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Abstract

Many parallel join algorithms have been proposed in the last several years. However,

most of these algorithms require that the amount of data to be joined is known in advance

in order to choose the proper number of join processors. This is an unrealistic assumption

because data sizes are typically unknown, and are notoriously hard to estimate. We present

an adaptive, load-balancing parallel join algorithm called PJLH to address this problem.

PJLH e�ciently adapts itself to use additional processors if the amount of data is larger

than expected. Furthermore, while adapting, it ensures a good load balancing of data across

the processors.

We have implemented and analyzed PJLH on a main memory database system imple-

mented on a cluster of workstations. We show that PJLH is nearly as e�cient as an optimal

algorithm when the amount of data is known in advance. Furthermore, we show that PJLH

e�ciently adapts to use additional join processors when necessary, while maintaining a bal-

anced load. This makes PJLH especially well-suited for processing multi-join queries where

the cardinalities of intermediate relations are very di�cult to estimate.

1 Introduction

The e�cient computation of the join operator on multicomputers has continued to be an im-

portant research area. However, designers of parallel join algorithms are faced with two major

problems: how to determine the proper number of processors to participate in a join (or each

join of a multi-join query) and how to achieve a good balance of the load across the processors.

We address each of these in turn.

If too few processors are chosen for a join, the processors will be over-loaded and the

processing required to resolve the overow may be very high [SD89]. On the other hand,
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choosing too many processors incurs the overhead of the additional processors [CABK88], their

lower utilization, an increased variation in the workload [LY90], and, potentially reserving

important resources (memory) at each site.

The problem of accurately determining the number of processors is exacerbated by the

di�culty of predicting the number of tuples that are likely to be input to a join, especially

that of intermediate joins in multi-join queries. For example, [IC91] shows that, in general,

cardinality estimation errors increase exponentially with the number of joins. Most systems

simply pre-determine the number of processors to be used for each join operation in a multi-

join query and su�er the consequences at runtime when the join sizes are much bigger or

smaller than predicted. Since the performance degradation can be high if too few processors

are selected, the tendency is to be safe and assign extra processors. An alternative is to fully

materialize each intermediate join result in order to obtain exact cardinality information before

proceeding to the next join operation in a multi-join query. The disadvantage of this approach

is that the pipelining of data between joins is broken and the resulting extra processing is

expensive [SD90, ZZBS93, RLM87].

We propose an algorithm called PJLH, Parallel Join using Linear Hashing, to address this

problem. PJLH is an adaptive, parallel join algorithm. It starts a join operation with a number

of processors determined at compile or run time. However, if the capacity of these processors

is exceeded, it can e�ciently utilize the capacity of additional processors.

In the course of adapting to use an additional processor, some of the tuples on the exist-

ing processors are moved to the new server. An advantage of PJLH is that this process is

incremental, i.e., tuples from a single server are moved to the new server. Thus, there are no

expensive reorganizations in which data at all the processors is accessed. Furthermore, since

the growth is one processor at a time, the number of processors is minimized. Another bene�t

is that while adapting to take advantage of additional resources, a good balance of load across

the processors is maintained. This is the only algorithm that we are aware of that adapts itself

to use additional processors without requiring any knowledge of data input cardinalities.

In essence, PJLH works by staging one of the joining relations into a distributed �le and

then probing this �le with tuples from the other joining relation. The distributed �le has the

properties that it is easily addressable through a simple hashing function, it evenly balances

the number of tuples on each of the processors used for the join, and it gracefully and e�ciently
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expands to additional processors when the load on the existing ones is too high. Since this

algorithm can adapt itself for any number of tuples in a join, it is well-suited for processing

pipelined, multi-join queries on systems with large numbers of processors.

We have implemented PJLH and analyzed its performance on a main-memory database on a

cluster of workstations. We show that PJLH performs nearly as well as an optimal static hashing

algorithm when both use the same number of processors. Furthermore, we demonstrate that

PJLH e�ciently expands over additional sites when the capacity of the current sites is exceeded.

The remainder of the paper is organized as follows. In Section 2, we describe the PJLH

algorithm and in Section 3 the static hash-join algorithm used for the comparison. Section 4

describes the performance results of these algorithms. Related work in parallel join query

processing is discussed in Section 5. Section 6 concludes the paper and o�ers suggestions for

future work.

2 PJLH| an adaptive, load-balancing parallel join algorithm

2.1 Overview

PJLH is an adaptive, parallel join algorithm. It is adaptive in that it can increase the number of

join sites used for a join while the join is in progress. Furthermore, the adaptation is incremental,

i.e., join sites are added one at a time. This \spreads out" the cost of adaptation, and hence

minimizes the e�ects of adding additional join sites. Finally, the load on the join sites is kept

balanced while join sites are added.

We consider the join of relations R and S, where each relation is horizontally partitioned

(declustered) over a set of sites, called home sites [CABK88]. The actual join of R and S takes

place over a set of sites, called join sites. In general, the set of join sites can intersect with the

home sites. The general case of multi-join queries is discussed in Section 2.3.3.

PJLH works in two phases. In the �rst phase, called the building phase, a distributed

�le is constructed from the tuples of R. Each fragment of this distributed �le is kept in the

main-memory of a join site. After this phase is done, the probing phase is started where

tuples from S probe the distributed �le to produce the join result. Since the same hashing

function is used to redistribute tuples in both phases, the join of R and S is broken up into

a number of smaller, independent joins which are executed in parallel. A scheduler process
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controls the entire parallel join operation, including initiating the two phases and managing the

evolution of the �le.

PJLH was inspired by the LH* algorithm proposed in [LNS93] for the construction of the

distributed �le. The join sites can be thought of as servers for the distributed �le, while the

sites producing the tuples of R and S are specialized clients. Clients maintain a view of the

�le, although it is important to note that this is a \fuzzy" image for the clients of R. Since

clients are not guaranteed to have a correct view of the �le, servers have logic to forward tuples

to the correct server site. An addressing error triggers a noti�cation message to the client to

update its view of the �le in order to make fewer errors in the future.

Each fragment of tuples at a join site is called a bucket. Each bucket is stored in memory

and is organized to support fast access by key value, e.g., a hash �le. For the sake of discussion,

there is one bucket per site. The �le expands one bucket at a time, and only when the capacity

of the existing buckets is exceeded. A split coordinator (SC) manages the �le evolution. In

PJLH, the scheduler assumes this responsibility. The distributed �le can start with an arbitrary

number of buckets. The full details of the algorithm are described below.

2.2 Building phase of the join

2.2.1 File Expansion

A distributed �le consists of a collection of servers numbered 0, 1, 2, ... each of which stores a

single bucket of the �le in RAM. The servers (buckets) are addressable through a directoryless

pair of hashing functions hi and hi+1; i = 0; 1; 2; ::: The function hi hashes join attribute

values C onto N � 2i addresses; N being the initial number of buckets, N � 1. We use the

following family of functions: hi (C)! C mod (N � 2i).

Under insertions, the �le gracefully expands, through the splitting of one bucket at a time

into two buckets. The function hi is replaced with hi+1 when existing bucket capacities are

exceeded. A special value n, called the split pointer, is used to determine which function, hi

or hi+1, should apply to a key. The value of n grows one by one with the �le expansion (more

precisely, it grows from 0 to N � 1, then from 0 to 2N � 1, etc.). It indicates the next bucket to

split and it is always the leftmost bucket still using hi. The record with key C is always stored

at the bucket with address a as de�ned by:

a hi(C);
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if a < n then a hi+1(C);

Buckets maintain the most recent level of the hash function in their header. This is used to

determine whether a tuple needs to be forwarded to another bucket.
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Figure 1: File expansion (bucket capacity=4).

An example of �le evolution (adapted from [LNS93]) is shown in Figure 1. For this example,

the bucket capacity of each join site is four and N = 1. The bucket header is shown at the

bottom of each bucket. The state of the split coordinator is shown on the right hand side. In

Figure 1(a), the �rst four values have been inserted into bucket 0 and the insert of 153 causes

a collision. The collision triggers a split of bucket 0 into buckets 0 and 1, i.e., the values are

rehashed using h1, with the result that the odd valued records are moved to bucket 1. Both

buckets are now using h1, as their bucket headers show. Figure 1(b), shows the �le after the
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split and the insertions of 251 and 215. Figure 1(c) shows the result of trying to insert 145

into bucket 1. This collision causes bucket 0 to split with half the records moving to bucket 2.

Key 145 remains as an overow record at bucket 1. Values 6 and 12 are then inserted. Finally,

Figure 1(d) shows the �nal �le after the insert of 7 causes another collision and thus the split

of bucket 1 and the creation of bucket 3.
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Figure 2: Splitting of bucket n.

Figure 2 shows the algorithm required to split a bucket. When a server k �rst overows

its capacity, it sends a collision message (1) to the split coordinator. The SC computes the

address of the new bucket to be added to the �le; this is bucket N � 2i + n. The SC sends a

create-bucket message (2) to the server at this address. This message includes the bucket level

of the server | which is equal to i+1. The SC sends a split message (3) to server n, informing

6



it to split its bucket. This message includes the address of the new bucket. Upon sending this

message, the SC updates its state of the �le by:

n n+ 1;

if n � N � 2i then i i+ 1; n 0;

Upon receipt of a split message, a server scans all the records in its local bucket and rehashes

them using hi+1. On average, about half of the records hash to the new bucket. These records

are transferred to the new bucket (5); multiple records are packed into each message to reduce

communication costs. The server also updates its header to reect the hash function i + 1.

Concurrently with the split, the SC informs each of the clients of the new state of the �le

through a notify message (4). In e�ect, the split has been \committed". The rationale for

this strategy is discussed below. Finally, when bucket n has completed the split operation, it

informs the SC through a split-done message (6).

The above picture is slightly simpli�ed in that in PJLH buckets are allowed to split con-

currently in order to support the high insertion rates required for a parallel join. The split

coordinator guarantees that the buckets are split in a linear order, although multiple buckets

can be undergoing a split operation simultaneously. The split pointer n is used as before to

keep track of the next bucket to split. In addition, the SC has another split pointer called the

barrier split pointer. The barrier split pointer trails the split pointer. It is advanced only when

the SC receives a split-done noti�cation from the bucket that was �rst told to split, from the

list of buckets currently being split. For example, if buckets j, j+1 and j+2 are in the process

of splitting, the barrier split pointer will be j while the split pointer will be j + 3. The SC

advances the barrier split pointer to j + 1 only when bucket j informs it that its split is done.

The barrier split pointer is needed to guarantee that a bucket is not told to split while it is

currently performing a split. That is, the split pointer cannot loop through the �le and \catch

up" to the barrier split pointer. This ensures that at most two hash functions are ever active

simultaneously, i.e., that a server is using bucket level i or i+ 1.

The algorithm described above for splitting buckets di�ers fundamentally from that in LH*.

� In LH*, a bucket split is made visible to a client only after the split coordinator has been

informed that the split has �nished. This was done to ensure that a client retrieving a

record from a bucket undergoing a split would always look for the record in the original

bucket, and, if the record was forwarded as part of the split, the query would ultimately
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be forwarded also. This is not necessary in PJLH since the �le is \append-only" during

the building phase. Thus, by making splits visible sooner, clients make fewer addressing

errors.

� In LH*, noti�cation messages are sent in a lazy manner, i.e., as a result of a client making

an addressing error. In PJLH, clients are informed of bucket splits in an eager manner.

This was done because each client is inserting large amounts of data into the �le, and at a

high insertion rate. Thus, there is a need to inform clients of structural changes to the �le

as soon as possible to prevent forwarding of tuples at the join sites. Also, given the large

amounts of data to insert, it is likely that each client would quickly have an addressing

error which would generate a noti�cation message and thus this optimization does not

add additional messages. Furthermore, these noti�cation messages to the clients do not

have to be reliable, i.e., clients can still operate with an outdated view of the �le.

� Concurrent splits are important in order to support the high insertion rates needed for

parallel joins. The algorithm for concurrent splits in PJLH allows greater concurrency

than other algorithms [SPW90, LNS94] by informing clients of new buckets before the

transfer of tuples to the new bucket is completed. This is correct because it is guaranteed

that no tuples are ever retrieved while splits are on-going, since the semantics of the join

are append-only. This is the �rst design and implementation of concurrent splits for a

shared-nothing multiprocessor.1

Since the �le expands linearly as an LH or LH* �le, the load factor is generally between

65% and 70% [Lit80, LNS93].

2.2.2 Clients of the building phase

As stated earlier, the tuples of R are initially horizontally partitioned across a set of home sites.

All of these sites are clients of the initially empty distributed �le, horizontally partitioned over

a set of N initial join sites.

Each client maintains a fuzzy image of the �le, although clients are informed of the initial

N buckets by the scheduler. The client's image consists of the parameters i0 and n0, which

1 [SPW90] implemented concurrent splits but the architecture of the system was a tightly-coupled multipro-
cessor with distributed shared-memory.
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correspond to i and n kept by the split coordinator. The client's values, i0 and n0, can lag behind

i and n. A client's image is updated via a noti�cation message sent by the split coordinator.

Upon receipt of this message, a client simply replaces the current values of i0 and n0 with those

enclosed in the message.

The algorithm for a client during the building phase is:

1. Read each tuple r from the local fragment of R

2. Apply any local selection predicates

3. Apply the following hashing function to the join attribute C of r and send r to site a:

a hi0(C);

if a < n0 then a hi0+1(C);

As a performance enhancement, a client batches several inserts that hash to the same bucket

and sends them using a single network message. Batching reduces communication costs and

allows for a more e�ective utilization of the network. The tradeo� is that more tuples may be

sent to the wrong join site and hence need to be forwarded, because of changes to the underlying

�le during the bu�ering process.

2.2.3 Termination of building phase

An interesting problem that arises in PJLH is detecting when the building phase has completed.

This can normally be done by having the scheduler wait until all the clients notify it that they

have processed their fragment of R. But a complication in PJLH is that buckets may still be

undergoing splits or some client inserts may still be queued for processing at a server.

The termination algorithm is as follows. In the �rst phase, each client piggybacks an end-

of-data signal on the last packet to each of the join sites. The client also piggybacks the total

number of tuples that it has sent. When each join site receives such a signal from each of the

clients, it noti�es the scheduler. When the scheduler receives a noti�cation from each of the

join sites, it begins phase two. In phase two, the scheduler starts multiple rounds of queries

to each of the join sites. In each round, the scheduler asks the join sites for the number of

R tuples stored. When the sum of the replies reaches the expected total and no more splits

are in progress, the building phase is over. The number of rounds necessary for termination is

expected to be low.
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The algorithm used in the �rst phase is called point-to-point in [AC88]. They showed that

this algorithm is e�ective when the number of clients is small. If the number of clients is

expected to be large, it would be better to use their control node strategy.

2.3 Probing phase of the join

2.3.1 Clients of the probing phase

The sites storing fragments of relation S constitute the clients of the probing phase of the

join. In this phase, tuples of S are routed to a join site where they are used to probe the

in-memory hash-table and produce any relevant output tuples. The same hash functions used

in the building phase are used on the join attribute values of S in this phase. However, clients

of S never make any addressing errors, i.e., they never route a tuple to an incorrect join site

since the scheduler informs these clients of the actual state of the �le built during the building

phase. Hence, i0 and n0 are guaranteed to equal i and n.

2.3.2 Servers of the probing phase

Because clients never make any mistakes in the probing phase, as an optimization, the servers

at the join sites need not re-hash the tuples to see if they should be forwarded. Thus, jSj hash

computations are avoided.

2.3.3 A multijoin algorithm

The PJLH algorithm as presented above described the join of two relations. The ex-

tension for multi-join queries is straightforward and is adapted from the algorithm used in

Gamma [DGS+90]. Consider the k-way join of relations R1, R2, . . ., Rk+1, expressed as a

left-deep query tree as shown in Figure 3.

The scheduler begins by assigning an initial number of join sites for each join in the query

tree. (These values can come from optimizer hints or from more elaborate run-time heuristics.)

Next, the join operation J1 (which represents R1 1 R2) is started, i.e., the building phase using

tuples from R1 is initiated. The scan of R1 and the construction of the distributed �le for R1 is

then run to completion as described in the previous section for two-way joins. However, instead

of immediately starting the scan of R2 and the resulting probing of the join sites as for two-way

joins, the building phase of join J2, which represents ((R1 1 R2) 1 R3), is �rst initiated and
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Figure 3: Left-deep tree for k-way join.

then the scan of R2 is started. This allows an inter-operator pipeline to form between the

scanning of R2, the probing of the �le built from R1, and the building of the distributed �le for

the tuples resulting from R1 1 R2. When all of these operations are done, execution continues

similarly, i.e., the next level join is initiated, the scan of R3 is started, the tuples probe the

distributed �le, and the join result tuples are staged into yet another distributed �le. Execution

continues in this manner until all the joins in the query are computed. Note that each join in

the query can adapt to use as many processors as necessary.

Note that it is trivial to use PJLH as the join method for query plans represented in right-

deep trees or bushy trees.

3 Static hashing

In order to evaluate the cost of adding join sites in PJLH, we wanted to compare it with an

optimal non-adaptive algorithm. The algorithm we chose is a static-hashing (SH) algorithm

where the number of join sites is determined in advance and remains constant during the join

operation.

The algorithm works as follows:
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1. Each home site of R reads its local fragment of R, applies a hash function, h, to the join

attribute C of each tuple, and routes the tuple to join site h(R:C). The result of this

operation is that R is redistributed over the set of join sites. As tuples arrive at a join

site, they are staged into a main-memory hash table. R is referred to as the building

relation.

2. After step 1 is �nished, a similar procedure is applied to the tuples in S. Note that the

same hash function from step 1 must be used. As tuples of S arrive at a site, they probe

the memory hash table and produce the appropriate join output tuples. S is referred to

as the probing relation.

This algorithm has the following advantages:

� It is simple to understand and implement.

� Determining the destination of a tuple is very e�cient since a single hash computation is

all that is required.

� The load on the network is minimized since once a tuple is routed to a join site it is never

forwarded.

� The distribution of tuples across the join sites is relatively balanced for many join attribute

value distributions [SD89].

The disadvantages are:

� The number of join sites is constant regardless of the number of building tuples. If this

number is too small, hash table overow can result. This can be very expensive to resolve

if the overow is severe [DG85, SD89]. If the number of sites is too large, extra overhead

is incurred for the additional sites, utilizations are low, and load imbalance is increased.

Furthermore, most algorithms will pre-allocate resources (memory) for the join at each

site and hence other concurrent queries may su�er.

� Performance degrades signi�cantly if the hashing function does a poor job of balancing

the tuples of R across the join sites resulting in severe hash table overow [SD89].

Since we want the SH algorithm to be optimal, we ensure in our experiments that there is

always su�cient memory such that hash tables built during the building phase never overow.
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4 Experimental results

4.1 Experimental environment

Our test environment was a shared-nothing multicomputer [Sto86] consisting of eight HP 9000

series 735 workstations on a 100 megabits/second FDDI network. Each workstation has a 124

MIPS CPU and 144 megabytes of main memory. The operating system was HP-UX 9.01. The

PVM 3.2 message passing library [BDG+91] was used to simplify the programming for the

cluster. PVM uses the Internet User Datagram Protocol (UDP) for messages. The experiments

were run on lightly loaded workstations and network.

All relations were horizontally partitioned (declustered) over a subset of the workstations

such that each site had an equal number of tuples. All relation fragments were stored in memory.

We chose the Wisconsin benchmark relations for our join experiments [DeW91]. The join-

ABprime query was chosen as the representative join. JoinABprime is a join of relations A and

Bprime. The A relation consists of X tuples while the Bprime relation has 1/10th as many

tuples. For our experiments, X is equal to 100,000 or 300,000. The join result consists of the

same number of tuples as does Bprime. Each tuple is 208 bytes wide, except join result tuples

which are 416 bytes each. Result tuples are discarded immediately after being computed. This

was done to limit the amount of memory for the experiments. To be consistent with our earlier

terminology, the Bprime relation can be thought of as relation R while A corresponds to S.

As speci�ed by the benchmark, the join attribute values are uniformly distributed. However,

our results are more general. We ran a series of simulations over many normal distributions

with a wide variation of standard deviations and found that the load factors of the �les were

very close to that of the uniform distribution. That is, the hashing algorithms generally did an

excellent job.

4.2 Results

The following parameters are used in the results. Let Jinitial be the set of join sites (servers)

that PJLH starts with and Jmax be the set with the maximum number of join sites. In our

experiments, jJinitialj varies from 1 to 7 and jJmaxj varied from 1 to 7. The number of home

sites for R and S, shown as jH j, varied from 1 to 4, with 2 as the default. R and S were always

horizontally partitioned over the same set of home sites. These sites were disjoint from the join
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sites. Unless stated otherwise, each home site (client) bu�ered ten requests before sending it to

a join site.

4.2.1 Comparison to an optimal algorithm

In this set of experiments, we compared the performance of PJLH to the optimal static hashing

(SH) algorithm described in Section 3. The goal was to assess the overheads of PJLH over the

optimal algorithm when both algorithms use the same number of join sites. In all the tests,

the tuples were evenly distributed across the join sites and the bucket capacity at each join site

was su�cient to store all incoming tuples.
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Figure 4: Performance of PJLH and SH.

Figure 4 shows the performance of PJLH and SH when the number of home sites, jH j, varies

from 1, 2 and 4 and for a range of join sites. The cardinalities of the joining relations were

30,000 and 300,000 tuples. The main conclusion to draw from the curves is that for all values

tested, PJLH adds negligible overhead as compared to SH. (For jH j = 4, the two curves almost

coincide.) PJLH has two potential overheads over SH in these experiments. First, each tuple
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of R is re-hashed at a join site to see if it should be forwarded. Since there are no forwards in

this situation, this adds jRj extra hash computations. However, these computations occur in

parallel across the join sites and can be overlapped with network communication. The second

source of overhead is in detecting the end of the building phase. As the performance curves

show, this time is also negligible, as expected. The one case where PJLH appears to be better

than SH is due to the time-sharing nature of UNIX.

Another important conclusion from Figure 4 is that increasing the number of home sites

leads to better overall performance. In fact, the speedup is nearly linear. However, increasing

the number of join sites does not lead to a comparable performance improvement. This occurs

because the bottleneck is in putting the data onto the network. The only exception is for

the case with four home sites and a single join site. For this experiment, the four home sites

produced data faster then the single join site could consume it. With two join sites, though,

the producers and consumers were more evenly balanced.

4.2.2 Cost of dynamic expansion
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Figure 5: Cost of adaptation in PJLH (jJmax = 6j).

In this set of experiments, we quantify the cost of adding additional join sites at run-time,

i.e., the cost of dynamic adaptation. For these experiments, the number of home sites varied

from one to two. Each join started with 1 to 6 join sites and �nished with jJmaxj = 6 join sites.
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The results are plotted as the time taken compared to the optimal case where jJinitialj = 6 and

jJmaxj = 6, i.e., where no expansion was required. The bucket capacity of each join site was set

to that required to ensure no overow for the optimal case of jJinitialj = 6.

The results are shown in Figure 5. As the �gure shows, the cost of expansion is very

reasonable | under 8% in all cases.
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Figure 6: Cost of adaptation in PJLH (jJmax = 4j).

In Figure 6, jJmaxj is limited to four and we varied jH j from 1 to 4. The results for jH j

equal to one and two are similar to Figure 5. However, the overheads for jH j = 4 are more

extreme. As the �gure shows, when the join starts with a single join site and expands to four

join sites, the overhead is approximately 40%. The reason for this is that the tuples are sent to

the join site faster than it can process them, as was discussed in the previous section. This is

supported by experimental data that shows that 38% of the tuples of R had to be forwarded to

a di�erent join site because of an addressing error. With two initial join sites, the overhead of

expansion is not nearly as acute. In this case, only 16% of the tuples needed to be forwarded.

Less then 1% of the tuples needed to be forwarded when the �le started with three join sites.

Of course, no tuples were forwarded when the number of initial join sites was four.

4.2.3 E�ect of client bu�ering
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Figure 7: E�ect of bu�ered requests (jH j = 2).

In this set of experiments, we measured the e�ect of varying the number of client requests

bu�ered into a single network message. The degree of bu�ering was varied from 1 tuple per

network packet to 15 tuples per network packet. The query joined relations with 30,000 and

300,000 tuples and jH j = 2.

Figure 7 clearly demonstrates the superiority of larger network bu�ers. The only potential

problem with bu�ering is that some tuples may need to be forwarded if they are directed to

an incorrect join site due to �le reorganizations during the bu�ering process. However, as was

shown earlier this is a very small cost, and, since no tuples are forwarded during the probing

phase, it only occurs for the building relation.

Similar results were obtained for joins of relations with fewer tuples and for di�erent numbers

of join sites.

4.2.4 E�ect of concurrent splits

In this set of experiments, we forced buckets to split one at a time in order to quantify the

e�ect of allowing concurrent splits. jH j was set to 1 and the number of join sites grew from 1

to 7. The query joined relations of 10,000 and 100,000 tuples.

Figure 8 shows that concurrent splits lead to only modest improvements. This was dis-

couraging since we predicted that concurrent splits would lead to big performance gains. The
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Figure 8: E�ect of concurrent splits (jH j = 1).

explanation is that the small number of sites in the cluster limited the potential bene�ts of

concurrent splits. That is, if the cluster had more workstations, concurrent splits would have

provided a bigger advantage, as long as the bandwidth of the network is not exceeded. This

reasoning is supported by some initial experiments we have conducted using a cluster of 14

SUN workstations. In this environment, concurrent splits increased performance by up to 50%

for a similar query.

4.2.5 Scalability considerations

We will start with some de�nitions and consider two cases | one without network congestion

and another with network congestion. The analysis is simple and makes some signi�cant as-

sumptions, which are probably valid but need to be justi�ed in future work with more detailed

analysis as in [SKAT91, KS91].

De�nitions T is the sum of the cardinalities of the relations to be joined. Let H and J be

the sets of home sites (clients) and join sites (servers) respectively. ki, where i is some numeric

constant, stands for a constant.
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No network congestion case The sequential time to perform the join is k1T , assuming that

the hash-join component itself is linearly proportional to the size of each relation. The time

for each client to send data on the network is k2T

jHj
. Since we assume that network bandwidth

is not a bottleneck, the total time for all clients to send data is the same. Hash-join time is

k3T

jJj
assuming that the load is evenly distributed. The time taken for other messages needed

for PJLH is k4jH j+ k5jJ j since the number of messages is proportional to the same expression

and each message is of constant length. This assumes that the termination algorithm takes a

constant number of rounds. The time taken for redirecting data after splits or due to an incorrect

hash function being used by a client is some small proportion of the time taken to send the

data from the clients; we simply subsume it in the expression given above for redistribution

from clients. Therefore,

Speedup =
Sequential Time

Parallel Time

=
k1T

k2T

jHj
+ k3T

jJj
+ k4jH j+ k5jJ j

This means linear speedup with increasing jH j or jJ j as long as T increases at least as fast

as (jH j)2 or (jJ j)2.

Network congestion case When the network is congested, redistribution time is propor-

tional to the size of the relations (as opposed to the case without congestion when this time

gets divided by jH j). In other words, there is no bene�t from parallelization due to multiple

clients. Since sequential time is also proportional to the size of the relations, one can expect in

the best case to have only constant speedup, not linear speedup as is the case without network

congestion.

5 Related Work

The majority of research in parallel join query processing algorithms for shared-nothing multi-

computers can be broadly classi�ed into two categories: static partitioning schemes and dynamic

partitioning schemes [ME92]. In both schemes, the relations to be joined are broken up into a

series of k partitions and the original join is computed by joining each of the smaller pairs of

partitions, i.e., Ri 1 Si for i = 1 to k.
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In algorithms based on static partitioning, each pair of partitions is assigned to a join site

based on some criteria (e.g., hashing or ranges) to be joined. The join then occurs in parallel

across the join sites. Examples of such strategies include [DG85, SD89, NKT88, DNSS92,

AOB93, WA93]. The main shortcoming of these techniques is that the size of the partitions

may vary across the join sites, and may even exceed the available memory at some sites. This

results in an expensive process to resolve the overow and as a result a longer time to compute

the join.

Dynamic partitioning schemes address this problem by balancing the size of partitions at

runtime; examples of such algorithms include [KO90, HL91, WDYT91]. However, a disadvan-

tage of both the static and the dynamic partitioning schemes is that they require the set of

join sites to be known in advance and they are unable to add additional join sites at run-time.

Thus, these schemes require, at a minimum, a good estimate of the cardinality of the building

relation. This is a major disadvantage given the known di�culties in predicting the size of

intermediate join results [IC91].

The work reported in [KR91] is most closely related to PJLH. Its dynamic partitioning

scheme is similar to that of PJLH in that buckets split according to a threshold, and clients

and servers maintain images of the �le. Although it is not clear from the paper that additional

join sites are being added when a bucket splits, it would be easy to extend it to do so. However,

the algorithm requires the cardinality of the joining relations in order to distribute partitions.

This limits its applicability for pipelined multi-join queries.

Although not speci�cally related to parallel join processing, the recent load-balancing work

done as extensions to LH* is related. In [LNS94], several methods are evaluated for controlling

the �le load between 80-95%. Several of these do not even require a split coordinator. [VBW94]

reports a strategy that achieves �le loads of around 90% by allowing multiple buckets per server

and by allowing buckets to migrate between servers. PJLH could be extended with similar

techniques to achieve higher load factors.

6 Conclusions

We have presented a new, adaptive parallel join algorithm called PJLH. PJLH works by re-

distributing one of the joining relations over a set of join sites and then probing these sites

with tuples from the other joining relation. The algorithm is unique in that it can e�ciently
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expand to include additional join sites when the capacity of the existing ones is exceeded. The

expansion is incremental, thus lessening its impact on performance. Finally, a good balance of

tuples is maintained across the join sites, even during the expansion process.

Since PJLH can adapt to handle relations much larger than expected it is particularly well-

suited for processing multi-join queries. In such queries, it is not uncommon for join selectivity

estimates to be o� by several orders of magnitude. This makes it exceedingly di�cult for

an optimizer to assign the correct number of sites to handle each intermediate join. The

advantage of PJLH is that an optimizer can be optimistic and assign relatively few sites for

each join with the knowledge that if the size estimates are wrong, the algorithm will e�ciently

adapt. In contrast, an optimizer doing processor assignment for algorithms that cannot adapt

needs to be more pessimistic and assign more processors to protect against the case where the

intermediate relations are much larger than expected and the processing to handle the overow

is expensive. The cost of this strategy includes the overhead to manage the additional sites,

their lower utilization, and a higher variation in workload.

Because of its dynamic nature, PJLH lends itself nicely to pipelined implementations of

multi-join queries. Prior research has demonstrated the performance advantages of a pipelined

query execution [CLYY92, RLM87, SD90]

We have implemented and evaluated PJLH on a main-memory database system on a cluster

of workstations. In order to assess the overheads of PJLH, we compared it to an optimal static

algorithm. The results show that the performance of PJLH is nearly identical to this optimal

algorithm when both use the same number of sites for the join. Our experiments also show that

the cost of expanding to additional sites is reasonable. It is important to note that the results

also hold for disk-based database systems. In fact, the algorithm would perform better in this

environment because of the greater cost of accessing the base relations.

Several interesting areas of future work remain. Currently, PJLH balances the number of

tuples across the join sites. In the absence of join selectivity skew [WDJ91], the overall work of

the join will be balanced. We intend to examine strategies for handling join selectivity skew by

building a single distributed �le with tuples of both joining relations. We also plan on exploring

other strategies for controlling the load across the join sites, including strategies that do not

require a centralized coordinator. Finally, it would be interesting to port the algorithm to a

scalable multicomputer such as an Intel Paragon or TMC CM-5.
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