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introduce a new technique, called blocked back­
substitution, which has lower operation count and
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pipelined loops and compare these metrics for a
range of height reduction techniques and
processor architectures.
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1 Introduction

Architectures with instruction level parallelism such as VLIW and superscalar processors
provide parallelism in the form of a limited number of pipelined functional units. For these
architectures, recurrence height reduction techniques provide significant speedups when they are
properly applied. This paper introduces a new technique, called blocked back-substitution,
which preserves the height reduction benefits observed with symmetric back-substitution
techniques but has substantially lower operation count. We analyze the impact of both the
latency and the number of operations used to evaluate a recurrence on the performance of
software-pipelined loops. We present speedup results on a variety of example architectures to
demonstrate the utility of the techniques presented in this paper.

Recurrences appear in many forms within application programs and typically result in a
performance bottleneck when executed on a processor with instruction level parallelism. A chain
of operations connected through flow dependence limits program performance. Most recurrences
are either first or second order where efficient acceleration techniques are best demonstrated. We
believe that a broad class of recurrences can be efficiently accelerated, and we demonstrate the
acceleration of one important class of recurrences within this paper.

The height reduction of arithmetic recurrences has been extensively studied in the literature; see,
for example, [1-5]. The techniques used in these papers introduce computational redundancy in
order to reduce the solution time of a recurrence on a parallel computer but do not carefully
optimize the solution of recurrences for processors with limited instruction level parallelism. A
frequently discussed solution is cyclic reduction. When cyclic reduction is applied, the operation
count is order n log n leading to excessive operation count for large problem sizes.

The partition method was introduced by Chen et. al. [6] and studied further by H. H. Wang [7]
and H. A. Van Der Vorst et. al. [8]. The partition method is amenable to parallelization and
results in lower operation count (approximately 5n) when solving a first order linear recurrence.
In this technique, a simple recurrence loop with trip count n is transformed into multiple nested
loops with smaller innermost trip count (approximately square root of n). When a recurrence
loop has mixed recurrences of different type, a loop exit, or other complex code structures, the
transformation of a single innermost loop to a complex multiple loop configuration may be very
difficult or impossible. The dismantling of a single loop into multiple nested loops also increases
vector startup penalties and requires more load store instructions than optimal methods.

Work by Tanaka et. al. [9] introduces a height reduction technique similar to blocked back­
substitution. The technique is used to accelerate first order linear recurrences on a vector
computer that has been augmented with a hardware floating point recurrence solution instruction.
Our interest is in more flexible processor architectures with significant instruction level
parallelism. We describe a broader family of height reduction techniques and use these
techniques to efficiently process algebraic recurrences of first and higher order without the
introduction of any specialized instructions.

Work by Callahan [10] introduces a fairly general class of recurrences called "bounded
recurrences" . A primary objective of Callahan is to establish a notational framework providing
for the general description of recurrence acceleration techniques. The work focuses primarily on
the acceleration of recurrences for multiprocessors. We treat specifically the acceleration of
recurrences on uniprocessors with instruction level parallelism.
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Two loop acceleration techniques, are popular in the literature. In trace (or superblock)
scheduling [11-13], loops are unrolled into a trace. Iterations within a single trace are overlapped,
but successive traces are not. The schedule length of the trace is greater than or equal to a
maximal height required by dependence over all pairs of operations in the trace. Algebraic height
reductions must accommodate the distance between all operations in the trace. In software
pipelining [14, 15], successive loop iterations are identical. Height reduction must minimize the
relative height between each iteration and identical prior iterations In software pipelines,
successive iterations overlap, and only operations on time critical dependence paths are height
reduced. Block back-substitution combines these techniques and schedules unrolled loops of
conventional instructions in software pipelines.

Blocked back-substitution is a general algebraic height reduction technique for recurrences
providing lower operation count and higher performance than prior techniques. Blocked back­
substitution is also applicable to non-linear recurrences when the primitive operations in which
the recurrence is expressed have the associative and distributive properties. The technique is
especially advantageous for machines with a large degree of parallelism obtained through either
pipelining or a large number of function units. The use of blocked back-substitution accelerates
an innermost loop recurrence using a height reduced innermost loop. The preservation of the
original innermost loop facilitates the scheduling of other innermost loop code in a common
software pipeline with height reduced recurrence code. The fused loop has reduced vector startup
penalty when compared to solutions requiring multiple fragmented loops.

The report is organized as follows. The rest of this section provides an overview of asymmetric
height reduction and introduces notation and terminology used in the rest of the report. Section 2
provides an overview of recurrence height reduction schema useful within software pipelines.
Height reduction schema such as symmetric back-substitution and blocked back-substitution are
defined for later comparison. Section 3 specializes symmetric and blocked back-substitution to
the case of a first order multiply-add recurrence. Critical path lengths and operation counts allow
direct performance comparison between the two approaches. Section 4 generalizes this work by
providing a common technique to accelerate multiply-add recurrences of any order. Section 5
provides a detailed comparison of the performance of these techniques. Section 6 contains
concluding remarks.

1.1 Overview of Asymmetric Height Reduction

Many of the height reduction techniques found in the literature use a balanced approach in the
sense that they try to minimize the length of the path from each of the inputs to the output of an
expression. The balanced approach usually requires excessive redundant work, but may offer
excellent speedup when the critical path length through the computation is measured. When
compiling for a small number of processing elements, balanced approaches may be too
computationally expensive especially when height reductions of deeply nested recurrences are
required.

In this work, we have given considerable attention to minimizing the redundant work required to
execute a computation. This is accomplished by evaluating expressions using asymmetric height
reductions. Consider the following example:

So = c i +Xl (C2 +x2(C3 + X3(C4 +x4(CS + xS(C6 + x6(C7 + x7(Cg+ Xg(sJ»»»)

The evaluation of this expression is sequential requiring eight multiply and eight add operations.
A height reduction goal is needed to characterize the successful parallelization of this expression.
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One goal is to jointly minimize the height from each of the input Cj IS and Sj to the output So In
important cases, this goal requires excessive redundant computation and yields no additional
performance benefit. A more easily met goal minimizes only a critical path (e.g. from s, to so).
Here, we assume that all of the cjIS are available well in advance of Sj and the evaluation latency
from each c, to So is not important. We use the associative and distributive properties to derive
the following expression which has a single multiplication and addition on the path from Sj to So
and requires seven additional multiplies as compared to the original expression.

So = (xlx2x3x4xSX6x7XS)Sj

+ (ci + Xl (C2 + X2 (C3 + X3(C4 + X4(CS + XS(C6 + X6(C7 + X7(CS»»»»

Balanced height reductions (those which jointly expedite the paths from all of the c, IS to so)
result in substantially increased operation count yet still require at least a single multiplication
and addition on the path from s, to so. Such algebraic transformations have been extensively
explored in techniques for the acceleration of carry look-ahead.

Another very important asymmetric evaluation principle explored within this paper is the use of
blocked height reductions in the acceleration of recurrences. Here, we expedite the evaluation of
a sequence of values originally calculated by repeatedly executing a recurrence expression in a
loop. When a recurrence is blocked, a simple loop with recurrence is unrolled by a blocking
factor to create an asymmetric loop body. Height reduction is applied to some of the iterations
within the loop body, while others are evaluated using the non-height reduced original code.

In this approach, a sequence of recurring values is separated into two categories: The timely
evaluation of some of the values is expedited through height reduction with requisite
computational redundancy. The evaluation of other values is not time critical and is performed
using the original expression, which involves no redundant computation. This asymmetric
treatment combines the height reduction benefits yielded by redundant expression evaluation
with reduced operation count resulting from using redundancy as sparingly as possible.

The blocked back-substitution introduced in this paper uses associative and distributive
properties to reduce the height of expressions, and it uses common sub-expression elimination to
minimize the number of operations executed. In many cases, the blocked back-substitution
technique provides unlimited parallelism with a corresponding increase in redundant operation
count which is bounded by a constant multiplier.

1.2 Loop Recurrence Notation

This notation used to describe the flow of values between loop iterations is taken from a paper by
Rau [16]. In this paper, we use the concept of the expanded virtual register (EVR) which is a
linearly ordered set of virtual registers with a special remap operation. Note that the use of the
EVR is not restricted to processors with hardware support for rotating registers. Compilation
techniques using virtual rotating registers are suitable for conventional register files but require
the replication of loop program text as described in a paper by Rau et. al. [17].

A scalar value s (usually calculated repeatedly within the body of a loop) can be referenced using
the notation s[i]. Each time a remap(s) is executed, all values in the sequence shift "upward" so
that each value s[i] prior to the execution of a remap is renamed as s[i+1] after the remap. Thus,
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the value s (identically equal to s[O]) after the execution of a single remap is renamed as s[l].
This allows multiple values from a sequence of scalar assignments to remain alive without the
automatic overwrite of a value when the next member of the sequence is computed. This notation
is particularly useful for the description of value usage in higher order recurrences.

We must also describe interface specifications between the code for a loop and the code that
precedes or follows the loop code. For a variable s calculated in a recurrence within a loop, we
introduce sin and Sout to precisely describe loop interfaces. Out of loop code prior to the loop
establishes an initial value for the s which we will call Sin . After loop execution has completed,
the repeated evaluation of the loop body establishes a final value for the recurring value s known
as Sout' which is referenced by out of loop code subsequent to loop execution.

1.3 Loop Performance Metrics

We use four performance metrics to help describe the advantages and disadvantages of specific
recurrence acceleration methods. We define a simple metric Ops/iter which counts the average
number of operations required to execute a single iteration of the recurrence loop. One can
compare the number of operations per iteration prior to applying a height reduction technique
against the number of operations per iteration after height reduction to measure redundant work
introduced for the purposes of acceleration. The Ops/iter measure assumes that operations of all
types are of equal cost. When a loop body has been unrolled and iterations are not treated
symmetrically, the Ops/iter measure averages the number of operations required per iteration
across the unrolled loop block.

When a specific processor and corresponding code for a software pipeline has been selected, we
can use Ops/iter to calculate ResMII. ResMII and the following two metrics have been described
in Dehnert et. al. [18]. ResMII establishes a resource bound on the rate of execution of loop
iterations within software pipelines. In the traditional definition of ResMII, if a processor has u
identical function units each capable of executing any operation, then:

ResMII = rOps~ iter 1-

This expresses the constraint that if a schedule is developed which saturates a critical resource,
the number of cycles per iteration cannot be less than the ResMII. The formula uses a ceiling
function to constrain identical loop iterations in a software pipeline to take an integral number of
cycles. We present techniques which use loop unrolling where the schedule for successive
iterations is not identical and this constraint is pessimistic. We modify the ResMII calculation to
provide a smaller (truly lower) bound for the unrolled loop case:

ResMII = Ops I iter.
u

Here, ResMII provides a lower (possibly non-integral) bound on the average number of iterations
required per iteration across the unrolled block.

The RecMII of a loop describes a bound on the rate at which a software pipeline is executed
based on a critical path measurement through operations within the body of the loop. Given an
expression with recurrence evaluated in the body of a loop and specific hardware latencies, the
RecMII is calculated as a worst case path length computation over all circuits in the program
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graph. Each circuit is normalized by the number of iterations spanned by the circuit to correctly
calculate its impact on throughput. Once again, we have adapted RecMIT to the unrolled loop
case. We calculate the RecMIT for the unrolled loop body and divide by the number of iterations
unrolled. This provides a potentially non-integral lower bound on the number of cycles per
source iteration in the case of unrolled loops.

The MIl of a loop is a performance bound that takes both resource and critical path constraints
into account. It is simply the maximum of ResMIT and RecMIT. Once again, we use a potentially
non-integral form for MIT derived through this maximum to better model unrolled loops.

2 Recurrence Acceleration Schemas
In this section, we illustrate three loop acceleration methods using the same program example.
The example program consists of a simple associative reduction. It is commonly the case that a
sequence of terms within a loop are collected into a single result using an associative operation.
This action is termed associative reduction. Associative reduction can be separated into two
broad classes:

1. reduction to scalar in which a sequence of terms calculated within the loop is reduced to
a single scalar which is used after loop execution, and

2 reduction to vector in which terms from all iterations prior to an iteration are
associatively accumulated and either stored to memory or otherwise used within the loop
necessitating the correct calculation of the entire sequence of values.

These two cases require distinct treatment. In the following examples, we use the term "addition"
and the operation + to represent an arbitrary associative operation and we use .e to represent its
latency in processor cycles.

2.1 Interleaved Reduction

We first describe an interleaved reduction method which is useful in the associative reduction of
a number of terms to a scalar. It has been implemented within the Cydra 5 compiler (see [18] in
which the method is called "riffled" reduction) and within the Trace compiler [12]. Consider the
following pseudo code:

s[l] = Sin

do i=l,n
s=s[I]+ai
remap(s)
enddo
Sout = s[1]

Original code for a reduction to scalar loop

In this example, we assume that an initial scalar value live in to the body of the loop Sin is copied
into s[l] and, the final value Sout is copied from s[1] after loop execution completes. The
performance metrics for this loop are as follows: Ops I iter = 1 and RecMIT= .e. The
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performance metrics indicate that only a single addition is required per cycle but no more than
one iteration can be retired every f cycles.

Interleaved reduction increases the degree of parallelism without redundant work and requires no
replication of the loop body and thus, is an excellent schema for the associative reduction to
scalar. The single dependence chain of operations defined within the original loop is split into b
independent chains thus effecting a b-fold height reduction. The use of interleaved reduction to
scalar is illustrated in the program below.

s[1] = Sin' s[2] = 0, s[3] = 0, ... s[b] =°
do i=l,n
s= s[b] + a,
remap(s)
enddo
Sout = s[l]+ s[2]+"+s[b]

Interleaved reduction

Interleaved reduction results in the following loop performance metrics: Ops I iter =1 and

RecMll = f,Interleaved reduction is not suitable for associative reduction to vector because it
correctly calculates only the final term in the original reduction series. Interleaved reduction is
also not useful when treating more complex recurrences such as first order and higher order
linear recurrences described below. We provide no further discussion of interleaved reduction,
rather we will focus on the next two techniques.

2.2 Symmetric Back-substitution

Symmetric back-substitution has also been implemented within the Cydra 5 compiler. The
technique is more general than interleaved reduction because it handles more complex
recurrences and correctly treats the reduction to vector case. However, we will show that
symmetric back-substitution is frequently not the best approach. We have modified the original
code shown above to illustrate the reduction to vector case. Here, the entire stream of values of s
are used (stored into the array x(i» within the body of the loop. Again the performance metrics
for the unmodified loop are expressed as: Ops I iter = 1 and RecMII = f indicating that only a
single addition is required per cycle but no more than one iteration can be retired every f cycles
where f represents the addition latency.

s[l] = Sin

do ie l.n
s = s[l] + ai

x(i) = s
remap(s)
enddo

Original code for a reduction to vector loop
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The following presentation focuses on the rapid evaluation of the recurring value sequence and
not the means by which the values are actually used. We assume that either or both the entire
value sequence or the final live out value within a loop are potentially used but, we at times omit
these uses. Schema presented below must be optimized to accommodate whether such uses exist.

Back-substitution is achieved by substituting the expression for s computed within a previous
iteration (s[l] = s[2] + ai-I) into the expression for s computed within the current iteration. Thus

we get s = (s[2] + ai-I) + ai. The process may be repeated to any desired depth b of back­
substitution. The associative property of addition is used to asymmetrically height reduce the
result (e.g. expedite the s[2] to s[O] path for b=2). This yields the expression s = s[2] + (ai- l + ad.
The technique produces each term in the sequence of values faithfully and thus can be used for
both the reduction to scalar and reduction to vector cases. The computational work increases
linearly in b as we expose additional parallelism. This yields inefficient solutions when highly
parallelized forms of the back-substituted code are used. Code for symmetric back-substitution is
illustrated below:

s[1] = Sin
do i=l,b-l !*treat b-l iterations conventionally*!
s = s[1]+ a,
remap(s)
enddo

do i=b,n !*b fold back-substitution of remaining
iterations*!
s = s[b] + (a, + ai-l + ai-2+··+ai-b-l)
remap(s)
enddo

Code after symmetric back-substitution

The second loop depicts code which has been parallelized through back-substitution. The back­
substitution process has changed the loop from a first order recurrence to a bth order recurrence.
If one enters the second loop directly this higher order recurrence uses the value s[b] which is not
properly defined. The higher order recurrence is correctly initialized by executing b-I
conventional iterations within the first unmodified loop. The remaining n-(b-l) iterations are
executed within the second higher order recurrence loop.

Loop performance metrics for the second loop are: Ops liter = band RecMII = i. When one
applies a b fold height reduction, a resulting b-fold increase in work is required. The linear
growth in the computational requirements for symmetric back-substitution motivates the blocked
back-substitution approach presented below.

We note that in the case of a reduction involving loop invariant terms, back-substitution can be
streamlined. Consider the case where each of the terms a, in the previous example are identical

values, say a. Assume also that a multiplicative operation x exists such that:
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L~a=nxa

As an example, the associative operation + could represent floating point multiplication and the

multiplicative operation x could be the nth power of a. We start with the original code as
modified to reflect the invariance of the a,terms:

s[1] = Sin

do i=l,n
s = s[1]+ a
remap(s)
enddo

Original code with loop invariant terms

Again, we assume that the initial value Sin resides in s[1] and, the final value Sout may be
obtained in s[1] after loop execution. We now rewrite the code exactly as in the symmetric back­
substitution case but pre-compute the addition of b copies of the invariant term a outside the
loop. Again, this method is suitable for either reduction to scalar or reduction to vector, but now
the computational work is a constant function of the degree of height reduction. This provides an
excellent method for stepping out symmetric induction variables within software pipelined loops.

c=axb
s[1] = Sin

do i=l,b-l
s = s[l]+a
remap(s)
enddo

do i=b,n
s = s[b] +c
remap(s)
enddo

Symmetric back-substitution with invariant terms

The invariant case eliminates the need for redundancy in the back-substituted expression
resulting in the following loop performance metrics: Ops / iter = 1 and RecMII = t. Note that
for associative operations which have a well behaved inverse operation (e.g. additive inverse),
the first loop can be eliminated and proper values for s[I], s[2], ...,s[b] can be pre-calculated
before entering a back-substituted loop with trip count n.
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2.3 Blocked Back-substitution

In this section, we present a new technique which unrolls loop bodies to achieve a more efficient
solution. We call this technique blocked back-substitution because it uses an asymmetric
treatment of code within a block of b consecutive iterations where b represents the block size or
degree of unrolling. Blocked back-substitution frequently height reduces recurrences with a
substantially lower increase in redundant operation count.

The schema is as follows. A loop body is unrolled b times. The first b-l iterations of the body are
simple copies of the original loop text. The final copy of the loop body is expressed using b-fold
back-substitution directly in terms of values live in to the first of the b iterations. The expression
for this back-substituted iteration is then height reduced. The height reduction is asymmetrically
optimized to minimize the loop recurring value-in to loop recurring value-out path (s[bl to s[O]).

The b fold unrolling of loop text into a block complicates the treatment of arbitrary loop trip
count. For counted loops (e.g., DO loops in FORTRAN), we will condition loop execution so
that the blocked loop executes an integral multiple of b source iterations. This is achieved by
defining two trip count functions: e (the epilogue count) and k (the kernel count). Both are
functions of the source trip count n and the degree of blocking b. Let:

e(n,b) = n mod b

k(n,b) = n -e(n,b)

Blocked back-substitution techniques also work for WHILE-loops but only DO-loops will be
discussed here.

Using the conditioning approach described above, we parallelize the reduction recurrence
applying blocking as shown below. Consider the first loop in the code. In this blocked loop, we
call each of the unrolled iterations a minor iteration corresponding to a single iteration of the
source program. Each body of the unrolled text consisting of b minor iterations is called a major
iteration. Every bth minor iteration (the last minor iteration in the unrolled loop body) is
calculated using b fold back-substitution. Intervening minor iterations are calculated using an
unmodified, non-height reduced recurrence. This eliminates redundant work within b-l of the b
minor iterations.
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s[1] = Sin

do i=b,k(n,b),b
s = s[1] + a, /* first minor iteration */
remap(s)

s = s[1] + ai+b-2 /* (b-1)th minor iteration */
remap(s)
s = s[b] + (ai+b-l + ai+b-2+ ai+b-3+" ·+ai) /* bth minor iteration */
remap(s)
enddo

do i=e(n,b),n
s = s[1] + ai /* retire residual iterations conventionally */
remap(s)
enddo

Blocked back-substitution

It may appear superficially that this code is not very parallel in that each of the first b-l minor
iterations depends upon a result calculated within the previous minor iteration. This creates a
long chain of operations linked through flow dependence. As a result of the b fold back-
substitution, the bth minor iteration within the unrolled loop body depends only on values
produced by that same code in the previous major iteration. Since the bth minor iteration does
not depend on any of the previous b-l minor iterations, the only recurrence cycle in the loop
depends on the relationship between this bth minor iteration and the same code from the previous
major iteration.

Another barrier to parallelization might appear to be the remap operations positioned between
each of the minor iterations; however, that is not the case. A remap operation between two minor
iterations doesn't act as a barrier for code motion. An operation can be moved across a remap
operation (in either direction) with a corresponding adjustment to its EVR indices. This has no
detrimental effect on program semantics if all dependencies are honored. Also, multiple remap
operations within a loop body don't impose any constraints on the ResMII or the RecMII of the
loop. For example, it may appear that a loop body with n remaps takes a minimum of n cycles
(one per remap). On processors with no hardware support for the EVR concept, this is not an
issue since remaps do not appear in the generated code. The paper by Rau et.al. [17] describes
how to generate code for such processors by using kernel-unrolling and variable-renaming. For
processors that do support the EVR concept in hardware, we have two options. The first option is
to generalize the concept of the remap operation so that a single operation can perform remap by
multiple positions. The second is to use a single remap by 1 at the end of each major iteration
and use variable-renaming to remove other remap operations.

The technique is applicable in both reduction to scalar and reduction to vector type of
recurrences. Note that in the reduction to scalar case, dead code elimination should be used to
eliminate unused operations in the b-l non-height reduced minor iterations of the loop. Loop
performance metrics are calculated for the reduction to vector case as follows: Ops / iter = ¥
and RecMII = -{;. In both symmetric and blocked back-substitution, additional parallelism can be
exposed by increasing the degree of back-substitution b. However, while symmetric back-
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substitution requires work which increases linearly with the degree of back-substitution b,
blocked back-substitution requires work that is bounded by a two fold increase irrespective of b.

When terms are loop invariant, blocked back-substitution may take advantage of additional
savings in redundant computation.

c=axb
s[1] = sin
do i=l,n,b
s = s[l]+a
remap(s)
s = s[l]+a
remap(s)

s = s[1] + a I*unroll b-l copies of original body*I
remap(s)
s = s[b] + c 1* generate specialized final iteration*1
enddo

Blocked back-substitution with invariant terms

This approach is able to provide increasing degree of parallelism with no increasing work as
indicated by the loop performance metrics: Ops I iter = 1 and RecMII = t. This technique can
be used for the parallelization of the calculation of induction variables.

3 First Order Multiply-add Recurrences

We use the first order multiply-add recurrence to help illustrate the relative benefits of the height
reduction approaches described above. The first order multiply add recurrence schema treat
recurrences of the requisite form where primitive operations have the following properties:
associative property of addition and the distributive property of multiplication over addition.
While this technique is frequently applied to first order linear recurrences, the technique also
applies to Boolean non-linear recurrences or any other recurrence with requisite form and
properties.

The code presented below illustrates the form of the first order multiply-add recurrence.

s[1] = Sin
do i=l,n
s = ais[1] + c,
enddo

Original first order multiply-add recurrence

In its unmodified form, the first order multiply-add recurrence has the following loop
performance metrics: Ops I Iter = 2 and RecMII = 2£. Here, we have assumed that the multiply
and addition units have identical latency R..
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3.1 Symmetric Back-substitution

The expressions shown below illustrate the derivation of the back-substituted form for the first
order linear recurrence. The unmodified expression shown on the first line evaluates s directly in
terms of s[I]. The second line is derived by repeatedly (for k=I,..,b) substituting the expression
for s[k] into the original expression and raising the order of the recurrence. In the final line
representing the bth order recurrence executed within the back-substituted loop, we have used the
distributive property to isolate s[b]. This asymmetric height reduction calculates a new s from a
bth previous s after only a single multiplication and addition.

s = ais[l] +ci

s = a,(ai-1(ai-2(,. ,(ai-b-2(ai-b-ls[b] +Ci-b-1)+ci-b-2)··') +Ci-2)+ Ci-1)+ci
s = (aia i_1,··ai-b+1)s[b] +a, (ai-1(ai-2(·· .(ai- b+2(Ci-b+1)+ci-b+2)"') +Ci-2)+Ci-l) +ci

The schema given below shows the code after symmetric back-substitution. As in section 2.2, the
first loop initializes the recurrence. After initialization, the second loop repeatedly executes the
back-substituted expression in order to accelerate the solution of the original recurrence.

s[l] = Sin

do i=l,b-l /* treat b-l iterations conventionally */
s = ais[l] +ci
remap(s)
enddo

do i=b,n /* b fold back-substitution of remaining iterations */
s = (aiai-l' ··ai-b+1)s[b]

+ai(ai-1(ai-2(,.. (ai-b+2(Ci-b+l) +Ci-b+2)"·) +Ci-2)+Ci-1)+ci
remap(s)
enddo

Symmetric back-substitution for first order multiply-add recurrence

The loop performance metrics in this case are as follows: Ops / iter = (3b -1) and RecMII = 1f.
Thus, the number of operations required to execute an iteration grows linearly as the back­
substitution distance is increased. This disadvantage restricts the method to a limited degree of
back-substitution.

3.2 Blocked Back-substitution

The following schema shows the code for the first order multiply-add recurrence after blocked
back-substitution. As in section 2.3, the loop is conditioned using the kernel and epilog trip count
functions. The loop performance metrics in this case are as follows: Ops / iter = ¥ and

RecMII=1f
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s[l] = Sin

do i=b,k(n,b),b
s = ais[1] + Ci
remap(s)

s = ai+b-2s[1] + Cj+b-2
remap(s)
s = (ai+b-laj+b-2" ·aJs[b]

+ (ai+b-l(ai+b-2 (ai+b-3('.. (ai-l (cJ + Ci+l)''') + Ci+b-3)+ Ci+b-2) + Ci+b-l)
remap(s)
enddo

do i=e(n,b),n
s = a js[l] +c j

remap(s)
enddo

Blocked back-substituted first order multiply-add recurrence

4 Higher Order Recurrences

In this section, we consider higher order recurrences and show how the symmetric and blocked
back-substitution techniques discussed earlier can be applied to reduce the height of these
recurrences. As in the last section, we phrase the description in terms of two generic operations,
called add and multiply, and rely only on the following properties of these operations:
associativity of addition and multiplication and the distributivity of multiplication over addition.
Thus, the results apply not only to higher-order linear recurrences, but to any higher order
recurrence involving two operators with the required properties, e.g., Boolean (non-linear)
recurrences.

The code given below shows the general form of the type of recurrences that we will consider in
this section. Furthermore, we will focus on the reduction to vector case, i.e., the case where all n
values of s are needed.

s[1] = SI;'" s[m] = sm
do i =1, n
s = a1,s[I]+ ... +a ,s[m]+c,

.1 m.i J

remap(s)
enddo

Original mth order recurrence

In the first few subsections, we describe a framework for handling recurrences of the form shown
above. We describe schemas for symmetric and blocked back-substitution, and show how
performance metrics, i.e., ops/iter and RecMII, can be computed for various schemas. These
subsections don't provide any specific numbers or formulas for performance metrics. The reason
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is that actual numbers or formulas depend upon what one assumes about the coefficients.
However, the methodology presented in these subsections can be used to calculate performance
metrics for various cases.

The remaining subsections provide formulas for performance metrics for several interesting
cases listed below.

1. Recurrences in which all coefficients have non-zero loop-variant values.

2. Recurrences in which all coefficients have non-zero but loop-invariant values.

3. Recurrences in which c, = 0 and the remaining coefficients have non-zero values. We
consider both loop-variant and loop-invariant cases for coefficients.

4.1 Formulas for Coefficients in Back-substituted Expressions

This subsection derives formulas for coefficients in the expression that one gets after back­
substitution is repeated to a certain degree. These formulas are applicable to both symmetric and
blocked back-substitution techniques.

In the original program, the computation of s in the ith iteration depends upon s[l] computed in
the previous iteration. The back-substitution process involves substituting the expression for s[1]
in the expression that computes s, and re-arranging the terms so as to minimize the heights of
recurrence paths

s = al,i(al,(i-l)S[2] + ... + am,(i-l)s[m + 1]+ Ci-1) + a2,is[2] + ... + am,is[m] + ci

s = (a1,ial,(i-l) + a2i)s[2]+ ... + (a1,ia(m-l),(i-l) + am,i)s[m]

+ a1,iam,(i-l)s[m + 1]+ (a1,ici-l + c.)

The structure of the new expression is similar to the original expression except for the structure
of coefficients and the values of s used in the expression. We can repeat the process by
substituting for s[2], then for s[3] and so on. In the following discussion, we denote the
coefficients in the expression for s obtained after a certain number of back-substitution by

At ... A~,i and Cf; the superscript denotes the degree of back-substitution. The base case, i.e.,
the original expression with no substitution performed is denoted by b=1. Using this notation, the
expression for s after (b-l) fold back-substitution can be written as follows:

s = Ab1:-lS[b -1] + ... + Ab-.lS[b + m - 2]+C~-1
,1 m.i 1

To derive the expression for s after b fold back-substitution, we substitute the value of s[b-l] in
the above expression. In the original program, s[b-l] is computed using the following expression:

s[b -1] = al,(i-b+l)S[b] + ... + am,(i-b+l)S[b + m -1] + Ci-b+l

Substituting the expression for s[b-l] and rearranging the terms gives the following expression
for s.
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s = (aI,(i_b+I)At-I + Ati )s[b] + ... + (a(m_I),(i_b+I)Atii + A~~l )s[b + m - 2]

+ (am,(i_b+l)At;I )s[b + m -1] + (Ci_b+IAtii + Cr-I)

Using the notation introduced earlier, the expression for s after b fold back-substitution can also
be written as:

s = AbI'S[b]+ ... + Ab ·s[b+ m -1]+C~
,1 m.r 1

Comparing the above two expressions for s, we get the following recursive formulas for
coefficients. In these formulas, AL ... A~,i and C! represent the base case (i.e., b =1) and their
values are simply the coefficients in the original expression for s.

All. = al',1 ,1

A~m-l),i = a(m-I),i

C~ =c,
1 1

Ab Ab-I Ab-I
l,i = a1,(i-b+l) I,i + 2,i

Ab Ab-I Ab-1
(m-l),i = am,(i-b+I) I,i + m,i

Ab Ab- 1
m,i = am,(i-b+l) I,i

Cb Ab-l Cb-1. = C· b 1 I' + .1 1- +,1 1

It is important to note that these formulas don't have the same structure. Specifically, the second
to last formula involves only multiplications and no additions. For a specific value of m, the
formulas are used in the reverse order. For example, the first order case uses the last two
formulas, the second order last three and so on.

In both symmetric and blocked back-substitution, the work involved in computing coefficients is
a significant amount of the overall work. To minimize the work, it is important to recognize
common sub-expressions. For example, the computation of At;I is common to all the formulas
given above. It is also important to factor common sub-expressions, i.e., compute ab + ac as
a(b+c). We believe the formulas given above compute coefficients using a minimum number of
add and multiply operations, but we offer no formal proof of this fact

As an example of the application of these formulas, consider the first order case. For the
symmetric back-substitution with b = 3, the computation of s can be expressed using the
following set of equations.

Ai,i = aI,(i-2)AL; A~i = aI(i-I)aI,i

C~ = c, 2A21 . + aI·c· 1 + c,1 1- ,1 1 1- 1

s = A I
3 ,s[3] +C~,I 1

These equations compute the same result as the one given in Section 3.1 and use the same
number of operations (which is optimal). They are simply an alternate way of organizing the
computation than the one given in Section 3.1.
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4.2 Counting Operations

The general method to calculate the number of operations in the expression obtained after b fold
back-substitution is to express number of operations as a recurrence of the following form.

Ops, = p; Ops; = 0pSb-l + q

In these equations, p is the number of operations in the original expression, b is the degree of
back-substitution, and q is the number of additional operations needed to compute coefficients
for b fold back-substitution given the coefficients for (b-l) fold back-substitution. In other words,
q is simply the number of explicitly displayed operations in the formulas for coefficients given in
Section 4.1. Recurrence relations of this form can be used not only to compute total number
operations, but also to compute total number of operations of a certain type, e.g., add operations.

4.3 Symmetric Back-substitution

The schema for the code generated by the symmetric back-substitution technique is shown
below. As in the previous sections, the first sequential loop initializes the recurrence by
computing the first b values of s, and the second loop uses the back-substituted expression to
accelerate the recurrence.

s[1] = Sl; ... s[m] = sm
do i = 1, b-l /* Treat b-l iterations conventionally */
s = al os[1] + ... + a .slm] + co,1 m.i J

remap(s)
enddo

do i = b, n /* Back-substitute remaining iterations */

s = Alb os[b] + ... + Ab os[b + m -1] + c~
,1 m.i J

remap(s)
enddo

Code schema for symmetric back-substitution

The RecMII of the main loop depends upon the order in which terms are added. Thus, it is
important to find an order of summation that gives the minimum RecMII. Finding such an order,
however, is a challenge and we don't provide a general solution that works in all cases. The
general problem can be stated as follows. Suppose n j is the number of operation on the path
from s[b+i] to s. Then,

R MIl - M (.eno .en1 .enm_l )ec - ax - -- ... _ .........~
b 'b+l' 'b+m-l '

and we need to find the values of no,nl,···that minimizes the RecMII. Note that the optimal
solution not only depends on b and m but also on the nature of coefficients (0, 1, loop-invariant
etc.) in the original expression.
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The two approaches that give near optimal results are as follows. The first is to sum the terms
from right to left. This gives near optimal results for small values of b, which is the important
case for symmetric back-substitution. The other approach is to sum the terms using a log-tree.
This works well for higher values of b, since it becomes important for higher values of b to
jointly minimize the lengths of all recurrence paths.

4.4 Blocked Back-substitution

The schema for the code generated by the blocked back-substitution technique is given below;
see Section 2.3 for the definitions of k(n,b) and e(n, b). The first loop handles iterations that are
multiple ofb; the second loop executes the remaining iterations sequentially.

s[1] = Sl;... s[m] = sm
doi=l,k(n,b),b
s=al,s[l]+···+a ·s[m]+c·,1 m.i J

remap(s)

s = a1,(i+b-m-l)s[1] + ... + am,(i+b-m-l)S[m] + C(i+b-m-l)
remap(s)

Ab-m+1 [b 1] Ab-m+1 [b] Cb-m+1S= l,(i+b-m)s - m + + ... + m,(i+b-m)s + i+b-m
remap(s)

s = At(i+b-l)S[b] + ... + A~,(i+b_l)S[b + m -1] + C~+b-l
remap(s)
enddo

do i = e(n, b), n
s = al,is[1] + ... + am,is[m] + Ci
remap(s)
enddo

Code schema for blocked back-substitution

The first loop is derived from the original loop as follows. The original loop is unrolled b times.
As in the last section, we call each unrolled iteration a minor iteration and call each iteration of
the unrolled text consisting of b minor iteration a major iteration. The last m minor iterations are
expedited using the back-substitution. The last minor iteration is calculated using b fold back­
substitution, the second last using (b-l) fold back-substitution etc. Each of the last m minor
iterations in a major iteration is computed as a function of last m values of s computed by the
previous major iteration. Another way to view the loop is that each major iteration takes m
values from the previous iteration and computes m values in a fast way for the next iteration. The
remaining b-m minor iterations in a major iteration are calculated using the original recurrence,
eliminating redundant work within these iterations.

An important point to note is that it is not sufficient to expedite only the last minor iteration
using b fold back-substitution. The reason is that, after back-substitution, the last minor iteration
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uses m values of s computed in the previous major iteration. Expediting only the last minor
iteration forces m-l of these values to be computed sequentially in the previous major iteration,
which forces the entire loop to run more or less sequentially.

In the code schema given above, we assume that b ~ m , that is the loop is unrolled at least as
many times as the order of the recurrence. Applying the blocked back-substitution technique with
b < m seems similar to applying the symmetric back-substitution technique and then unrolling
the loop. Further work is needed to see if the blocked back-substitution technique offer any
advantages over the symmetric back-substitution when b < m.

As in the symmetric back-substitution technique, the RecMII of the main loop depends upon the
order in which terms are added in each of the expedited iterations. On the other hand, the RecMII
doesn't depend upon the summation order used in the first b-m minor iterations, since
computation in any of these iterations is not on a critical path. Thus, we will use the right to left
summation order for the first b-m iterations.

For expedited iterations, it is sufficient to find a summation order that minimizes the RecMII of
one of the expedited iteration, since all expedited iterations calculate expressions with identical
top-level structure. Consider one of the last b-m minor iteration. Suppose n j is the number of
operation on the path from s[b+i] to s. Since all values of s used in the computation are produced
in the previous major iteration, the RecMII for the minor iteration is given by

And we need to find the values of no,n1,··that minimizes the RecMII. The optimal solution
depends on m and on the nature of coefficients (0, 1, loop-invariant etc.) in the original
expression, but it doesn't depend upon b. The general strategy to minimize RecMII is to find a
summation order in which no···nm-l are all equal. Thus, the log-tree approach for summing the
terms gives near optimal results in most cases.

4.5 Recurrences with Non-zero Loop-variant Coefficients

In this subsection, we present performance metrics for the case when all the coefficients have
non-zero loop-variant values. We consider two different architectural models, which are
described below.

1. The first architecture provides pipelined functional units that can perform add and
multiply operations. We assume that an operation can be issued on an unit at each cycle
and that the operation latency is .e cycles.

2. The second architecture provides pipelined functional units that can perform not only add
and multiply operations but also fused multiply-add operation. Again, we assume that an
operation can be issued on an unit at each cycle and that the operation latency is l cycles.
The discussion in the context of this architecture is more appropriate for arithmetic or
linear recurrences as some of the recent architectures provide fused multiply-add
operation for floating-point numbers.

Table 1 summarizes the performance metrics for the original program and for the programs
obtained after applying the symmetric and the blocked back-substitution techniques. The
formulas in the table are in terms of the following variables: the order of the original recurrence
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m, the degree of back-substitution b, and the latency £. For blocked back-substitution, b is also
the number of times the loop is unrolled and is assumed be greater than or equal to m. The rest of
this subsection gives more details about the performance metrics.

Of ero eon m recurrence, IS e egree 0 back-substitution and l is the latency.
Technique With support for + and x only With support for +, x and fused multiply-

add
RecMII Ops/iter RecMII ODs/iter

Original ze 2m l m

Symmetric l(m+l) b(2m+l)-1 lm b(m+l)-l
b+m-l b+m-l

Blocked
i{l+flog2(m+ 1)1) 1 (bm(2m+3) ) i(1+ f1og2m1) 1

m=l: -(3b-2)
b z m

b -tm(m+l)(2m+l) b
m>l:

1.(bm(m+2)+mlo/zJ]
b -tm(m2+2m+3)

Table 1: Performance metrics for the case of non-zero loop-variant coefficients. In the formulas, m is the
d fth .. at b i th d f

First, we discuss the performance metrics in the context of the architecture in which each unit is
capable of performing multiply and add operations. For the original program, the right to left
order of summing terms gives the minimum value of RecMII and is used to derive the value
shown in Table 1. The number of operations performed in each iteration is simply 2m.

For symmetric back-substitution, we consider only the right to left order for summing terms. As
pointed out earlier, this summation order gives near optimal results for small values of b, which
are more relevant for this technique. For first and second order recurrences, there is no difference
between the two approaches, i.e, the right to left order or the log-tree approach. For third order
recurrences, the log-tree approach is useful for b > 6. For higher orders, b has to be even greater.
Assuming the right to left order, RecMII is given by

RecMII = Max(2£~ .. , (m + 1)£ )
b 'b+l' 'b+m-l'

in which the last term is greater than or equal to all other terms for any b > 1. The number of
operations performed in each iteration is determined using the methodology suggested in Section
4.2. The recurrence relation for this technique are

Ops, = 2m; Ops, = 0pSb_l + (2m + 1),

which are derived by simply looking at the original expression and equations for coefficients
given in Section 4.1. Solving this recurrence gives

Ops, =(b -1)(2m + 1)+ 2m =b(2m+ 1)-1.

For blocked back-substitution, the formula for RecMII assumes that terms in each of the
expedited iterations are summed using the log-tree, which gives near optimal results in this case.

In the formula, flog2(m + l)lis the height of the log-tree with ms-l terms and 1 accounts for the
multiplication performed on each path. The ops/iter metric is derived by summing the
contribution of each of the minor iterations. The number of operations in each of the first b-m
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iterations is identical to that in the original recurrence, which is 2m. For back-substituted
iterations, the recurrence relation used in computing the number of operations turns out to be
identical to the one given above for symmetric back-substitution; the summation order has no
influence on the operation count. Thus, the number of operation in each of the back-substituted
iterations can be obtained by instantiating the equation for Ops, given above with an appropriate
value of b. Therefore, we get

Ops/ iter = t(b - m)2m +(b(2m + 1)-1)+ ... +((b -(m -1))(2m + 1)-1)),

which gives us the formula shown in Table 1.

Now we discuss the performance metrics in the context of the architecture in which functional
units are also capable of performing fused multiply-add. For such architectures, computation
should be structured so that as many multiplications as possible are combined with additions
without having an adverse impact on RecMII. Structuring computation of coefficients is easy
because the computation is not on recurrence paths and because the formulas for most of the
coefficients (except the second last) already have the multiply-add structure. The starting point
for deriving the structure for the top-level expression is to consider the summation order that
gives the minimum RecMII. In the following discussion, we use MA to denote a multiply-add
operation; its semantics is as follows.

MA(a,s,c) =a xs+c

For both the original program and symmetric back-substitution, we use the right to left
summation order for the top-level expression. The following general form shows how the
multiplications are combined with additions in these cases; a1• • ·amand c denote coefficients, and
SI'.. smdenote previous values of s.

MA(al,SI'MA(a2,S2"" MA(am,sm.cj-»)

Thus, for the original program, the RecMII is t ; i.e., the latency of a single multiply-add
operation, and the number of operations per iteration is m.

For symmetric back-substitution, the RecMll is given by

RecMII = Max(!:.. _2_£_ ... __m_£_)
b'b+l' 'b+m-l

in which the last term is greater than or equal to all other terms for any b > 1. The number of
operations per iteration is computed using the following recurrence relation:

OpSI =m; Ops, =0pSb_l + (m + 1).

Solving this recurrence gives

Ops, =(b -l)(m + 1)+ m =b(m + 1)-1.

Now we consider the blocked back-substitution. For the first b-m iterations, we assume that the
summation order is right to left and multiplications are combined with additions in the way

20



shown above for the original recurrence. The starting point for back-substituted iterations is the
log-tree approach for summing terms. Combining multiplies with adds in this case is a little more
difficult. In the case of first order recurrences, the top-level of the expression simply requires
one multiply-add. The general approach used for the second and higher orders is shown in Figure
1. The figure as shown applies to odd values of m. Note that incorporating the leftmost pair of
values in the log-tree may introduce a new level in the tree. This happens when m is of the form
2° +1 for some n. For even values of m, the leftmost term is omitted and the log-tree contains
only add operations.

\\ aV
3

... ~\ V a~\l a~ Ie
\~~ - - -0-'\tX- - _"_~Al

I ( LOG TREE IA
M( I

I I

: :1- \/- 1- .:/~~
Fhst level from top with
odd number of sumnands

Figure 1: The structure of the top-level expression assumed in computing performance metrics for blocked
back-substitution in the context of architectures that provide fused multiply-add capability.

To derive the performance metrics, we need to compute the height of the log-tree and the number
of operations within the log-tree in Figure 1. The easiest way to do this is to assume that each
multiply-add operation inside the log-tree is just an add operation and to assume that the first two
operands of each multiply-add inside the log-tree constitute a single operand. For example, the
leftmost multiply-add in the top level of the log-tree is assumed to be an add operation and the
first two operands, a2 and S2 are assumed to be a single operand to the add operation. Then, the
log-tree has m inputs and combines them using the dyadic add operation. Therefore, the height of
the log-tree is f!Og2 m1, and the number of operation within the tree is m-1.

Therefore, the height of the entire expression, and hence the RecMII of the loop is 1+POg2m1;
1 accounts for the level above the log-tree.

The opsliter metric is derived by summing the contribution of each minor iteration. First, we
consider the first order case. In this case, the operation count for each of the first b-l minor
iterations is simply 1, and the operation count for the back-substituted iteration is given by the
following recurrence:

Ops, = 1; Ops, = 0pSb_l +2.

Solving this recurrence yields Ops, = 2b -1. By summing the contribution of each minor
iteration, we get

Opsl iter = t(b -1)1+ 2b -1) = t(3b - 2).
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Now we consider second and higher order cases. The operation count for each of the first b-m
minor iterations is m. The operation count for a back-substituted iteration can be derived using
the following recurrence:

Ops, =L,J+m-l; Ops, =OpSb-l +(m+l).

In the equation for Ops., the first term is the number of operations in the level above the log-tree
in Figure 1 and m-I is the number of operations in the log-tree itself. The solution of this
recurrence is

Ops, = b(m + 1)- 2 + L,J.
The operation count for each of the back-substituted iterations can be derived by instantiating the
above equation with an appropriate value of b. By summing the contribution of each minor
iteration, we get

Opsl iter = t(b - m)m +(b(m + 1) - 2+ L.IfJ)+ ... +((b-(m -1»)(m + 1)- 2+L.IfJ)),

which upon simplification yield the formula shown in Table 1.

4.6 Recurrences with Non-zero Loop-invariant Coefficients

In this subsection, we present performance metrics for one of the important special case, namely,
the case when all the coefficients are loop-invariant values. In this case, the computation of
coefficients can be moved out of the loop. Thus, both symmetric and blocked back-substitution
pay no penalty in increased operation count. As a result, both techniques offer substantial
performance improvements in this case even for machines with low degree of parallelism.

Table 2 summarizes the performance metrics for this case. The formulas for RecMII remain the
same as in the last section(see Table 1), since moving the computation of coefficients out of the
loop has no impact on the RecMII of the loop. As expected, the number of operations per
iterations is substantially lower than in the last section. For symmetric back-substitution, it is
identical to that for the original program. For blocked back-substitution, it is identical to the
original program for architectures with add and multiply capabilities but slightly higher than the
original program for architectures with fused multiply-add capability. The reason for higher
operation count is that log-tree summation order used in the case of blocked back-substitution is
not as suited as right to left order for combining multiplications with additions.

or er of the on mal recurrence b IS e dezree ofback-su stitution and .e IS e atencv.
Technique With support for + and x only With support for +, x and fused multiply-

add
RecMII ODs/iter RecMll ODs/iter

Original U 2m l m

Symmetric l(m+l) 2m lm m

b+m-l b+m-l
Blocked

i(l+r1og2(m+ 1)1)
2m

i(1+r10g2m1)
m=l: 1

b z m m>l:

~(bm+ml%J-m)

Table 2: Performance metries for the case of non-zero loop-invariant coefficients. In the formulas, m is the
d is th bstituti is the l
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4.7 Recurrences with ci = 0

In this section, we discuss the case when the coefficient c i is zero and the remaining coefficients
have non-zero values. We consider both loop-invariant and loop-variant cases for the remaining
coefficients and present performance metrics in the context of the two architecture models
described in Section 4.5.

Note that first order recurrences in this case have a somewhat different structure than second and
higher order recurrences. First order recurrences have the form of a product whereas second and
higher order recurrences have the form of a sum of products.

Table 3 summarizes the performance metrics for the case when all the coefficients except c, are
loop-variant values. The derivation of these formulas parallels the derivation of the formulas
presented in Section 4.5, and the assumptions made in that section also apply to this section.
Thus, we omit most of the details and discuss only the main points.

an IS e atencv.
Technique With support for + and x only With support for +, x and fused multiply-

add
RecMII Ops/iter RecMII ODs/iter

Original m=l: l 2m-l e m

m>l: U

Symmetric m=l:
l b(2m-l) lm bm-
b b+m-l

m>l:
lm

b+m-2
Blocked ~(1+rlOg2m1) 1(b(m+l)(2m-l) ) ~(1+rlOg2m1) 1

m=l: -(2b-l)
b z m

b -tm(m+l)(2m-l)
b

m>l:

.!o(bm(m+l)+ml'%J]
b -tm(m2+m+2)

Table 3: Performance metrics for the case when Cj = 0 and the remaining coefficients have non-zero loop­
variant values. In the formulas, m is the order of the original recurrence, b is the degree of back-substitution

d r th I

As in Section 4.5, we use the right to left summation order for the original program and for the
symmetric back-substitution technique. A point to note about symmetric back-substitution is that
there is no difference between the right to left order and the log-tree approach for first, second
and third order recurrences. For fourth order recurrences, the log-tree approach is useful only for
b> 6. For higher orders, b has to be even greater. Thus, the right to left order gives near-optimal
result in all relevant cases. For blocked back-substitution, we use the log-tree approach for the
back-substituted minor iterations and the right to left order for the remaining iterations.

First, we consider the performance metrics in the context of architectures in which functional
units are capable of performing add and multiply operations. The only formula that needs some
explanation is the one for RecMII in the case of symmetric back-substitution. Recall that we
assume right to left summation order for symmetric back-substitution. Thus, for first order
recurrences, there is only a multiplication on the recurrence path. For higher orders, the RecMII
is given by
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(
2R 3R mR mR)RecMII=Max -,--,.. , ,---
b b+l b+m-2 b+m-l .

Since c j = 0, the path from the last term in the summation to the result of the expression doesn't
involve an additional add operation. Thus, the path from the last term to the result has the same
length (i.e., mR ) as the path from the second last term to the result. In the equation for RecMII,
the second to last term dominates all other terms for any b > 1.

Next, we consider the performance metrics in the context of architectures that provide fused
multiply-add capability. We assume that both the original recurrence and the symmetric back­
substitution technique use the following general form to combine multiplications with additions.

MA(al .s.,MA(a2 ,S2'··· MA(am_1,sm-I,am xsm)- · ·»

Then, the formulas for performance metrics follow easily. For example, the RecMII in the case
of symmetric back-substitution is given by

RecMII = Max(!-,~, .. , (m -1)R, mR ),
b b+l b+m-2 b+m-l

in which the last term dominates all other terms for any b > 1. In the case of blocked back­
substitution, we assume the iterations method to combine multiplications with additions for the
first b-m iterations is the same as the one shown above for the original recurrence. For the back­
substituted iterations, multiplications are combined with additions in a way similar to that shown
in Figure 1. The only difference is that the leftmost MA at the top level that computes amsm+ c
is replaced by a simple multiplication that computes amsm.

Table 4 summarizes the performance metrics for the case when all the coefficients except Cj are
non-zero loop-invariant values. As pointed out in Section 4.6, the computation of coefficients in
this case can be moved out of the loop. Thus, both symmetric and blocked back-substitution
techniques perform about the same number of operations per iteration as the original program.
The formulas for RecMII are identical to those in Table 3.

su stuunon an IS e atencv.
Technique With support for + and x only With support for +, x and fused multiply-

add
RecMII OpS/iter RecMH ODs/iter

Original m e l: e 2m-l e m

m>l: U

Symmetric l 2m-l lm m
m=l: -

b b+m-l

m>l:
lm

b+m-2
Blocked

f(1+r10g2 m1) 2m-l
f(1+r1Og2 m1) m=l: 1

b z m m>l:

i(bm+ml%J-m)

Table 4: Performance metrics for the case when c, = oand the remaining coefficients have non-zero loop­
invariant values. In the formulas, m is the order of the original recurrence, b is the degree of back-

bstituti d z is the I
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5 Performance results for selected machines

To put in perspective the results and formulas given in previous sections, we present graphs
illustrating the benefits of the symmetric and blocked back-substitution techniques for machines
with varying number of functional units and varying operation latency. We consider first order
recurrences with non-zero loop-invariant coefficients and consider architectures with functional
units capable of performing add and multiply but not fused multiply-add.

Figure 2 presents the benefits of symmetric back-substitution over the original program for
machines with I to 6 functional units assuming the operation latency £ to be 3 cycles. Part (a) of
the figure shows the Mil of the loop as a function of the degree of back-substitution b (note that
b = I means the original program). Each curve corresponds to a different number of functional
units, which is indicated at the end of the curve. Part (b) presents the same data in terms of
speedup for a given machine, that is,

Mil of the original program for machine with u units and latency £
speedup =

Mil of the program after back substitution for the same machine
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Figure 2: Graphs illustrating the benefits of symmetric back-substitution for machines with 1 to 6 functional
units for the case of m =1 and £ =3. (a): MIl of the loop after back-substitution as a function of b. (b):
Speedup for a given machine as a function of b.

It is evident from Figure 2(a) that, for a given machine, there is an optimal degree of back­
substitution b that gives the best performance benefits. This b corresponds to the case when both
RecMII and ResMII of the loop after back-substitution are nearly equal. For b less than the
optimal value, the RecMII of the loop dominates, and further back-substitution helps in reducing
the RecMll. For b greater than the optimal value, the ResMil dominates, and further back­
substitution actually decreases the performance.
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Figure 3: Graphs illustrating the benefits of blocked back-substitution for machines with 1 to 6 functional
units for the case of m = 1 and .e = 3. (a): MIl of the loop after back-substitution as a function of b. (b):
Speedup for a given machine as a function of b.

Figure 3 illustrates the benefits of blocked back-substitution for machines with varying number
of functional units under the same assumptions. Again, it is evident from Figure 3(a) that there is
an optimal degree of back-substitution that gives the best performance for a given machine.

A couple of advantages of the blocked back-substitution technique are obvious from Figures 2
and 3. First, for a given machine, the blocked back-substitution technique provides better
performance than the symmetric back-substitution. Second, the blocked back-substitution
technique is more tolerant of over-substitution than the symmetric back-substitution. That is, for
b greater than the optimal value, the performance degradation in the case of blocked back­
substitution is not as large as in the case of symmetric back-substitution. Thus, exact
determination of the optimal value of b is not as crucial in the case of blocked back-substitution
as it is in the case of symmetric back-substitution.

Figure 4 illustrates the benefits of symmetric back-substitution by varying the operation latency
but keeping the number of functional units fixed at 2. All other assumptions remain the same.
The latency assumption for a curve is indicated by a number near the curve. As in the case of
varying number of functional units, there is an optimal value of b for a given latency that gives
the best performance. For values of b less than the optimal value, the loop is RecMII-limited; for
values of b greater than the optimal value, the loop is ResMII-limited. All the curves in Figure
4(a) reach the same value of MIl. This simply reflects the fact that the loop is ResMII-limited
and the ResMII of a loop doesn't depend upon the operation latency. As pointed out in previous
sections, symmetric back-substitution has the disadvantage that ops/iter increases linearly with
the degree of back-substitution b. Figure 4(a) shows this fact clearly; the MIl of the loop in the
ResMII-limited region increases linearly with b.
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Figure 4: Graphs illustrating the benefits of symmetric back-substitution with operation latency varying
from 1 to 6 for the case of m =1 and number of units =2. (a): MIl of the loop after back-substitution as a
function of b. (b): Speedup for a given machine as a function of b.
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Figure 5: Graphs illustrating the benefits of blocked back-substitution with operation latency varying from 1
to 6 for the case of m =1 and number of units =2. (a): Mll of the loop after back-substitution as a function
ofb. (b): Speedup for a given machine as a function ofb.

Figure5 illustrates the benefits of blocked back-substitution by varying the operation latency but
keeping the numberof functional units fixed at 2. Most of the comments made in the context of
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symmetric back-substitution also apply here. Blocked back-substitution has the advantage that
cps/iter remains nearly constant and doesn't increase linearly with the degree of back-substitution
b. Figure 5(a) shows this fact clearly; the MIT of the loop in the ResMII-limited region is nearly
constant.

Figure 6 is an attempt to quantify the areas of applicability of the two techniques. It plots the best
speedup that can be obtained as a function of the number of functional units for first, second and
third order recurrences. We assume the following: recurrences have non-zero loop-variant
coefficients, architecture doesn't provide fused multiply-add capability, and operation latency is
3. Each point in the plot is annotated with the technique and the optimal value of b that achieves
that speedup. In an annotation, the letter denotes the technique that gives the best speedup-O
stands for the original program, S for the symmetric back-substitution, and B for the blocked
back-substitution. The number in an annotation denotes the optimal value of b.
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Figure 6: The best speedup that can be achieved for first, second, and third order recurrences. Each point is
annotated with the technique and the optimal value ofb. Operation latency is 3.

Figure 6 shows that the choice of the appropriate technique depends upon both the order of the
recurrence and the parallelism provided by the machine. For first and second order recurrences,
blocked back-substitution is the best technique under the assumptions mentioned above. For the
third order case, the speedup curve shows that there are three distinct regions based on the
parallelism in the machine; the regions are not explicitly shown in the figure but can be deduced
by looking at the labels. In the first region, neither of the back-substitution techniques have much
to offer. In the second region, symmetric and blocked back-substitution provide similar benefits.
In the third region, blocked back-substitution is the best technique. Although the figure doesn't
show it, there is also a fourth region where symmetric back-substitution performs better than
blocked back-substitution. This happens when the order of the recurrence is high and the
machine provide only a moderate amount of parallelism. In this case, the optimal value of b is
very low (2 or 3). However, blocked back-substitution technique as defined in this paper requires
b to be greater than m. Symmetric back-substitution, on the other hand, has no such limitation.
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The actual speedup numbers presented in Figure 6 are, in some sense, a lower bound on speedup
because they assume the most general form for coefficients, i.e., non-zero loop-invariant values,
and assume that the architecture provides only add and multiply operations. The actual speedup
numbers would be much better if either of these assumptions are relaxed.

6 Conclusions

The graphs presented in Section 4 clearly indicate that both symmetric and blocked back­
substitution techniques provide performance improvements for machines having some degree of
parallelism. This is especially true for first and second order recurrences. Back-substitution
techniques can exploit parallelism from either multiple or pipelined functional units.

Symmetric back-substitution may provide better performance if the order of recurrence is high
and the machine has a low degree of parallelism. The penalty for back-substituting too far with
symmetric back-substitution is greatly reduced performance due to rapid growth in operation
count.

The blocked back-substitution technique as defined in this paper has an inherent limitation in that
it requires b to be greater than m (the order of recurrence). This makes it inapplicable in the
context of higher order recurrences and machines with low degree of parallelism where optimal
value of b is quite small. In all other cases, the blocked back-substitution provides better
performance improvement. Further work is needed to see if blocked back-substitution offers any
advantages over symmetric back-substitution when b < m.

When it is useful to expose significant parallelism using a high degree of back-substitution,
blocked back-substitution has significantly lower operation count than symmetric back­
substitution. Blocked back-substitution allows the exposure of an arbitrary degree of parallelism
from a recurrence with no more than a constant multiplier in operation count. The number of
operations required for blocked back-substitution does not increase significantly with increased
degree of back-substitution and, because of this, one can choose a degree of back-substitution
somewhat higher than optimal with little penalty.

This work can be generalized to treat loops with conditional recurrences and loops with exits. In
the context of processors that support predicated execution, if-conversion can be used to
transform branching code to an algebraic expression. Such expressions can be accelerated using
techniques similar to those presented within this paper and will be explored in future work.
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