis System

Raymond L. Chen*
HP Laboratories Palo Alto External Research Program.
HPL-93-70
August, 1993

fuzzy logic
synthesis, digital
integrated circuits

A set of hierarchical fuzzy logic system
components are created and integrated into the
HPL's Tsutsuji logic synthesis system. As a
demonstration, these components are applied to
simulate a fuzzy inference control system of an
inverted pendulum. Special graphical virtual
instruments are also created that allow the
designer to tune the system at a high level.

*Electronics Research Laboratory, Universityof California, Berkeley, California
© Copyright Hewlett-Packard Company 1993

Internal Accession Date Only

Table of Contents

1 Introduction 1

1.1 Motivation 1

1.2 Report Outline 2

2 An Introduction to Elementary Fuzzy Logic 2

2.1 Fuzzy sets and membership function 2

2.2 Fuzzy logic and rules 3

2.3 The concept of the linguistic variable 3

2.4 Fuzzy inference 5

2.5 A simple fuzzy system modeL 8

3 Diagram Design for the Fuzzy Inference System 9

3.1 Workbook System Design 9
3.1.1 Library Components 9
3.1.2 Hierarchical User Components 9

3.2 Fuzzy Inference Control System 11
3.2.1 One-Dimensional Fuzzy Inference System ("fish2") 11
3.2.2 Two-Dimensional Fuzzy Inference System ("2d_fish") 14

3.3 Technology Mapping and Timing Verification 16

4 Programming Structure with Tsutsuji 18

4.1 Virtual Instruments (VIs) 18

4.2 Communication through Sockets 18

5 Balancing the Inverted Pendulum 19

6 Conclusions 21

7 Future Improvements 23

8 Acknowledgment 24

9 References 24

1

List of Figures

Figure 1. Membership functions of the various age groups 4

Figure 2. Example of fuzzy logic inference rule 4

Figure 3. The motion of an inverted pendulum 5

Figure 4. eas a linguistic variable 6

Figure 5. Fuzzy inference 7

Figure 6. Membership function for x1 8

Figure 7. Library Components 10

Figure 8. One-Dimensional Fuzzy Inference System (FISH) 12

Figure 9. "fish2" Components Layout (One-Dimensional FISH) 13

Figure 10. "fish2" Simulation Environment (One-Dimensional FISH) 15

Figure 11. Two-Dimensional Fuzzy Inference System ("2d_fish") 16

Figure 12. "2d_fish" Components Layout ("3x3=9cell") 17

Figure 13. Balancing the Inverted Pendulum 20

Figure 14. A Feedback Control System 21

Figure 15. "2d_fish" Simulation Environment (Two-Dimensional FISH) 22

List of Tables

Table 1. Boolean logic rules 3

Table 2. Fuzzy logic rules 3

Table 3. Fuzzy rule table 6

11

1 Introduction
The Tsutsuji system, also known as the Hewlett-Packard Logic Synthesis (HPLS)
system, is a new system for digital hardware design which includes many features to
speed the development of new products [Culbertson93]. HPLS transforms the high
level block diagram design to gate-level layout and netlist which can be implemented
in various technologies. HPLS has been jointly developed by Hewlett-Packard
Laboratories (HPL) in the U.S.A. and Yokagawa-Hewlett-Packard Design Systems
Laboratory (YSL) in Japan. The HPLS system is named Tsutsuji, which is the
Japanese name for azalea, a popular flower in Japan.

HPLS offers fast and efficient ways to do hardware logic design, simulation and
optimization [Culbertson93, YHP91]. Its graphical human interface allows a design
to be simulated interactively on an X-window workstation environment. The inputs
of a design can be dynamically adjusted though window widgets ("virtual
instruments") which imitate real physical instruments. The topology graph generated
from a design shows graphically the critical path on a gate-level.

The objective for this project was to add a fuzzy logic-based inference module to the
Tsutsuji system.

1.1 Motivation
Area of Investigation:

The motivation for this project was to expand our repertoire of logic synthesis
blocks to include ones specifically applicable to fuzzy logic based control systems.
The goal was to add functionality to synthesize the digital logic of a fuzzy logic
based control system such as a camera focus control system or an automobile
automatic transmission shift control.

Specific tasks:

• Identify building blocks used to implement fuzzy logic systems. These blocks will
be integrated into the logic synthesis system at the same level as existing basic
blocks (adders, multipliers, registers, etc.).

• Ascertain how to create parameter-driven fuzzy logic building blocks. For
example, the existing carry-Iookahead adder logic synthesis module can
synthesize an unlimited number of designs as a function of operand bus widths
and "tuning" parameters such as carry-group size.

• Explore the possibility of system-level fuzzy logic building blocks. For example,
a parameterized, tunable fuzzy logic control system block composed of basic
fuzzy logic modules.

• Provide a convenient way for the application domain expert to specify the
parameters necessary for the synthesis of the fuzzy logic building blocks.

1

1.2 Report Outline
This report first reviews some background knowledge of the Fuzzy logic methodology
(Section 2), then describes the Tsutsuji diagram design for the fuzzy inference
systems with one and two input variables, respectively (Section 3). A description
about the programming structure of Tsutsuji, including the socket interface
communication, and Virtual Instrument (VI) widgets, is given in Section 4. As a result
of this project, a prototype fuzzy inference system for balancing an inverted pendulum
is created (Section 5). The report is concluded with a summary and a few suggestions/
comments for the future improvement of Tsutsuji and the fuzzy system.

Basically, three main tasks were carried out in the project: the block design for fuzzy
logic components on Tsutsuji, the specific VIs suitable for fuzzy inference, and the
connections between designs and VIs through sockets in the simulation.

2 An Introduction to Elementary Fuzzy Logic
The concept of Fuzzy Logic was first introduced by Professor Lotfi A. Zadeh [Zadeh65]
of the University of California at Berkeley, in June 1965. It was not very well-known
to the science and technology community in U.S. until recent years. In the last few
years, however, the subject has flourished and applications of this theory can now be
found in many disciplines. In this section, we will explain the basics of fuzzy logic and
a fuzzy inference decision-making system. For brevity, only a subset of the fuzzy logic
theory will be introduced as it pertains to this project.

2.1 Fuzzy sets and membership function
Fuzzy logic is based on the concept offuzzy set [Zimmermann91]. The fuzzy set theory
is in many ways a generalization of the classical set theory. A classical (crisp) setA is
normally defined as a collection of elements or objects xeX which satisfy certain
conditions. Each single element xeX can either belong to or not belong to the set A,
whereA~. To generalize this definition, we can introduce a membership function Il
(on X) for each element to specify its relation to the crisp setA, i.e. ll(x)=l ifxeA and
ll(x)=O ifxe:A. If this membership function is continuous, a fuzzy set B can be defined
as a collection of elements xeX with membership function Il(x), where Il(x) can be any
real number between 0 and 1:

(2-1)

2

2.2 Fuzzy logic and rules
In Boolean logic, the most basic logic operations are "PASS", "COMPLEMENTARY",
"AND" and "OR". The rules of those operations can be expressed in the following table:

Table 1. Boolean logic rules

Name Rule Equivalent Fuzzy Membership Value

PASS IF xEA, THEN ZE Z IF ~A(X)=l,THEN ~z(z)=l

COMPL. IF xeA, THEN ZE Z IF ~A(X)=O,THEN ~z(z)=l

OR IF xEA v yEB, THEN ZEZ IF ~A(X)=l OR ~B(y)=l, THEN ~zCz)=l

AND IF xEA AyEB, THEN ZEZ IF ~A(X)=l AND ~B(y)=l, THEN ~zCz)=l

where "I" can be defined as "true" and "0" as "false".

Fuzzy logic can be regarded as a generalization of the classical Boolean logic by
allowing the "membership function" ~(x) to be any number between 0 and 1.
Equivalently, Boolean logic is a special case of the fuzzy logic. Thus, the equivalent
fuzzy logic rules ("fuzzy rules") can be defined for the above four basic logic operations
as follows:

Table 2. Fuzzy logic rules

Name Rule Membership Value

PASS IF (r, ~A(X)) E A, THEN (z, ~zCz)) E Z ~Z(z) = ~A(x)

COMPL. IF (x, ~A(X)) e A, THEN (z, ~zCz)) E Z ~z(z) = l-~A(X)

OR IF (x, ~A(X)) E A OR (x, ~B(X)) E B, ~z(z) = max(~A(X), ~B(X))

THEN (z, ~z(z)) E Z

AND IF (x, ~A(X)) E A AND (x, ~B(X)) E B, ~z(z) = mine ~A(X), ~B(X))

THEN (z, ~z(z)) E Z

where all of the values of membership functions u's are between 0 and 1.

2.3 The concept of the linguistic variable
A linguistic variable has a name, and a set of linguistic values [Zimmermann91].
Each of these linguistic values is associated with a membership function. For
example: a person's age A (a linguistic variable) can be a linguistic variable having
linguistic values such as juvenile, young, middle-aged, old, very old with membership
functions for all ages between 10 and 100 as shown in Figure 1.

3

f.1(x)

very old

90

age A(x) = O.7\young & 0.3\rniddle-aged

6540

middle-aged

t

0.0 +-----l ----l'--:' ~ __1II. ~

1 X (base value)

1.0

Figure 1. Membership functions of the various age groups

Consider that if x=30, the value of linguistic "age" is then A(x) = 0.7\young &
0.3\middle-aged, which means that for x=30, the linguistic variable A has the value
"young" with a membership of 0.75 and the value "middle-aged" with a membership
of 0.25.

Now suppose the following rule was imposed: IF A is young THEN P is energetic,
where P stands for a person's physical condition. In the fuzzy logic terminology, this
rule can be expressed as: ~energetic(P) =~oung(A).

A clearer picture is offered in Figure 2.

f.1(A) f.1(P)

-_......---~=--~~~~ Age -.....",;..........;.....~-~.. Physical

f.1energetic(P) = llyouniA)

111111I1111I11I11I1111I11I111I1111111111111111I1111111111111I11111.'

25 40 AgetO.7\youn~
Physical

O.?\energetic

Figure 2. Example of fUzzy logicInference rule

This is actually a simple case of fuzzy inference with only one input (A) and one output
(P). More general cases of fuzzy inference are discussed in the next section.

4

2.4 Fuzzy inference
The concept of fuzzy inference is illustrated with an "approximate reasoning"
technique based on fuzzy logic rules, linguistic variables, and their membership
functions. A typical example that model the balancing of an inverted pendulum is
given below.

Figure 3 shows the formula of'B and (0 as a function of time. According to fuzzy logic

•
m(t)=8(t)

{ •a(t)=m(t)

m
M=

me+m

Inverted Pendulum

force =
F

(me + m) L

8 (t + At) = At m(t) + 8 (t)

{ m(t+At)=Ata(t)+m(t)

a(t) =
~ sin (8) - cos (8) [force + M m2 sin (8)]
L

..i - M cos? (8)
3

Figure 3. The motion of an Inverted pendulum

methodology, these numerical variables 8, (0 and the applied force F can be
transformed as linguistic variables having several linguistic values (i.e. fuzzy sets)
such as {negative, zero, positive}. This process is also calledfuzzification. The fuzzified
variables (8, (0, F) can be represented through fuzzy sets and membership functions.
For example, a 8 of 30 degrees might be expressed as follows:

8 (30 degrees) ={(negative, 0), (zero, 0.2), (positive, 0.3)}
This is also depicted in Figure 4.

5

e(degree)

e(30 degrees) = {(negative, 0), (zero, 0.2), (positive, 0.3)}

Figure 4. eas a linguistic variable

Suppose the following fuzzy rules are concluded for balancing the inverted pendulum
from human experience:

1. IF 8 is negative AND co is almost zero, THEN apply negative force F.

2. IF 8 is negative AND co is negative, THEN don't do anything (F = 0).

3. IF 8 is positive AND ro is positive, THEN apply large positive force F.
And these rules can be written in some rule table as shown below:

Table 3. Fuzzy rule table

Force F ro = negative co = zero co = positive

8 = negative large negative negative zero

8 = zero negative zero positive

8 = positive zero positive large positive

Suppose there is a set of specific input values (8, co), which can be fuzzified into
linguistic values through their membership setting:

8 = 0.8\zero & 0.25\negative;
ro = 0.45\zero & 0.5\positive;

By applying the fuzzy rules of table 3, the following information is obtained:

w1(8 =zero, ro =zero) = min(O.8, 0.45) = 0.45;

wi8 =zero, to =positive) = min(O.8, 0.5) = 0.5.

wi8 =negative, co =zero) = min(0.25, 0.45) = 0.25.

wJ8 =negative, ro =positive) = min(0.25, 0.5) = 0.25.

Thus our output grain size sis:

F = w1\zero & w2\negative & w3\Positive & w4\zero .

6

There are many ways other than the above "minimum" operation to obtain the
weights w1 to w4 from the "AND" rules for multiple inputs. An alternative is to use
the product of membership values of each individual input (see Section 2.5).

Finally, a "defuzzification" technique should be applied to obtain a numerical value of
an output linguistic variable after fuzzy inference. There are also many ways to
defuzzify an output. A simple way is to do a "weighted average":

(2-2)

~w.·A.
~ I I

iF=---

where Ai are corresponding numerical values for F =negative, positive or zero. This
algorithm is better illustrated in Figure 5 (w1 and w4 are omitted in the figure).

11m IlF

Force

Force

I Force
output ~

e
e

J,
e

weighted

average ~ t
~~

positive

~m.w ,!:Y.z..::NQ;'~NNNNNN~~,.wmmi ••
...

input 2

e

input 1

Figure 5. Fuzzy Inference

In a more general situation, as shown in Figure 5, different rule uses may lead to
"conflicting" results, say, there may be two or more different weights for one specific
output value. All that is required is to sum up the weights for the same output
(linguistic) value and then apply the above defuzzifying algorithm to obtain the
numerical output value.

7

2.5 A simple fuzzy system model
Specifically, a fuzzy inference system with two independent inputs {xz, x2} and one
outputy is depicted in this section. However, it can be easily generalized to a multiple
n-input system.

The inference rule of such a 2-input fuzzy system could be expressed as:

• Rule-{ij}: IF xz is Az[i] and zj, isA2[j] THEN y is w[ij].

where {i.j} (i=O,l, ...,m, j=O,l,....n) are rule numbers, Az[i] and A2[j] are membership
functions of the antecedent part, and w[ij] is a real number of the consequent part of
the output value ofy.

The membership functions A z[i] are expressed by triangles as shown:

Figure 6. Membership function for X1

And their mathematical expression is written as:

X1 - 8 1 [i - 1]
when 81 [i - 1] < x1 s 8 1 [i] ;

8d i] - 8di -1] ,

A1 [i] = 81 [i+ 1] -x1 (2-3)when 81 [i] <x1 ::;;81 [i+ 1];
8 1 [i + 1] - 8 1 [i] ,

0, otherwise.

Similarly the expression for A2[j] is acquired simply by changing the subscript 1 to 2.

When applying the Rule-{ij}, however, a different approach is employed to the "AND"
rule from those in Table 2. Namely, the product of Az[i] and A2[j], instead of their
minimum value, is used to obtain the weight for output value w[ij]. The outputy thus
can be derived by weighted average:

y = LA1 [/1 . A2 [j] . w[i, j]
i, j

8

(2-4)

For the membership functions specifically defined in Eq. (2-3), the sum of weights is

a constant: LA1 [i] . A2 (jl = 1.
i,j

3 Diagram Design for the Fuzzy Inference System
A thorough description of Tsutsuji diagram design for the one-dimensional and two
dimensional fuzzy inference system/module will be presented in this chapter.

Starting from basic library components, a hierarchical series of building blocks of
deign modules are built on the ''Workbook'' of Tsutsuji.

3.1 Workbook System Design
The system design is carried out by connecting various components, both intrinsic
library components and the user defined lower level systems, i.e. the user defined
components.

3.1.1 Library Components
The library components in Tsutsuji are those basic logic components such as Adders,
Input, Bus,... (see Figure 7). They are the basic building blocks for the user to build
up higher level block designs.

The bus width for each library component can be arbitrarily chosen. Some basic logic
components, including AND and OR gates, can take mutable number ofinputs.

After a module (or a user component) is built based on library components and lower
level user components, it can be represented as a "black box" with only relevant input/
output contact points on a user-drawn symbol. This symbol represents the user
component being used just the same as a library component for a higher level
component design.

However, up to this point, only the input/output bus size of a user component can be
changed like an library component. It is impossible to make the number of inputs or
outputs of a user component tunable at the "black box" level. This is one of the
limitations of the current version of Tsutsuji system. (See more comments on this
matter in Section 7).

3.1.2 Hierarchical User Components
In the "Workbook" menu, a user can build his/her own module consisting of library
components connected by wires. Then, by using a simpler symbol to represent this
module, the symbol can be treated as a new "personal library" module for higher level
design. It works like a subroutine in a big program. The main program consists of
library functions and subroutines. The subroutines may contain other subroutines
and some library functions.

9

ill
4I}

~
»

~.... '_ 'J;

P
~

~

)?r

~
~

~
,.;..

co

o~
W

I ~f:
~ ::~
~ ...r--

10

3.2 Fuzzy Inference Control System.
This is a system having one input and one output: i.e. y=f(x). Here both x and yare
numeric variables with their corresponding linguistic variables X and Y.

There are 4 designs [Chen93] whose names are listed as follows (the name "fish"
comes from "Fuzzy Inference System at HP Lab"):

• fishO - an original version of a one-dimensional fuzzy inference system.

• fish1 - same as fishO, but the number of membership functions can be tunable at
the system ("black box") level. However, the tuning is only effective for the shape
of design on the BlockDiagram page, as it can not be recognized by the
simulation part of the present version of Tsutsuji. (See more comments on this
in the Section 7).

• fish2 - a better version of fishO, which can be used with the newly generated VIs
(see Section 4.1 for VIs).

• 2d_fish - a 2-dimensional fuzzy inference system.
Only fish2 and 2d_fish are described in this chapter.

3.2.1 One-Dimensional Fuzzy Inference System ("fish2")
The function of this system is to accomplish a simple single-inputlsingle-output
inference from the rules:

• Rule-{i}: IF Xl is AI[i] THEN y is w[i].

(Also see Figure 6 for its graphical interpretation).

To implement these fuzzy rules with the TSUTSJI system, several steps must be
carried out. First of all, a membership function module needs to be constructed, so
that for any input x, the module will output the corresponding membership values
corresponding to x. This membership module is referred to as a fuzzifier (details are
shown in Figures 8 and 9). Membership functions in this simple system are
represented by triangular shape functions. After obtaining all the membership values
for x, the system will do a weighted average, or defuzzification, to obtain the final
numerical output y. The whole system takes in Al[i] and w[i] as parameter inputs.
Depending on the number of membership functions, or the number of linguistic
values, the one-dimensional FISH system stacks identical lower-level modules (called
fish-bone in "fish2") which correspond to a single membership function (linguistic
value).

All the "fish2" components are listed in Figure 8. The details of their layout are
shown in Figure 9.

As shown from the layout, a zero consists of one constant input and one output; both
are library components. A subtracter consists of two input's, one output, one constant,
one NOR gate, and one adder. All of them are library components. Similarly, a sum
consists of only the library components. Thus, zero, subtracter, and sum become the
lowest level user components. However, slopeUp and slopeDown consist of not only

11

o
zero

slopeUp slopeDown sum

subtracter fuzzifterl.eft fuzzifterRight fuzzifter

fish_test

Figure 8. One-Dimensional Fuzzy Inference System (FISH)

the library components, but also the lower-level user components, i.e. one zero and
two subtracter's. The even higher level user components, fuzzifierl.eft, fuzzifier,
fuzzifierRight, consist of the library components, basic user components and the non
basic lower level user components. They become the lower level user components for
higher level user components, i.e. fish_head, fish_bone, and fish_tail. The highest level
user component is fish_test, which carries out the one dimensional inference rule, and
which can be simulated in the Tsutsuji environment with VIs on an X-window
interface. There are three fish_bone components in Figure 7, which means that the
final system consists of five (=3 + 1 fish_tail + 1 fish_head) membership functions.
However, a user can easily design a system for n-membership FISH system by
stacking n-2 fish_bone components. There was an effort to make the FISH tunable to
the number of membership functions (see design "fish1" [Chen93]), i.e. make FISH as
a black-box and a user can tune the number of membership functions through a
tuning page, as one might do with some library components, OR, AND, etc. This
attempt failed, however, due to a limitation of the current version of the Tsutsuji
system.

12

...._ L. Dlon 12-19-9

.........llftIttjlfilh3fieh...I..DYt)

-....--

I.ft

I.rt nnter

-...

Figure 9. "flsh2" components Layout (1-0 FISH)

13

The above components accomplish various functions as shown below:

• zero - input an n-bit zero.

• subtracter - z=x-y, where x, yare inputs, z is output.

• slopeUp - as their shapes show, memberUp =x * (center -left).

• slopeDown - similarly, memberDown =x * (right - center).

• fuzzifierl.eft, fuzzifier, fuzzifierRight - output membership values of an input
value x for three different types of membership shapes.

• sum - for carrying out the defuzzification procedure, i.e. weighted average.

• fish_head, fish_bone, fish_tail - when they are connected together, the
fish_head corresponds to the left-most membership function (or the smallest
linguistic value), the fisli tail corresponds the right-most membership function
(or the largest linguistic value), while the fish_bone is the triangular
membership function in between.

Thus, the final component fish_test consists of one fish_head, one fish_tail, and several
fish_bone's, depending on the number of linguistic values in a specific problem. The
user need not invoke the detailed layout of the lower level components when applying
them to a real problem, except to decide the number offish_bone's to use and the bus
width of the input/output of fish_test (and zero).

The simulation is shown in Figure 10. In the figure, widget "c" and "w" are consfive
VIs (virtual instruments) developed from Tsutsuji's original constant VI (named as
consgen). Widget "x" is afuncgen VI, and widget "fish_test" is a viewer VI. When doing
simulation, a user can dynamically choose a different type of input x from "x" widget,
and tune the positions of membership and the values of weight parameters from
widgets "c" and "w", respectively. In the particular case of Figure 7, x is a linear
function of time, and thus sum_rw shows the corresponding output of FISH system.
The other output sum_w, i.e. sum of weight, should be equal to one, but sometimes it
becomes one bit smaller than one, due to the hardware truncation in the inference
process.

All the numerical numbers are in fact represented in our system by decimal fraction
numbers, i.e. from [-1, 1) for two's complement representation or [0,2) for unsigned
representation. Thus, the numerical numbers should be scaled to [-1, 1) or [0, 1). In
Figure 7, for instance, the bus width is 6-bit, thus the number interval [0, 63] for VI
which corresponds to [0.00000, 1.11111] in binary representation.

8.2.2 Two-Dimensional Fuzzy Inference System ("2d_fish")
Similarly to the one-dimensional case, a two-dimensional fuzzy inference system can
be designed from hierarchical user components. Each single rule in a rule table cell
(see Table 3) is represented by a module cell. The inference system: y=ft:xz, X2) can be
realized by stacking a number of cell components shown as in Figure 11, which is

14

d....

-:cen
u:
Q•....-c
CD

~a
!w
co
i
'5
E
en
~
.!l:

!
o

•

Uhl~
8eooli

~-----1....------.;~IUIU
~ mE]

i@=
~®: I~
ui®~

~®~

i@N i~
Ii

15

EEI 9cell

a 3x3 cell (or: 9cell)

cell

©
sum

~
slopeDown

a 2x3 cell (or: 6cell)

fuzzifter

slopeUp

zero
o

Subtracter

a 2x2 cell (or: 4cell)

Figure 11.Two-Dimensional FuzzyInference System ("2d_flsh")

extracted from the design named as "2d_fish" . The detailed layout is shown in
Figure 12.

In this case, the user components zero, slopeUp, slopeDown and sum are almost
identical to those of one-dimensional case, which is further evidence of the advantages
of Tsutsuji's design structure - one can always use the simpler modules to build
more complex ones. fuzzifier is a combination of fuzzifierl.eft, fuzzifier, and
fuzzifierRight in the one-dimensional case, just for simplicity. A cell is build on the
above simpler components. The output of cell corresponds to the membership function
value for a pair of inputs (Xl, X2). Thus, one may construct a two-dimensional
inference system by stacking a matrix of cell's, where the number and arrangement
of those cell's correspond to the number of linguistic values for the input linguistic
variables (Xb x2). We will use 9cell to construct out a prototype control system for
balancing the inverted pendulum (Section 5).

3.3 Technology Mapping and Timing Verification
Among other logic synthesizing functions, Tsutsuji may generate a logical topology
graph for a user design which shows the critical path, netlist, etc. This is not covered
in this report, as it's already well developed within the Tsutsuji system
[Culbertson93, YHP91].

16

+.
......r.

....

• 1

w/Z

18

~ L. 0-. Doc. I!B!

rllY~I""ttj/2d_'i.h(ZcUi"''-'lIfClUt

Figure 12. "2d_'lsh" Components Layout ("3x3=9ceU")

17

4 Programming Structure with Tsutsuji
This chapter describes the graphical virtual instruments (VIs) specially created for
the simulation of fuzzy inference modules. These VIs are created by modifying the
basic Tsutsuji VIs.

4.1 Virtual Instruments (VIs)

Tsutsuji offers a nice simulation environment for the logic verification of a design.
With X-window based widgets, i.e. Virtual Instruments, users can simulate the logic
input-output relationship in a dynamical way. The basic programs for existing VIs
was parallel but independently developed from Tsutsuji [Tanaka92], thus the whole
programming structure for VIs are self-contained. The only channel for VIs and "sim"
(executable file for Tsutsuji simulation programs) to communicate is through sockets
in a UNIX system.

Among others, five types of VIs are commonly used in Tsutsuji simulation: funcgeti
(V_INOUT), consgen (V_OUT), viewer (V_IN or V_MIN) and netana (V_OUTIN)
[Chen93]. However, since the fuzzy system has many special features required for
dynamic simulation, the available VIs are not very suitable for the fuzzy system. For
example, the original consgen outputs only one constant, but the fuzzy inference
modules need many constant inputs as the parameters for defining the membership
functions, hence some special constant generator VIs are created for this project.
Several other specific VIs are made for the inverted pendulum controlling system (see
Section 5), and they are named as invpen, invpenl and invpen2 [Chen93]. The most
recent version is invpen2.

4.2 Communication through Sockets
The whole simulation on Tsutsuji is done in a multi-process fashion. Each VI
corresponds to a running process. The inter-communication between processes is
carried out by sockets. To create the user defined widgets, not only the C++ programs
based on Tsutsuji's existing VI code need to be re-written, but also the way sockets
communicate needs to be re-defined.

The VI invpen2 is used in this section as an example to illustrate the way to create a
VI [Chen93]. Starting with the existing C++ programs for the original VIs, which are
in this case viewer and netana, a new VI program for invpen2 can be created. It uses
many Tsutsuji library subroutines and subroutines for the various basic X-window
widgets which are the building blocks for all VIs. Modifications are also needed for
many source programs which serve as communication interfaces between VIs and
Tsutsuji simulation programs, between VIs and X-window library/system programs,
and among different VIs. For example, while the basic source programs ofinvpen2 are
contained in one sub-directory named as "Invpen2/", programs in other common
library directories and basic widget directories are also modified to accommodate the
characteristics of invpen2, such as its type (V_OUTIN) and its special needs for
sockets to communicate with the rest of the Tsutsuji system. The type V_OUTIN
implies that VI invpen2 takes in signals from a design output and gives out signals to

18

the design input - all this can be done interactively in a simulation. In the case of
balancing the inverted pendulum (Section 5), it takes in the output "Force" from the
two-dimensional fuzzy inference component (i.e. 9cell), and at the same time, feeds
back the "theta" and "omega" values of the next time step back into the input of the
9cell.

In summary, when creating a special purpose user-defined VI, the designer needs to
re-write the subroutine "inoutO" in a typical VI definition program, in addition to
modifying all the rest of the program to define the number of input/output knobs,
shape of the VI widget, initial values of each variable, etc. Some typical user-created
VIs in this project are [Chen93]:

• invpen, invpenl, invpen2 - Specific VI for balancing the inverted pendulum (see
widget "Inverted_Pendulum" in Figure 15 in Section 5).

• consfioe - Generating five constants horizontally in one VI. See Figure 10.

• consthree - Generating three constants horizontally in one VI. See Figure 15.

• consthrey - Generating three constants vertically in one VI. Also see Figure 15.

All the "knobs" on an VI can be adjusted dynamically in a simulation process. For
instance, widget "Inverted_Pendulum" shown in Figure 15 is one example of VI
invpen2, which has seven knobs to be dynamically tuned by the designer in a
simulation. Their physical interpolation will be presented in Section 5.

5 Balancing the Inverted Pendulum
In addition to the theoretical model in Sections 2.4 and 2.5, the Tsutsuji design of a
fuzzy inference control system and its simulation are discussed in this chapter. The
goal of this system is to simulate the balancing control of an inverted pendulum. The
inputs of the system are a and (0 (or "theta" and "omega" in the programs), the output
is a force F which reduces the magnitude of both a and (0. The control fails when a falls
out of the range [-1tI2, 1tI2].

The simulation flow chart is shown in Figure 13. In the simulation, however, the
motion of a pendulum would follow the formulas shown in Figure 3. As we see in
Figure 13, there are nine rules (cells) in the rule table, thus, module 9celLtest, which
is based on the 9cell component (see Figure 12 and design "2d_fish" [Chen93]), is used
as the design for this problem. The human-adjustable rule table will contain the
parameter inputs for 9celLtest. The pendulum is simulated with invpen2, which
dynamically outputs a(t + At) and (O(t + At) according to the values ofa(t), (O(t) andF(t).
9celLtest and invpen2 therefore become a feed-back control system with a
dynamically adjustable rule table (see Figure 14). The rule table in Figures 13 & 14
will be represented by four consthree VIs and one consthrey VI.

The simulation panel is shown in Figure 15. As shown in the figure, there are seven
knobs on invpen2 which allow users to dynamically adjust the initial values ofa and
(0, as well as other parameters of the pendulum listed below (also refer to Figure 3):

19

e TSUTSUJI

ill

F 0 +- 0

0 0 +F e
+ 0 + +

Figure 13. Balancing the Inverted Pendulum

• LENGTH - the scaled ''length'' of the pendulum, defined as giL, where g is the
gravity and L is the length of the pendulum.

• MASS - the mass ratio of pendulum and the total weight of pendulum and
supporting cart, i.e. M=m/(mc + m).

• DELTA - time step At.

• WAlT - the real time lapse between two simulation steps (unit: I1.t).

• SCALE-Scalingfactorfor"Force", which equals to (F) L (see Figure 3).
mc+m

Simulations with different set-ups show that the system is fairly stable and robust.
This system shows that Tsutsuji could be a very effective design tool for fuzzy logic
applications. Tsutsuji can also synthesize a gate-level netlist [Culbertson93, YHP91]
that can be fit to different implementation technologies to produce an integrated
circuit chip.

20

4 "consthree",r 1 "consthrey"

e
~ 0)

"9ceIUest"
F

F 0 +0) -- - - - 0
'-

e 0 - 0 +
+ 0 + +

r
"'"Inverted Pendulum --

"invpen2"

\.. ~

Figure 14. A Feedback Control System

6 Conclusions
A set of hierarchical fuzzy logic system components have been created and integrated
into the Tsutsuji (the logic synthesis product from Yokagawa-Hewlett-Packard
Design Systems Laboratory, or YSL) framework. These components are built on the
existing Tsutsuji library components - adders, multipliers, AND, OR, etc. Tsutsuji
synthesizes gate-level netlist, logical/physical topology report, mapping/timing
report, etc. for producing the integrated circuits for a system based on different
technologies.

Special graphical virtual instruments (VIs) have also been created that allow the
designer to tune the design at a very high level. For example, the characteristics of
fuzzy logic membership functions can be specified by adjusting knobs on several
virtual instruments.

As a demonstration, a simple fuzzy logic control system for balancing an inverted
pendulum is created and synthesized with the Tsutsuji simulation environment. It
shows a good potential of the Tsutsuji system to be used for designing fuzzy logic
related applications.

21

[~i'® .
-27 0 27

o LOG

ce

,DDDDDDDOOOOO

'22222222222222222222222222
77777777777777777777777777777777
22222222222222222222222222222222
77777777777777777777777777777777

,444444444444444444444444444444,
'22222222222222222222222222222:

?;IJ[(is LiWLi l.Da.2

@ ®
18 31

~;
...

t.:l
j

Inverted-fendUIum
t.:l 1IK1ll - "1l11li

® ® ~I~501

1Inl nJ I 1001
2001

-14 '1 H* !lOOl- IINID1N
12

® ® OSlAIIT
o IIIOI!T, ... ue OCL£M

-O~ ~_....~ ••'-w~~

LIIII1Il ..., IOU

® ® ®
10 " lilt 100 .,

1
FlIlC[

Figure 15. "2d_flsh" Simulation Environment (2-D FISH)

7 Future Improvements
There are a number of improvements that can be done for Tsutsuji system, as well as
the fuzzy inference system. The following is a list of miscellaneous suggestions for the
Tsutsuji system:

• Add "undo" to the WorkBook ("Block-Diagram"). Even one step of undo would be
very helpful for users in middle of a design process - drawing lines, moving
objects and add/delete components.

• Add "scroll bar" to the WorkBook ("index" page). Right now users can use the
four "arrow-keys" on the HP work-station keyboard, but scroll bars would be
more convenient.

• Users should be able to insert a new BlockDiagram in between the "index" page
of the WorkBook, instead ofjust adding the new one at the end. Users should also
be able to re-order (sort) the index list easily. This would be convenient for a
designer when there is a long list oflower level components of a design.

• There are some bugs in the "Block-Diagram" for "sim" (simulation). When an
input component connects more than one wirels) at the same point, the
simulation gives error messages. Or when an input component connects more
than one wire at different points, the simulation gives multiple funcgen inputs
for that single input. Currently the problem can be solved by deleting the extra
funcgen input.

• Users should be able to convert their "Block-Diagram" into a black-box module,
which could be stored in their own "library" for other designs. Namely, the
number of inputs/outputs could be tuned and the bus width could be tuned just
like the library components/modules AND, OR etc. The tuning doesn't have to
invoke the detail re-editing of individual lower level Block-Diagram (component)
designs.

• Users should be able to have some "widgetName.h" in an extended "include"
directories which contain the definitions of some basic VI (virtual instrument)
widgets - such as: knobs, viewer windows, frequency toggles, constant
generators, etc. Therefore users may put less effort into editing C/C++ programs
to create their own application-specific virtual instrument widgets for the input!
output interface of the "simulation" part of Tsutsuji.

The fuzzy inference system for balancing the inverted pendulum can also be improved
by adding one more dimension of controlling input - the horizontal position of the
supporting cart. To avoid having too many rules for such a three-input system (e.g.
3x3x3=27 rules), two separate inference systems, i.e. one two-dimensional inference
system (for controlling e and (0) and one one-dimensional inference system (for
controlling position x), could be used. The final output could be a weighted average of
the outputs from each inference system. Only 3x3+3=12 rules are needed this way.

23

8 Acknowledgment
I would take this opportunity to thank my supervisors on this project: Barry
Shackleford and Bruce Culbertson. Without their attentive advice and help, this
project would not have been possible. They also made my experience at HP Lab much
more interesting and meaningful than I expected. I am in debt to Mr. Motoo Tanaka
at YSL, who sent numerous e-mails to help me to understand the details of Tsutsuji
system. I also thank other helpful people at HPL, who gave me strong support and
made my work at HPL easier: Dr. Steven Rosenberg, Kathy Shaker, Wendy Fong, and
Jackie Burleigh. I am most appreciative of Wendy Fong and Steven Rosenberg's
generous proofreading of this report.

I am grateful to Professor Lotfi Zadeh at D.C. Berkeley for his recommendation of me
to take this project. His continuous encouragement is always my inspiration. I am
also delighted to have many people come to see the demonstration of this project on
Dec. 23,1993, including Professor Zadeh and Dr. Joel Birnbaum (HPL Director).

Finally, I appreciate my Ph.D research advisor at D.C. Berkeley, Professor Costas
Spanos, for his understanding and support of my doing this project at HPL.

9 References
[Chen93] All the design programs are currently stored in author's account at an HPL

workstation: see directory "raymond@hplsn.hpl.hp.com:ttjf'. The programs for
specifically created fuzzy inference VIs are stored in the same account: see
directory "raymond@hplsn.hpl.hp.com:VI.Japanf'. The compiled VI executable
files, however, are copied into the relevant Tsutsuji directory: "hplsn.hpl.hp.com:/
usr/tsutsuji/lib/Vlf' and their corresponding definition files are in
"hplsn.hpl.hp. com:/usr/tsutsuji/db/Vlf'.

[Culbertson93] W. Bruce Culbertson, Toshiki Osame, Yoshisuke Otsuru, J. Barry
Shackleford, and Motoo Tanaka, "The HP Tsutsuji Logic Synthesis System",
Hewlett-Packard Journal, Volume 44, Number 4,11-24 (August, 1993).

[Tanaka92] Motoo Tanaka, Manager for Tsutsuji system, Yokagawa-Hewlett-Packard
Design Systems Laboratory, private communication through e-mail. (See files at
"raymond@hplsn.hpl.hp.com:mails.Japanf'). Mr. Tanaka also provided copies of
all the source programs for Tsutsuji VIs, from which the special fuzzy inference
VIs were created.

[YHP91] YHP Design System Laboratory, "ASIC Design System", i.e. Tsutsuji
manuals (1991).

[Zadeh65] Lotfi A. Zadeh, "Fuzzy Sets", Information and ControlS, 338-353 (1965).

[Zimmermann91] H. -J. Zimmermann, "Fuzzy Set Theory - and its Applications",
Kluwer Academic Publishers (1991).

24

