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disk drives, modelling, As processor speeds continue to increase rapidly, I/O is in
trace-driven simulation, danger of becoming a performance bottleneck. As a result,
SCSI disk performance many researchers have started to look at ways to improve

overall I/O performance—a large component of which is
the performance of the disk itself. Many of these studies
use analytical or simulation models to compare
alternative approaches, and the quality of these models
determines the quality of the conclusions: the wrong
simplifying assumptions can even lead to erroneous
conclusions. Unfortunately, the level of quality of the
models used in practice varies widely—at least in part
because the data needed to build a good one has not been
readily available.

This paper makes three main contributions: (1) it provides
a description of the current state of the art in disk drive
technology and the underlying technology trends, with
particular emphasis on those features that are likely to be
of value to researchers constructing simulations; (2) it
shows how to construct an accurate disk simulation
model; and (3) it provides quantitative information on how
the different portions of the model contribute to its
accuracy. The primary audience for the paper is
researchers engaged in I/O system studies, for whom it
provides a wealth of information to assist them in
producing more accurate simulation models with which to
test out their ideas. It should also be of interest to anybody
who would like to understand modern disk drive
technology, and trends in its evolution.
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1 Introduction

Modern microprocessors technology is advancing at an incredible rate: speedups of 40-60%
compounded annually have become the norm. Although disk storage densities are also
improving at a similarly impressive rate (60-80% compounded annually), performance
improvements have been occurring rather more slowly (about 7-10% compounded annually over
the last decade). As a result, the performance of the disk system is fast becoming a dominant factor
in overall system behavior.

One consequence is that many researchers have turned to this area searching for improved
algorithms, policies, and approaches to speed up computer systems. Recent examples include
disk arrays (RAIDs), file systems (LFS, EFS, FFS), disk scheduling algorithms, and database designs.
Almost all of these studies used modelling at some stage in their development; and the quality of
those models has had a significant effect on the correctness (and believability) of the results. In one
extreme case, the better disk models of [Holland92] reversed some of the findings derived from a
simpler one [Muntz90].

Despite this, there has been little work in developing or describing accurate disk models, and—
perhaps as a result—the use of simple, relatively inaccurate models is surprisingly commonplace.
We show here that this is unnecessary by demonstrating and describing a calibrated, high-quality
disk model with 14 times smaller errors than a simple first-order model. The improvement
resulting from each of the model’s components is described separately, so that an informed trade-
off can be made between effort and accuracy by other model builders. In addition, detailed disk
drive characteristics are provided for a pair of disk drives, as well as a brief description of a
simulation environment that uses the disk model.

Our approach should be useful to a wide range of researchers using simulations to examine the
effectiveness of new algorithms in virtual memory, file system, device driver, caching, and other
I/0 system-related areas.

Paper outline. The remainder of the paper is organized as follows. We begin with a survey of the
design and properties of modern disk drives. We then introduce our model, and provide
information on how its accuracy improves as a function of each additional component, followed
by a survey of recent disk modelling work. We end with a summary of our results, together with
some recommendations for other model builders.

2 Characteristics of modern disk drives

A necessary prelude to modelling disks is to understand how they behave. This section of the
paper provides an overview of the current state of the art in magnetic disk drives. Our emphasis
is on disks that are most likely to be encountered in practice: the increasing competition for market
share by disk manufacturers is being pursued within the context of a narrowing range of standard
disk interfaces, of which the most common today is probably the Small Computer Systems
Interconnect, or SCSI. For simplicity, we restrict our discussion here to Winchester disk drives with
embedded SCSI controllers, since these are likely to be the de facto standard on most computer
systems for the next several years.



Disks contain a mechanism and a controller. The mechanism is made up of the recording components
(the rotating disks, the heads that read from and write to them), and the positioning components (an
arm assembly that moves the heads into the correct position together with a servo system that
keeps it in place). The disk controller contains a microprocessor, some buffer memory, and the
interface to the SCSI bus. The controller manages the storage and retrieval of data to and from the
mechanism, and performs mappings between incoming logical addresses and the physical disk
sectors that store the information.

The following sections provide a more detailed overview of each of these elements in turn, with
particular emphasis on those features that need to be considered when creating a disk model. Not
all these features are equally important to the accuracy of the model, as will become clear later.

2.1 The recording components

Modern Winchester disks range in size from 1.3" to 8" diameter, with 2.5", 3.5" and 5.25" being the
most common sizes today. Smaller disks have less surface area, which means that they can store
less data than their larger counterparts, but they are cheaper—and easier—to manufacture, can be
spun faster, have smaller seek distances, and thus smaller seek times. Historically, as storage
densities increase to the point where 2-3GB can be placed onto a single disk, the next-smaller
diameter in the series becomes the most cost-effective—and hence preferred—storage device.
Right now, 2.5" disks are the size of choice for most battery-powered applications, and 3.5" disks
are in the process of replacing 5.25" disks for mains-powered applications.

Increased storage density results from two improvements. The first is better linear density, which
is determined by maximum rate of flux changes that can be recorded and read back—current
values are around 50000 bits per inch (2000mm'1), rising to around double this value by the end
of the decade.! The second is making packing the separate tracks of data more closely together—
which is where most of the improvements are occurring. Current values are about 2500 tracks per
inch (100mm?), rising to perhaps 20000 tpi by the end of the decade. The product of these two
factors will probably sustain a growth rate of over 60% per year to the end of the decade.
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Figure 1: the mechanical components of a disk drive.

1. The disk industry seems to think in terms of inches. Translations to more standard units are provided where
appropriate.



A single disk contains one, two, or as many as a dozen platters, stacked one above one another, as
shown in Figure 1. The platters are very flat, thin disks, usually of aluminum (although glass has
been used recently [HPKittyhawk92]). Both the top and bottom surfaces of the platters are coated
with a very thin (~50nm) film of magnetic material, topped by about ~25nm of material for
lubrication and protection.

The stack of platters rotates in lock step on a central spindle. Although 3600 RPM was a de facto
standard for many years, spindle rotation speed has increased recently, and speeds of 4000, 5400,
6000 and even 7200RPM are now being used, with the median speed increasing at a compound
rate of about 12% per year. A higher spin speed increases transfer rates and shortens rotation
latencies (the time for data to rotate under the head), but also increases power consumption and
requires better bearings for the spindle.

The spin speed is typically quoted as accurate to 30.5 or +1%; in practice, the disks vary their speed
slowly around the nominal rate. Although this is perfectly reasonable for the disk’s operation, it
means that it is essentially impossible to model the disk’s rotational position some 100-200
revolutions after the last known operation without some additional information. We return to this
point later.

Each platter surface (possibly with the exception of the outermost ones) has an associated disk head
that is responsible for recording (writing) and later sensing (reading) magnetic flux variations in
the thin films on the surface. In active use, a disk head “flies” 3-6pinches (75-150nm) above the
surface of the disk, kept there by a combination of external pressure towards the surface and the
air between the head and the platter surface. Although decreasing the gap between the surface
and the head (the “flying height”) increases the storage density and improves the signal-to-noise
ratio, it is bounded from below by a combination of platter flatness (large-scale) and surface
roughness (small-scale), spindle vibration, temperature and altitude changes, rolling of the head
during seeks, and manufacturing and assembly tolerances.

When the disk is powered down, the heads are moved away from the data portion of the disk to
a reserved landing zone, where they eventually drop into contact with the platter when the latter
stops spinning. This design—called a Winchester disk—allows the head-disk assembly to be
hermetically sealed, significantly increasing reliability and resistance to environmental factors
such as dust and humidity.

The disk has a single read-write data channel that can be switched between the heads. It is
responsible for encoding and decoding the data stream into or from a series of magnetic phase
changes to be stored on the disk. The encoding schemes used are designed to mask significant
amounts of errors: the signal to noise ratio from the head is typically about 25-to-1. The speed of
the data channel electronics (especially the preamp close to the head), the encoding scheme used,
and the signal-to-noise ratio obtainable from the head, provide a practical bound on the disk data
rate. Current speeds are limited to around 100Mbits/s for the raw signal coming off the head,
which corresponds roughly to a 100000 bpi linear recording density on a 3.5” platter rotating at
6000 RPM.

2 Multi-channel disks can support more than one read /write operation at a time, which means that higher data
transfer rates can be achieved. However, these disks are relatively costly because of technical difficulties such
as controlling the crosstalk between the concurrently-active channels, and keeping multiple heads aligned on
their platters simultaneously, which is becoming harder to do as track densities increase.



2.2 The positioning components

Each data surface is set up to store data in a series of concentric circles, called tracks. A single stack
of tracks at a common distance from the spindle is called a cylinder. A typical 3.5" disk today has
around 2000 cylinders. As track densities increase, the notion of vertical alignment that is
associated with cylinders becomes less and less relevant: the track alignment tolerances are
simply too fine, and the tracks on each platter have to be considered essentially independent of
the others.

To access the data stored in a track, the disk head has to be moved over it. This is done by attaching
each head to a disk arm—a stainless-steel lever that is pivoted near one end on a rotation bearing.
Notice that all the disk arms are attached to the same rotation pivot, so that moving one head
causes the others to be moved as well. The rotation-pivot gives better immunity to linear shocks
than the older scheme of mounting the head on a linear slider. One slight disadvantage is that the
angle of the head to the tracks it is following changes between the inside and outside of the disk,
which slightly reduces the available recording density at the edges of the platters.

Itis the task of the positioning system to ensure that the appropriate head gets to the desired track
as quickly as possible, and remains there, even in the face of external vibration and shocks. In
addition, it has to cope with irregularities in the circularity of the tracks which are never quite
concentric with the spindle as a result of small variations during mounting on the spindle,
formatting, and differential thermal expansions.

2.2.1 Seeking

Moving the heads is referred to as seeking. The speed at which this happens is limited by the power
available for the pivot motor (halving the seek time requires quadrupling the power), and by the
arm stiffness: 30—40g is required to achieve good seek times, and too flexible an arm is subject to
twisting while it is being accelerated, which can bring the head into contact with the platter
surface. Smaller disks both decrease the distance the head has to move and reduce the size of the
arm, which means that it becomes lighter and easier to stiffen against flexing—allowing higher
accelerations and thus shorter seek times.

A seek is composed of the following components:

* start-up: the arm is accelerated, typically with constant torque (force) until it reaches half of
the seek distance, or a fixed maximum velocity;

¢ coast: for a long seek, the arm will be allowed to coast across most of the distance at its
maximum speed;

* slowdown: the arm is brought to rest, hopefully exactly on top of the desired track;

o settle: the disk controller uses servo positioning information to fine-tune the position of the
head over the desired track on the selected surface.

Very short seeks (less than half a dozen cylinders) are dominated by the settle time (1-3ms)—in
fact, they may not even perform a seek per se, but simply rely on the servo system that manages
the settling process to handle it all. Short seeks (less than 200400 cylinders) spend almost all of
their time in the constant-acceleration phases, and so take time proportional to the square root of
the seek distance, plus the settle time. Long seeks spend most of their time moving at a constant
speed, and take time that is proportional to distance, plus a constant overhead. A full-stroke seek



from one edge of the disk to the other will take 18-25ms. As disks become smaller, and track
densities increase, the proportion of the time spent settling increases.

“Average” seek times are commonly used as a figure of merit for disk drives, but they can be
misleading. Such averages are calculated in a number of ways. One way is to sum the times to
perform one seek of each size, and divide this sum by the number of different seek sizes. A variant
is to scale this by the number of possible seeks of each size: thus, there are (N-1) different single-
track seeks that can be done on a disk with N cylinders, but only 1 full-stroke seek. This weights
the shorter seek more heavily in the average, which is a better approximation to measured seek
distance profiles.

It is possible to show that if disk requests are completely independent of one another, then the
average seek distance will be 1/3 of the full stroke. Some sources thus quote the 1/3-stroke seek
time as the “average”, even though independent seeks are rare in practice: shorter seeks are much
more common [Patterson90, Ruemmler93]. Others just divide the full-stroke time by three, and
quote that. What matters is the seek-time versus distance profile, rather than the marketing
specifications: caveat emptor!

The information required to decide how much power to apply to the pivot motor for how long for
a particular seek is encoded in tabular form in the disk controller. Rather than storing every
possible value, a subset of the total is stored, and interpolation used for intermediate seek
distances. The resulting fine-grain seek-time profile can look rather like a sawtooth (see
[Patterson90, page 558] for an example).

It is occasionally necessary to recalibrate these tables, as a result of thermal expansion, arm pivot-
bearing stickiness, and other factors. Such a recalibration can take 500-800ms. The recalibrations
can be triggered by both temperature changes and timers, with the highest rates occurring just
after the disk is powered up, reducing to once every 15-30 minutes in steady state conditions.
These recalibrations are typically triggered by events independent of the request stream—but the
recalibration itself may be delayed until the next I/O request arrives. Obviously, this can cause
difficulties with real-time or guaranteed-bandwidth systems (such as multimedia file servers), so
some disks are now appearing with modified controller firmware that either avoids these visible
recalibrations completely, or allows their execution to be scheduled by the host.

2.2.2 The track-following servo

Fine-tuning the position of the head at the end of a seek, and keeping the head on the desired
track, is the function of the track-following servo system. This uses positioning information
recorded on the disk at manufacturing time to determine whether the disk head is correctly
aligned. Servo information can either be embedded in the target surface or recorded on a separate
dedicated surface. The former maximizes capacity (there doesn’t need to be an entire surface
dedicated to the servo data) so it is most frequently used in disks with small number of platters.
As track densities increase, some form of embedded servo data becomes essential—perhaps
combined with a dedicated servo surface. However, the embedded servo method alone is not so
good at coping with shock and vibration, since feedback information is only available
intermittently (e.g., between data sectors, although a few drives will interrupt their data sectors
for a servo burst).



The servo system is also used to perform a head-switch: when the controller switches its data
channel from one surface to the next in the same cylinder, the new head may need repositioning
to accommodate small differences between the alignment of the tracks on the different surfaces.
The time taken for such a switch (0.5-1ms) is typically one third to one half of the time taken to
do a settle at the end of a seek. Similarly, a track-switch (sometimes called a cylinder switch)
occurs when the arm has to be moved from the last track of a cylinder to the first track of the next
one. This takes about the same time as an end-of-seek settle. Settling time is increasing as track
densities increase, and the associated decoupling between the tracks on different platters means
that head-switch times are getting closer to track-switch ones.

Many disks nowadays take an aggressive, optimistic attitude to head-settling before a read
operation. This means that they will attempt a read as soon as the head is “near” the right track—
after all, if the data is unreadable because the settle has not quite completed, nothing has been lost.
(There is enough error correction and identification data in a mis-read sector to be sure that the
data is not wrongly interpreted.) On the other hand, if the data is available, it might just save an
entire revolution’s delay. For obvious reasons this approach is not taken for a settle that
immediately precedes a write. The difference in the settle times for reads and writes can be as
much as 0.75ms.

On some recent drives designed for use in portable devices [HPKittyhawk92], the embedded
servo information is augmented with an accelerometer, which can determine that a jolt has
exceeded the track-following capabilities of the arm and servo system. If this happens, the
controller immediately stops any active write to prevent the head from accidentally overwriting
an adjacent track.

2.2.3 Data layout

A SCSI disk appears to its client computer as a linear vector of addressable blocks, each typically
256-1024 bytes in size. (Although sizes that are a power of two are frequently used, modern SCSI
disks can often be re-formatted with other sized blocks. One use for this is to store metadata to be
associated with each logical block [English92].) These blocks have to be mapped to physical sectors
on the disk, which are the fixed-size data layout units on the medium itself. Separating the logical
and physical views of the disk in this way means that the disk can hide bad sectors, and can
perform some low-level performance optimizations, although it does complicate the task of
higher-level software that is trying to second-guess the controller (e.g., the 4.2BSD fast file system).

Each disk sector has a header, followed by a short gap, followed by the user data. Both the header
and the user data are protected by extensive error correction codes (ECCs, typically some form of
Reed-Solomon code), which allow one or more bit errors to be hidden. Almost all disks map
blocks one to one onto sectors.

Zoned bit recording. Track length at the outside of a disk is typically twice what it is on the inside
edge of the usable portion of the platter surface. Maximizing storage capacity requires that the
linear density remain near the maximum that the drive can support—i.e., the amount of data
stored on each track should scale with its length. This is accomplished on many disks by a
technique called Zoned Bit Recording (ZBR): adjacent disk cylinders are grouped into zones. Zones
nearer the outer edge have more sectors per track than zones on the inside. Since keeping layout
information about each zone costs some controller resources, the number of zones is typically
limited to less than a dozen, although up to twice this many have been used in some disks. ZBR



results in track sizes of 25-60KB today—these numbers will probably double by the end of the
decade. Since the data transfer rate is proportional to the rate at which the media passes under the
head, the outer zones have higher data transfer rates: for example, on an HP C2240 3.5" disk, the
burst transfer rate varies from 3.1MB/s at the inner zone to 5.3MB/s at the outermost one
[HPC2240].

Track skewing. Better sequential access times across track and cylinder boundaries are obtained
on SCsI devices by skewing logical sector zero on each track by just the amount of time required
to cope with the most likely worst-case head- or track-switch times. This means that reading or
writing data can proceed at nearly full media speed. Each zone has its own track and cylinder
skew factors.

Sparing. The disk surfaces will invariably have some flawed sectors that cannot be used: it is
prohibitively expensive to manufacture “perfect” surfaces. Such flaws are found by extensive
testing in the manufacturing process, and a list built and recorded on the disk for the controller’s
use.

In order to not use the flawed sectors, references to them are remapped to other portions of the
disk—a process known as sparing. Sparing can occur at the granularity of single sectors or whole
tracks. The simplest technique is to remap a bad sector or track to an alternate location (e.g., to a
spare sector at the end of the track, or to one of a group reserved in each cylinder). Alternatively,
slip sector sparing can be used, in which the logical block that would map to the bad sector and the
ones after it are “slipped” by one sector. Many combinations of techniques are possible: disk
designers have to make a complex trade-off between performance, expected bad-sector rate, and
space utilization. As one concrete data point, the HP C2240 disk uses both forms of track-level
sparing: slip-track sparing at disk-format time, and single-track remapping for defects discovered
during operation. Of its total of 2051 cylinders, 69 are reserved for spares, grouped into eight
clumps (one for each zone). This prevents a slippage or remapping from propagating too far. An
additional cylinder is reserved for logs and other maintenance information.

Error correction. During normal operation, latent surface defects, power fluctuations, vibration,
shock, and a number of other causes may render previously-good sectors of the disk permanently
or temporarily unusable. (For example, a temporary low-voltage on the power supply at write
time may result in a sector that is hard to read later.) Such errors typically manifest themselves
only on reads. If the controller detects a problem reading such a sector, it will retry the read a
number of times in an attempt to recover the data. The precise number and techniques used for
these retries vary, but 8 retries is not uncommon. The first attempt will simply retry the read. More
aggressive attempts will skew the head slightly off track in order to approximate a possible similar
skew at write time, or run the full error-correcting algorithm over the ECC code embedded in the
recovered data. (Although the ECC code is capable of correcting several multi-bit errors, doing so
can take several milliseconds. The code—and the hardware that supports it—are tuned to recover
from single errors essentially instantaneously, possibly at the cost of longer recovery periods for
more errors.)

In practice, almost all of these retries succeed, and although soft error rates of 1 in ~1013 occur,
after the retries this drops to only 1 in ~10' bits transferred. For those few failures that do
eventually become hard (i.e., unrecoverable), the bad sector can be added to the disk'’s list of
spared areas by a “reassign block” or “format disk” operation.



In many disks, the soft error rate increases markedly near the end of a disk’s useful life, and this
can be used to predict likely coming hard failures, and migrate data off the disk before it fails
[Wasmuth86, Siewiorek92]. Such catastrophic failures are becoming increasingly rare: current
state of the art disks specify failure rates as low as 300000 hours mean time between failures
(MTBF)—note that this does not mean that the expected lifetime of any individual disk as expected
to be 30+ years! However, it appears that disks from the same batch sometimes exhibit similar
failure modes, so the usual failure-modelling assumption of independent failures should be
treated with some caution [Jim Gray, personal communication].

2.3 The disk controller

The function of the disk controller is to mediate access to the mechanism, run the positioning
servo, send and receive data from the client of the disk across the SCSI interface, and in many cases,
to manage an embedded cache for recently read or written data.

Controllers are built around specially designed microprocessors, which often have digital signal
processing capability and special interfaces that allow them to control hardware directly. The
trend is towards ever more powerful controllers, in order to handle increasingly sophisticated
interfaces (such as the command queueing of SCSI-2), and to reduce costs by replacing previously-
dedicated electronic components with firmware.

Interpreting the SCSI requests and performing the appropriate computations takes time. The
increase in speed of the controller microprocessor is just about keeping ahead of the additional
functions it is being asked to perform, so controller overheads are slowly declining. Current
values are typically in the range 0.3-0.6ms, reaching up to 1.5ms for older disks.

2.3.1 Bus interface

There are a multitude of different interfaces to disks, of which the most widespread are probably
SCSI, IDE, IP], the PC-AT interface, and HP-IB (IEEE-488). New standards such as FiberChannel and
serial SCSI are being developed to alleviate the connectivity problems associated with SCSI's multi-
wire cables. Each of these interfaces conforms to an electrical specification for the cabling, and,
increasingly, ever more tightly specified standards for the logical interchanges that occur between
disk and host computer.

In some interface standards, such as SCS], the controller function is delegated to the disk drive. In
others, such as IDE and IP], the disk provides minimal functions, and additional intelligence is
required in the host end of the interface. For example, multiple requests have to be sequenced in
the host or the host interface unit with IPI, but this sequencing can be done in the disk drive with
SCSI-2. We concentrate here on disks with SCSI bus interfaces, both because SCSI is currently
popular, and because SCSI disks are good examples of the trend towards more delegation of
responsibility to the disk drives themselves.

The most important aspects of any interface are its topology (bus, like SCSI; point-to-point, like HP-
FL; or switched, like FiberChannel), its transfer rate and its overheads. SCSI is currently defined as a
bus—although alternative versions are being discussed, as are encapsulations of the higher-levels
of the SCSI protocol across other transmission media, such as FiberChannel and HIPPI. Most disks
use the synchronous mode of SCSI bus operation, which can run at the full (electrical) rated bus

speed. This was 5SMB/s with early SCSI buses; differential drivers and the “fast SCSI” specification



increased this to 10MB/s a couple of years ago; disks are now appearing that are capable of
20MB/s (“fast, wide”); and the standard is defined up to 40MB/s.

The process of negotiating for the bus needs to be efficient, or the transfer times will be dominated
by setup overheads. On SCS], this overhead is quite small (approximately 50us). Because itis a bus,
more than one device can be attached to it. SCSI initially supported up to eight addresses, and this
has recently been doubled with the use of wide SCSI. As the number of devices on the bus is
increased, contention for the bus can occur, leading to delays. This matters more if the disks are
doing large data transfers, or if they have higher controller overheads.

2.3.2 Bus and disk interaction

In older channel architectures, such as the IBM channel protocol and IP], there was no buffering in
the disk itself. As a result, if the disk was ready to transfer data to the host, but the host interface
was not, then the disk had to wait an entire revolution time for the same data to come under the
head again before it could retry the transfer. In SCS], the disk is expected to have a speed-matching
buffer to avoid this, masking the asynchrony between the bus and the mechanism. The precise
form of this buffering, and the optimizations that are undertaken to make more effective use of
the mechanism and the bus, vary widely.

Read requests require a seek and rotation to the start address and then a transfer of data into the
disk’s buffer memory. Most drives can get data off the media much slower than they can send it
over the bus, so the drive partially fills its buffer before attempting to commence the bus data

transfer. The amount of data read into the buffer before the transfer is initiated is called the fence;
its size is a property of the disk controller, although it can be (partially) specified on modern SCSI
disks by a control command. Write requests can overlap the data transfer to the disk’s buffer with
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the head repositioning, up to the limit permitted by the buffer’s size. These interactions are
illustrated in Figure 2.

To minimize bus contention, the SCSI bus protocol allows a device to disconnect from the bus

when it is temporarily unable to perform a data transfer, and reconnect later. This allows a disk to
release the bus between receiving a read command and the head being positioned over the data
on disk, thereby enabling other disks to use the bus for transferring data they have already read.

2.3.3 Caching of requests

The functions of the speed-matching buffer in the disk can readily be extended to include some
form of caching, for both reads and writes. Note that cache sizes in disks tend to be small
(currently 64KB to 1MB, with most less 256KB or less) thanks to space limitations and the relatively
high cost of the dual-ported static RAM needed to keep up with both the disk mechanism and the
bus interface.

Readahead. A read that hits in the cache can be satisfied “immediately”—i.e., just the time it takes
for the controller to detect the hit and send the data back across the bus. This is usually much less
than a read request that has to go to disk, and so most modern SCSI disks provide some form of
data caching. The most common form is readahead: caching data that the disk expects the host is
just about to request.

As we will see, read caching turns out to be very important from the point of view of modelling a
disk, but it is one of the least well-specified areas of disk behavior. For example, a read that
partially hits in the cache may be partially serviced by the cache (only the non-cached portion read
from disk), or simply bypass the cache altogether. Very large read requests may always bypass the
cache. Once a block has been read from the cache, some controllers discard it; others keep it
around in case a subsequent read is directed to the same block. The choices here are very much a
function of the environment for which the disk is being tuned: what works well for an MS-DOS
system (which does no host caching), is frequently a poor choice with a UNIX system (which does
a great deal).

Early disks with caches did on-arrival readahead to minimize rotation latency for whole-track
transfers that followed a seek: as soon as the head arrived at the relevant track, the disk started
reading into its cache. At the end of one revolution, the full track’s worth of data has been read,
and this can then be sent off to the host without waiting for the data after the logical start point to
be re-read. (This is sometimes—rather unfortunately—called a “zero-latency read”, and is also
why disk cache memory is often called a track buffer.) As tracks get longer while request sizes do
not, on-arrival caching brings less benefit: for example, with 8KB accesses to 32 KB tracks, the
maximum benefit is only 20% of a rotation time.

As aresult, on-arrival caching has largely been supplanted by simple readahead: the disk
continues to read where the last host request left off. This proves to be optimal for sequential
reads, and allows them to proceed at the full disk bandwidth. (Without this, two back-to-back
reads would be delayed by almost a full revolution, as the disk and host processing time for
initiating the second read request would be larger than the inter-sector gap.) Even here, there is a
policy choice: should the readahead be aggressive, and cross track and cylinder boundaries, or
stop when the end of the track is reached? Aggressive readahead is optimal for sequential access,
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but degrades random accesses, because head- and track-switches typically cannot be aborted once
initiated, so can slow down an unrelated request that arrives while the switch is in progress.

A single readahead cache can provide effective support for only a single set of sequential read
requests. If two or more sequential requests are interleaved, the result is no benefit at all. This can
be remedied by segmenting the cache, so that several unrelated data items can be cached. For
example, a 256 KB cache might be splittable into eight separate 32KB cache segments by
appropriate configuration commands to the disk controller.

Write caching. In most disks, the cache is volatile, losing its contents if power to the disk is lost. To
prevent data loss, this kind of cache must be carefully managed if it is to provide write caching.
One such technique is immediate reporting, which allows only selected writes to the disk to be
reported complete as soon as they are written into the disk’s cache. The selection is designed to
allow file system code to recover from a power failure, so it usually applies only to data writes—
and only sequential ones at that—but this allows it to optimize a particularly common case, which
is large writes that the file system has split up into consecutive blocks. Individual writes (e.g., to
file system metadata) can be flagged “must not be immediate-reported”; otherwise, a write is
immediately reported if it is the first write since a read, or a sequential extension of the last write.
Combining readahead and immediate reporting means that sequential data can be put into
adjacent disk blocks (no interleave factor is necessary), resulting in full disk throughput for data
reads and writes.

Although treating the disk’s buffer cache as a write-though has been used in some IBM disk
controllers [Menon88], this is of little benefit with SCSI disks, since it only benefits those operating
systems that immediately reread data they have just written, and these are rapidly becoming
uncommon. It is also economically impractical, since host RAM is typically much cheaper than
disk buffer cache memory.

The problems of volatile write caches go away if the disk’s cache memory can be made non-
volatile. One technique is battery-backed RAM: a lithium cell can provide 10 year retention times.
With this, the disk is free to accept as many write requests as will fit in its buffer, and acknowledge
them all immediately. By delaying writing these requests to disk, it can reduce total mechanism
traffic (by absorbing overwrites of the same block, which are surprisingly common), and optimize
the write-back sequence (although preliminary studies show this to have less effect than was
anticipated). These issues are discussed in more detail in [Ruemmler93].

As with read caching, there are many policies possible for handling write requests that hit in
previously-buffered data. Without non-volatile memory, the safest solution is to delay such writes
until the first copy has been written to disk. Again, very large writes usually bypass the cache
altogether. Data in the write cache must also be scanned for read hits—in this case, the buffered
copy has to be treated as primary, since the disk may not yet have been written to.

Command queueing. With SCSI, support for multiple outstanding requests at a time is provided
through a mechanism called command queueing. This allows the host to give the disk controller
several requests, and let the controller determine the best order in which to execute them—subject
to additional constraints provided by the host, such as “do this one before any of the others you
already have.” Letting the disk do the sequencing potentially allows it to perform a better job by
using its detailed knowledge of the disk’s rotation position [Seltzer90b, Jacobson91]. The
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downside is that the disk scheduling algorithm cannot as easily be tuned for different workloads,
and it is executed on a slower processor than that available in most hosts.

- 2.4 Optical disks

Although magnetic disks is the focus of this paper, optical disks are becoming sufficiently
common that we provide a short introduction to their characteristics here.

On purely-optical disks such as CD-ROM, there is usually only a single surface, and the data is
written as a single long spiral rather than as independent tracks, as a result of their genesis in the
audio and video industry. Track densities are generally much higher than with magnetic disks,
and seek times are generally longer—partly because settling times are longer, partly because the
head assemblies are heavier, and partly because these mechanisms are often adapted from those
used in consumer electronics, where seek time is not so important. The last reason also sets the
transfer rate for CD-ROM drives to 1.4Mbits/s. (Dual-standard CD-ROM readers are now available
that run at twice this speed, but it is still very slow by comparison with a magnetic disk. .)

Magneto-optical (MO) disks combine multiple-overwrite capability (like magnetic disks) with the
storage density of optical ones, by the use of material that has different optical properties when
magnetized in different directions. Again, track densities are much higher than with magnetic
(~20000tpi, or 800mm’?), although linear densities are only half those of magnetic disks
(30000bpi, or 1200mm’?). First-generation 5.25” MO disks provided 325MB/surface, and
read/write times of around 0.5MB/s. (Capacity has recently doubled: expect a similar storage
density increase rate as for magnetic disks.) Writing on these disks is particularly expensive: the
area to be written must first be erased, which takes an extra pass. Newer drives have increased
read /write rates, and the separate write pass may be eliminated soon through the use of multiple
lasers. The real advantage of these disks is their better storage density, coupled with the ease with
which they can be removed from the disk mechanism, so their main use has been in environments
were performance is a secondary consideration, such as tertiary storage systems. Advances in MO
disk technology are roughly tracking those for magnetic disks, so it seems unlikely that they will
oust magnetic disks from their preeminent position in regular applications.

3 Modelling disks

The remainder of the paper describes the way we model the behavior of the disks we have just
described. Our intent is to describe our models in sufficient detail to allow others to reconstruct
them, and to quantify the relative importance of the different components of our model, so that a
conscious choice can be made as to how much—and which-—detail is required in a model built
using our framework.

In addition to poring over the manufacturers’ data, we ran several sets of experiments to
determine the performance of the disks we wished to model. Even as simple a problem as
determining the seek profile for a disk is complicated by the need to second-guess the disk caching
algorithm (e.g., the seek to be measured must be preceded by one more seek/read pair than there
are independent readahead cache segments), and the effects of rotation latencies (for which a very
large number of samples is required, using randomization of the start time for requests to prevent
getting into lock-step with the disk mechanism). The descriptions offered above of how disk
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controllers are likely to behave should provide the necessary data for others who wish to perform
similar experiment on their own disks.

3.1 The simulator

We embodied the background information about disk drives presented above, together with a
great deal of exploratory measurements of real disk drives, in a sequence of event-based
simulation models. These were built in C++ using the AT&T tasking library [ATT89], although the
basic ideas are readily applicable to other simulation environments. (We modified the tasking
library to support time as a double rather than a long. This let us extend our simulation periods out
to nearly arbitrary durations with very fine time granularity.)

The simulation framework is very simple: tasks represent independent units of activity that can
delay to advance simulated time, or execute code. They can also wait for certain low-level events;
on top of these primitives it is easy to construct a variety of synchronization primitives.

We model a disk as two tasks and some additional control structures (see Figure 3):
¢ One task models the disk mechanism, including the head and platter (rotation) positions. This

task accepts requests of the form “read this much from here”, “seek to there”, and executes
them to completion, one at a time. It also handles the data-layout mapping between logical

blocks and physical sectors.

SCSl bus

DMAengine
task

DMAengine:

Disk controller code:

« select next re%est to process

* queue for DMAengine and disk
mechanism

* generate readahead request if no

DMAengine task: other requests waiting

¢ get next request from controller

. ggt cache memory (or data)

* do transfer across SCS| bus,
blocking and releasing bus if buffer
full or data not ready

*get new work” Disk
Buffer controller
cache data
structures
and code
Disk mechanism task:
« get next request Disk =
« perform seek/settle/rotation mechanism
* get cache memory (or data task
» do transfer, blocking on buffer full or
data not ready _/ diskmechanism:
“get new work”

—\ internally
queued
requests

“state of the disk”
data structures

Figure 3: simulation model structure for a single disk.
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® The second (DMAengine) task models the SCSI bus interface and its transfer (DMA) engine.
This task accepts requests of the form “move this host request to (or from) the disk’s memory
from (or to) the host's memory”. Again, it processes one request at a time.3

* A buffer cache object, shared by the DMAengine and the disk mechanism tasks, represents the
disk buffer cache. This is used, in classic producer-consumer style, to manage the
asynchronous interactions between the bus interface and the disk mechanism.

Consider a read: if the disk mechanism gets ahead of the DMAengine, the cache fills up, and
the mechanism task blocks, waiting for space to write into. (When it restarts, it does all the
correct accounting for missed disk revolutions.) If the DMAengine gets ahead of the
mechanism, it first releases its hold on the SCSI bus, and then blocks waiting for data to be
available for it to transfer. Once data is available, it reclaims the bus and starts transferring.
A parameter of the model determines the granularity with which this handshaking is done,
in units of physical sectors. The smaller the value, the more accurate the results, but the
longer the running time. Values in the range 0.5-4KB give reasonable results.

* A request scheduler determines the order in which to give work to the mechanism and DMA
tasks. In a single-request disk, this is straightforward. In a disk that supports multiple
outstanding requests, this scheduling is considerably more complicated—and outside the
scope of this paper. If there are no outstanding requests, the scheduler generates single-
sector readaheads until the readahead buffer is filled.

Minder:
experiment
control and

Host processor

statistics
gathering

I0loads: workload

generators or trace
replay
Disk Device driver,
channel with its 1/O

request queue

Figure 4: complete simulation-model! structure.

The disk model fits into a larger system that has items for representing the SCSI bus itself (a mutex,
so that only one access can be using the bus at a time), the host interface (another DMAengine),
and synthetic and trace-driven workload generator tasks, as well as a range of statistics-gathering
and reporting tools. Figure 4 puts all this together.

3 Actually, there is one of these tasks for each cache memory segment; they compete for access to a passive
resource representing the DMA channel itself. Space prevents us from describing the multi-segment case in
detail in this paper.
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The disk-related portions of our simulation system consist of about 5800 lines of commented C++
code (1500 semicolons), divided roughly as follows:

function lines
disk mechanism 600
DMAengine 400
disk controller 1800
request scheduling® 950
disk infrastructure 2050

8six different scheduling policies.

There are also around 7000 lines of other infrastructure (workload generators, synchronization
primitives, statistics gathering, and the like). With minimal optimization, the simulator is able to
process about 2000 I/Os per second on an HP9000 Series 800 model H50 system, which has a

96 MHz (78 SPECint92) PA-RISC 7100 processor. We are working to improve the simulator’s
performance, although it is fast enough that we can run a simulation against the 1.2 million I/Os
in the one-week trace from our file-server system in about 10 minutes.

3.2 Traces

For this study, we selected representative week-long traces from a longer trace series of HP-UX
(UNIX) computer systems. The systems and the traces are described in much greater detail in
[Ruemmler93].

For each request, the traces included data such as start and finish times to 1us granularity, disk
address and transfer length, and flags such as read /write, and whether the request was marked
synchronous or not by the file system. The start time corresponds to the moment when the disk
driver gives the request to the disk; the finish time when the “request completed” interrupt fires;
we do not include time spent queued in the disk driver in the results we present here. We
developed tools to compare the real trace with the output from our simulators fed with the same
sequence of traced requests.

The disks we singled out for analysis in this paper are described in the table below. The I/O
execution times from the traces are plotted as distribution curves in Figure 5.

Formatted  Track  Cyi- Rotational ~ Average __ Host interconnect
Disk type capacity buffer inders Size speed 8KB access type max speed
HP C2200A 335 MB none 1449 525" 4002 rpm 336ms HP-IB 1.2MB/s?
HP 97560 13GB 128KB 1935 5.25" 4002 rpm 228ms SCSI-2 10MB/s
8 See section 3.3.4.

Modern disks with SCSI interfaces tend to have disk caches, and the presence of this cache

complicates the analysis of the performance effects that are related to the underlying disk

mechanism. To avoid this problem, we use a non-caching disk (the HP C2200A) for the first set of
models that we present here. The HP 97560 disk, which has a buffer cache in the disk, is used later
to exemplify the effects of adding caching, once the underlying disk model has been shown to be
correct [HPdisks91a]. The HP C2200A disk has an HP-IB (IEEE-488) bus instead of a SCSI interface
[HPdisks90]. From the point of view of the model, the only major difference is that the HP-IB bus

15



is slower than the disk mechanism, whereas the reverse is usually true of SCSI disks. This tends to
emphasize the importance of bus-related effects, as we shall see.

3.3 Evaluation

This section presents a sequence of increasingly sophisticated disk models, and compares their
performance with that of the real disk they were simulating.

3.3.1 Metrics

For comparison purposes, we need a metric to evaluate the models. A simple mean execution time
for a request is of some value in calibrating a model to the real world, but provides little
differentiation between models, precisely because the tuning is so easy. (Consider a simulation
that simply modeled all requests as taking the mean completion time!) So, we plot the time
distribution curves for the real and the model outputs (the cumulative fraction of requests that
complete in less than a particular time), and use the mean distance between these two curves as
our metric. We call this the demerit figure of the model, and present it in both absolute terms (as a
difference in milliseconds), and relative ones (as a percentage of the mean 1/0 time). The real trace
data has a demerit figure of zero—that is, it is an exact match to itself.

One might think that a better demerit figure would be to use the mean difference on a request by
request basis. However, there is a problem with the rotation positional calculation that makes this
approach undesirable. The 0.5-1% variance in the disk rotation speeds means that the simulator
(which assumes a perfect disk, running constantly at exactly the nominal speed) can be up to a
whole revolution out of sync with the real one. In practice, this means that a request that starts a
burst of I/Os after a long delay (1 second or more) experiences a random rotation delay, but
subsequent ones in the burst are properly modelled because the rotation position gets recalibrated
at the end of this first request. This issue could be addressed in one of two ways:

1. Each simulator could be run multiple times, with each run using a different rotational offset
for its disks at the start of the simulation, and the results averaged, or the best fit chosen.
Besides being computationally intensive, this would only improve the match if each disk ran
at exactly the nominal speed, but with a constant offset from the simulated one—but in
practice, the disk rotation speed meanders gently around the nominal value.
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Figure 5: distributions of actual traced 1/O times for the disks discussed in this paper. The left-hand graph
is of the HP C2200A, the right hand one the HP 97560.
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2. The simulated disks could be resynchronized to the real rotational position by running two
simulations in parallel: one of the new model, one of the real system that was traced. By
allocating the discrepancies between the real trace and its simulation to rotation-position
mismatches, the actual rotation position could be recalibrated as often as was deemed
necessary. This also has problems: it is technically hard to partially undo the effects of a disk
I/0 in the simulator to account for the rotational position; it is not obvious that the rotation
position is always the primary cause of a mismatch; and it is of no value in cases where the
cross-calibration cannot be done—e.g., when the original trace is replayed at a different rate
than actually occurred, or if a synthetic workload is used.

Since we are more interested here in demonstrating that the models show a good match with the
overall behavior of a particular kind of disk than we are with demonstrating that our model
exactly captured the behavior of a particular disk on a particular day, the distribution graphs serve
our purpose better than a request-by-request comparison. (An individual disk at a particular time
can be influenced by environmental variations in temperature, humidity, power supply voltage,
etcetera, that would be hard to model.)

3.3.2 Trivial models

The simplest possible model is a constant, fixed time for each I/O. Figure 6 plots two “typical”
values from the literature (20ms and 30ms), together with the actual mean I/O time for the week’s
traced data. (95% confidence intervals follow the mean values, preceded by a + symbol.) This
model is not good: even using the mean I/O time rather than a fixed estimate results in a demerit
factor that is 28% of the average I/0 time.

The next easy thing to model is the size of the I/O requests. We did this with a linear regression
that matched the observed data to a constant overhead time plus a constant cost per byte
transferred. For this disk, the best fit comes from the equation:

T = 20.8x103 + 0.82x106 x I

where [ is the length of data transferred. The results from this model are shown in Figure 7: it is
somewhat better than the fixed 1/ O size, with the demerit figure reduced to only 22% of the mean
1/0 time. However, it is possible to do considerably better.
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Reads mean demerit Writes mean demerit  Both mean demerit
real disk 28.9310.17 real disk 24.1240.10 real disk 25.3610.09

fixed 20ms  20.00+0.00 10.17+0.97 fixed 20ms 20.00+0.00 7.31+0.73 fixed 20ms 20.00+0.00 8.05+0.81
“fixed 30ms  30.00£0.00 7.5810.66 fixed 30ms  30.00:0.00 8.75+0.68 fixed 30ms 30.0010.00 8.45+0.68
mean 25.35+0.00 7.7810.75 mean 25.3510.00 7.0110.61 mean 25.3540.00 7.21+0.65

Figure 6: I/O time distributions for the trivial models for the C2200A. The row labelled “mean” in the tables
refers to the fixed value that is the mean 1/0 time for both reads and writes.
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Figure 7: the linear-regression model for the C2200A.
3.3.3 Adding seek distance and random rotation delay

To improve on the simplistic models’ lackluster performance, it is necessary to remember state
information between requests. One of the simplest models that does this has the following
combination of features:

® alinear seek time-versus-distance curve, derived from the full-stroke seek time published in
the disk specification,

* no settle effects,
* a uniform random rotational latency over the interval [0, rotation-time),

* afixed, constant transfer time, encompassing the media access time, the HP-IB bus
transmission time, and the controller overhead.

Figure 8 shows how this fares when compared against the real traces for the C2200A disk. Using
the published performance data for the disk drive, this first simulation model does worse than the
linear regression, being consistently faster than the real thing, most noticeably on reads. The mean
is off by 27%, and the demerit figure represents 27% of the mean I/O time. The linear regression
has the advantage of being fitted to observed rather than published data (which is why its mean
is a much better match), but there are some other problems that can also be rectified quite easily.
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Figure 8: a simple model with a linear seek-time and random rotation delays for the C2200A.
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3.3.4 Improving the data-transfer model
There are three immediate problems with the simple C2200A model presented above:

¢ there is an asymmetry in transfer rates across the HP-IB bus: on real disks, data is read from
the disk faster than it is sent to it. Figure 9 shows this by plotting transfer time as a function
of request size for reads and writes separately: reads run at 1MB/s, writes at 1.2MB/s. (On
this disk, the media transfer rate of 1.9MB/s is faster than the HP-IB bus, so bus speed
dominates. This is not usually the case with SCSI disks.)

¢ The apparent fixed controller overhead is much greater than the published figure (1.5ms).

For reads, this is caused by a “feature” of the disk controller firmware: although this is no
longer present in more recent drives, it is instructive nonetheless. This particular disk
behaves as if it always reads 8KB off the media, whatever the size of the original request.
Thus if 1KB is requested, the drive will read 8KB off the media before starting the bus
transfer of the requested 1KB. Subtracting the time to do this extra data transfer from the
medium results in a more reasonable read overhead of 1.1ms.

We have no explanation for the write overhead figure; fortunately, all we need to do is to
model it accurately.

* Both transfer curves experience a jump at around the 28 KB transfer size which corresponds
directly to where the transfer crosses a track boundary. The simple model does not take this
into account.

We improved this simple model by: emulating the read-fence behavior, increasing the write
overhead to 4.6ms, and overlapping the (now faster) data writes across the bus in parallel with the
seek and rotation latency overheads. The result is shown in Figure 10: the demerit has decreased
by a factor of two to 13% of a mean 1/0 time. This is better, but is still two to three times the size
of many of the effects that I/O system designers may wish to investigate.

3.3.5 Modelling head-positioning effects

Until now we have been using a simple linear model of seek time as a function of distance.
However, seek times are not linear with distance, as is shown in Figure 11—the mean difference
between the linear seek model and the real one is 2.66ms, which is a a 9% error by itself. Given
that some calculation has to be done to convert distance into time, we feel that it is not hard to do

160
140 {

120 ¢+

Time (ms)

writes ----

60 80 100 120 140
1/0 size (KB)

Figure 9: I/O times as a function of request sizes for the C2200A.
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Figure 10: improved transfer time model for the C2200A.

a decent one: all that is lacking is the data to drop in. The table in Figure 11 describes the model
we used to approximate the measured seek time profile for this disk. Computing the better model
is trivial: the difference is a 6-line calculation rather than a single-line one.

Since we were improving our positioning calculations, we also took the opportunity to model the
costs of doing head- and track-switching. This was achieved by determining which track and
cylinder the request started on, and where it ended, and then adding in a fixed cost of 2.5ms for
each head- and track-switch needed to get from the start of the request to its end. The combined
results are shown in Figure 12: the demerit figure has reduced by almost a factor of three to 5% of
amean I/O time.

3.3.6 Modelling rotation position

There are only two things left to model on the C2200A: detailed rotational latency and spare sector
placement.

By keeping track of the rotational position of the disk the rotational latency can be explicitly
calculated rather than just drawn from a uniform distribution. This is done by calculating how
many revolutions the disk would have experienced since the start of the simulation, assuming it
was spinning exactly at its nominal rated speed. The C2200A uses track and cylinder skewing,

seek distance seek time (ms)
< 616 cylinders 3.45 + 0.597d
2 616 cylinders 10.8 + 0.012d

seek time (milliseconds)

200 400 600 800 1000 1200 1400
seek distance (cylinders)

Figure 11: the graph displays the measured seek time versus distance curve for the C2200A and a linear
approximation to it. The table shows the formula we used to model the real curve.
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Figure 12: adding a non-linear seek distance model and head-switch times for the C2200A.

and uses sector-based sparing with one spare sector per track, and this need to be taken into
account in the mapping of logical blocks to physical sectors.*

Adding all these in results in the data shown in Figure 13. We consider this a good match between
the real disk and the model: the model gets to within 2% of the measured I/0 behavior. For
example, the simulation distribution exhibits the same characteristic jump around 30ms for reads
as the real trace—this was missing from all the previous models. A complete list of all the
parameters used in this final model is shown in Figure 16.
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Figure 13: final model for the C2200A: includes rotation position and detailed layout models.

4 It also has two reserved spare areas, but these are at the outside edges of the data area, so need not concern us

for these calculations.
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Figure 14: initial model for the HP 97560.

3.3.7 Modelling data caching

We used the C2200A disk for the previous discussion because it has no on-disk buffer cache. When
a disk has a cache, and uses it, the effects can be quite dramatic. Figure 14 shows the effect of using
a model incorporating all the features described so far to simulate an HP 97560 SCSI disk that uses
both readahead and immediate reporting write-behind. The large disparity at small completion
times is due to the caching: around 50% of the requests completed in 3ms or less. Clearly, caching
needs to be modelled if the simulation is to get close to the real disk performance.

On this disk, the readahead model is to continue reading after the last read request until a new
read request that is not in the buffer arrives, or a write request arrives, or the cache buffer fills up:
it does not stop at track boundaries. The write-behind model is immediate-reporting, exactly as
described in section 2.3.3. Adding these readahead and immediate reporting features to the disk
model gives the results shown in Figure 15. We consider this a very good match: the relative
demerit is now only 5% of the mean I/O time—and notice that this mean is only half that of the
C2200A’s, so the absolute value of the error is comparable.
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o 0 15 20 25 3 35 40 45 50 05 o s 20 25 30 35 40 45 %0 00 5 1015 20 25 % 35 40 45 50
Time (ms) Time (ms) Time (ms)
Reads mean demerit Writes mean demenit Both mean demerit
real disk 10.3340.04 real disk 10.6640.05 real disk 10.4740.03

simulaton  10.91+0.06  0.60+0.03 simulation  10.9810.05 0.43+0.03 simulation  10.92+0.03 0.51+0.03

Figure 15: adding data caching to the HP 97560 model.

5. The HP 97560 moniker is the OEM part; variants of the same drive—sometimes with different controller
firmware—are also available as the HP C247x and HP C246x series.



3.4 Summary

We selectively enabled a number of features of our disk model to arrive at one that performs
extremely well when compared against a real disk. The following table summarizes the models
and how well they did.

absolute relative

feature demerit demerit disk type
constant mean time 7.21ms 28%
linear regression 5.69ms 22%
basic model 6.92ms 27%
°| HP C2200A
add data transfer 3.28ms 13%
add head positioning 1.30ms 5%
add rotation position 0.52ms 2%
no cachi . 9
cac lrfg 7.77ms 74% HP 97560
add caching 0.51ms 5%

Clearly the full model is necessary if a very good match is required—and, given that it is not
particularly onerous to implement, we encourage others to adopt it. Our full model includes the
following details (numerical values for the parameters are provided in Figure 16):
e disk controller effects
- controller overhead (we include a small amount of random noise in this value)
— SCSI bus contention, and bus disconnects during mechanism delays
— overlapped bus transfers and mechanism activity
e disk buffer cache, including:
~ readahead
- write-behind
- producer—consumer interlocks between the mechanism and bus transfers
¢ data layout model:
— reserved sparing areas, including both sector- and track-based models
— zZzones
- track and cylinder skew
¢ head movement effects

- non-linear seek time versus seek distance profiles derived from measurements on real
disks
- settle time, with different values for read and write
- head-switch time
- rotation latency
As with any model, there are things we have chosen to ignore. For example, we do not believe it
is particularly fruitful to attempt to model soft-error retries (witha1in 10 3 soft bit error rate, even

a factor of 100 increase in access cost on a retry results in a mean increase in read time of less than
one part in 10°). A similar argument applies to actually simulating the effects of individual spared
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sectors or tracks, since the actual rate at which they occur is small—certainly less than a couple of
hundred sectors per disk, or 1 in 10* sectors.

4 Related work

Disk models have been in use ever since disks became available as storage devices. This survey
concentrates on more recent examples to give an indication of the current state of practice, rather
than the historical state of the art. In all cases, we have picked illustrative examples from the
literature: not to single out any individuals, but because these happen to be examples of the
simulation technique we are describing.

The non-linear, state-dependent behavior of disks means that they cannot be modeled analytically
with any accuracy, so most work in this area uses simulation. Nonetheless, the simplest models
just assume a fixed time for an I/O [Stonebraker89] or select times from a uniform distribution
[Brumfield88]. The more elaborate models acknowledge that a disk I/O has separate seek,
rotation, and transfer times, but most fail to model these components carefully. For example:

* Seek times modeled as linear functions of seek distance (e.g., [Oney75, Weikum90, Reddy89,
Kim91)). This produces poor results at smaller seek distances, which are the most common

ones.
Parameter HP C2200A HP 97560
sector size 256 bytes 512bytes  &The HP C2200A also does track sparing, but
cylinders 1449 1962 the spare regions are at the beginning and
k lind end of the data region so they have no effect
tracks per cylinder 8 19 on simulation performance. The HP C2200A
data sectors per track 113 72 has one spare sector at the end of each track
number of zones 1 (giving it 114 sectors per track).
bThe HP 97560 does track sparing, and has
track skew 34 sectors 8 sectors dedicated sparing regions embedded in the
cylinder skew 43 sectors 18 sectors data area. The table below shows where the
. three data regions are located physically on
revolution speed 4002 RPM 4002 RPM the HP 97560 disk, using the format
controller interface HP-IB SCSi-ll *cylinder/track” to indicate boundaries in the
physical sector space of the disk. This disk
gong‘o"edr rea.ds 1.1ms 2.2ms has 1962 physical cylinders, but only 1936 of
vernead writes 5.1ms 22ms these are used to store data: the rest are
short (ms)  3.45+0.597VD  3.24 +0.400ND spares.
seek time Jong (ms) 10.8 +0.012D 8.00 + 0.008D Region 0 1 2
— boundary D =616 D =383 Sat  1/4 654/0 1308/0
track switch Flme 25 ms 1.6 ms End  646/3 1298/18 1952/18
read fence size 8 KB 64 KB
sparing type sector? track?
disk buffer cache size 32 KB 128 KB

Figure 16: final model parameters for the HP C2200A and the HP 97560.
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* Uniform distribution for the rotational latency of an I/O [Oney75, Reddy89, Kim91,
Weikum90, Chen91c, Akyurek92, Staelin90]. This is inappropriate when requests are not
independent, as is frequently the case.

* Ignoring the disk-media transfer time because the rotation and seek time are believed to be
the largest contributors [Kim91] or just using a fixed, constant transfer time per I/0 (e.g.,
[Oney75, Staelin90, Weikum90, Akyurek92]).

¢ Even though many of the studies simulated disks that presumably shared an 1/O bus, the
channel contention on the bus was either not modelled, or not discussed (e.g., [Reddy89,
Weikum90, Kim91]). This can hide a significant source of contention at higher system loads.

Work described in [Holland92], together with some of our own previous work [Thekkath92a,
Ruemmler91, Ruemmler93], used more detailed models that avoided many of the limitations
described above. These models simulated axial and rotational head positions, allowing the seek,
rotation, and transfer times to be computed instead of drawn from a distribution. This paper is an
outgrowth of the simulation work described in [Ruemmler93].

5 Conclusions

An accurate model of a disk drive is essential to obtaining good simulation results from 1/O
studies. Not modeling disk behavior can result in quantitative—and in extreme cases,
qualitative—errors in an analysis. As yet, little has been published in this field, with the result that
many I/0 performance studies are using inadequate performance models.

We have demonstrated that disks are interestingly complex objects, whose behavioral quirks need
to be understood carefully if they are to be accurately modeled for the purposes of making I/O
system design choices. We have further demonstrated that such care is not too hard, nor too costly,
and have provided data that enables a quantitative determination of benefit to be had from
investing effort into a disk model.

By far the most important feature to model is the data caching characteristics of the disk (74%
relative demerit if this is ignored). The next most important pair to get right are the data transfer
model including overlaps between mechanism activity and the bus transfers (14%), and the seek
time and head-switching costs (8%). Although the transfer model had a larger effect in our
evaluation of the C2200A than the positioning model, the relative importance will probably be
reversed for SCSI disks because there the bus is generally faster than the disk mechanism. Finally,
modelling the rotational position and detailed data layout improved the model accuracy by a
factor of two—and modelling rotational position accurately will become much more important as
file system designers emphasize sequential transfers more.

We caution that even a good model needs careful calibration and tuning. For example, we did not
present here the quantitative effects of modelling features such as bus contention and zone bit
recording (our model handles these, but space prevented a detailed analysis). These features and
others may become important in the face of a particular workload. For example, with many
heavily-used disks attached to a single SCSI bus, bus contention may be a significant contributor
to the mean request response time.



Finally, we have provided a detailed parameterization of two different disk drives, and described
a simulator that uses these parameters to provide a very accurate disk simulation. Our future
work includes using this model to explore a variety of different 1/O designs and policy choices at
host and disk levels. We hope to make the source code of our model available to interested
researchers in the latter half of 1993, together with calibrated model parameters for a longer list of
disk types than we had space to describe here.
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