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ABSTRACT

Each iteration of the multishift QR algorithm of Bai and Demmel re-
quires the computation of a “shift vector” defined by m shifts of the
origin of the spectrum, which control the convergence of the process.
A common choice of shifts consists of the eigenvalues of the trailing
principal submatrix of order m, and current practice includes the com-
putation of these eigenvalues in the determination of the shift vector.
In this paper, we describe an algorithm based on the evaluation of the
characteristic polynomial of a Hessenberg matrix, which directly pro-
duces the shift vector without computing eigenvalues. This algorithm is
stable, more accurate, faster, and simpler than the current alternative.
It also allows for a consistent shift strategy with dynamic adjustment
of the number of shifts.

1 Introduction

For the past thirty years, Francis’ implicit QR algorithm for real Hessenberg
matrices [6] has been at the core of the most effective software for the com-
putation of the eigenvalues of real dense matrices. This remarkable longevity
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has been recently extended by a multishift implementation of the method
[1, 2] designed to exploit the architectural quirks of high-performance com-
puters. Crucial to the fast convergence of the algorithm is the choice of
certain parameters that shift the origin of the spectrum at each iteration.
The shifts most commonly used — and most effective to date — are provided
by the eigenvalues of a trailing principal submatrix of the iterated matrix.
This strategy, conditionally recommended by Francis for his “double itera-
tion,” was made systematic by Wilkinson [18]. The implementation of the
QR algorithm in its implicit form does not actually require that the shifts
be known by value, but rather that a means to evaluate a polynomial with
zeros equal to the shifts be available, and that this evaluation be feasible at
matrix values of the variable. For the above shift strategy, this polynomial
reduces to the characteristic polynomial of a Hessenberg matrix, and in the
case of the double iteration, its coeflicients are simply obtained as the trace
and the determinant of a submatrix of order two. In the case of the mul-
tishift iteration, higher dimensions make conditions more complicated, and
the implementation in [1] resorts to the explicit computation of the shifts
for use in the evaluation of the polynomial. This is the part of the algorithm
on which we focus here, based on the consideration that the evaluation of
a polynomial should be of lesser complexity than the computation of the
zeros. The scheme that we propose as a replacement is a matrix extension
of Hyman’s method that entirely avoids the computation of the shifts and
offers much flexibility to adjust the number of shifts from one iteration to
the next. The paper is organized as follows. Section 2 gives the necessary
background on the implicit QR iteration, including the part of the compu-
tation relevant to the shifts. The derivation of our algorithm is presented in
Section 3. Results of experiments are summarized in Section 4.

2 Background

Bai and Demmel [2] recently developed a multishift version of Francis’
implicit QR algorithm [6] that has proved to be quite efficient with high-
performance work-stations and vector computers. For appropriate values
of the shift multiplicity, the algorithm has good convergence properties and
lends itself to formulations in terms of matrix-vector [1] and matrix-matrix
operations [5] that can exploit machine architecture. It is based on those
same properties of the QR algorithm from which Francis devised the implicit
double iteration. Skipping details that can be found in the above references,
we give below an outline of the method and its foundations.

For A € C"*™ and AM = A, the QR iteration with explicit shift is



represented by the equations
A®) _ 51 = QWRM, Ak = o 14+ REIQK), (2.1)

where oy is some shift of the origin of the spectrum of A(k), and the matrices
Q®*) and R(¥ are defined as the unitary and upper-triangular factors of a
QR decomposition [8]. The iterates are mutually similar,
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and converge to triangular form,

fim o = Jim |r:P)

to reveal the eigenvalues of A. Shifts close to an eigenvalue accelerate conver-
gence to that eigenvalue. With simple choices of shifts, earliest convergence
usually manifest itself in the south-east corner of the iterated matrix, which
can be deflated by its last row and column as soon as an eigenvalue is found
(the off-diagonal elements of the last row are negligible). The algorithm has
three important properties:

o the QR iteration preserves the Hessenberg form;

e the unitary matrix Q(¥) that defines the (k 4 1)* iterate by

A+ = k) AW Qk) ok = QQ® .. .Q",
derives from the QR decomposition
(AM — 1) (AW — 651) ... (AW — g, 1) = QRIUK),
U = ROREA  RrE),

o if A() is an unreduced Hessenberg matrix, (%) is entirely determined by
the vector

(A® — g1 I)(AD — 5,1)... (AW — g T)e;.

Based on these properties and the uniqueness of the QR decomposition,
Francis devised an iteration for unreduced real upper-Hessenberg matrices
that avoids complex iterates and converges to a real matrix departing from
triangularity only by some blocks of order two on the diagonal. This “double
iteration”, which is equivalent to two single iterations (2.1) with the same



shifts, is described by the following equations where H € R"*" is upper-
Hessenberg and HV) = H:

(a) zgk) = (H® — g, I)(HP) — 4 411)ey,

S*+205$) = 4[|z e, (2:2)
(b) B(+2) = SE+2gRIGH+2),

(c) H(+2) = pe+2)xg(k+2) p(k+2)

Equations (2.2.2) define the “shift transformation” represented by the House-
holder matrix S(*+2) that reduces the “shift vector” zgk) to a stretching of
e; with a sign determined by some stability condition. A choice of real or
complex-conjugate values for the shifts o and o4 ensures that all elements
of the computation remain real. The Hessenberg form is lost for B*+2) in
the shift transformation (2.2.b), but it is restored for H®*+2) by an appropri-
ate sequence of Householder transformations represented by the orthogonal
matrix P(+2) of equation (2.2.c). The formal relationship between this it-
eration and iteration (2.1) for A = H is given by

sk+2)p(k+2) — (k) Q(k+1),

Note that here, in contrast to algorithm (2.1), the shifts are “implicitly”
implanted in the process through zgk) and S(*+2) and that they do not have
to be known by value since their sum and product are enough to define
zgk). The most popular implementations of the algorithm use for shifts the
eigenvalues of the trailing principal submatrix of order two of H(¥) and the
shift vector is derived from the trace and the determinant of that submatrix
(see, for example, subroutine hgr of EISPACK [14]). Convergence of the
iteration generally results in the separation of trailing submatrices of orders
one or two, for which immediate deflation is effected simply by dropping the
corresponding rows and columns.

Bai and Demmel generalized this scheme to the m-tuple iteration (m > 2)
represented by the following equations,

(0) 2% =[I(H® - oppisDer,

=1
stk+mzl) = 212 ||z, (2.3)
(b) Bk+m) = glk+m)»g(*k)g(k+m)
(c) H(k+m) — P(k+m)*B(k+m)P(k+m),



where the transformation matrices are orthogonal, and equation (2.3.c) rep-
resents a reduction to Hessenberg form. The shifts are the eigenvalues of
T*), the trailing principal submatrix of order m of H(¥) (this choice again
keeps the computation real). Convergence [16] manifests itself by the sep-
aration of a trailing principal submatrix of order often close to m, which
provides for automatic deflation. In general, for moderate values of m, the
algorithm has good convergence properties and allows for the efficient use of
high-performance computers. In [2] and [1], the shift vector is computed as
formally prescribed by the first of equations (2.3.a), that is, from the eigen-
values of T(¥), This is the part of the algorithm on which we shall focus,
based on the following observations. First, the above shift strategy defines
the first of equations (2.3.a) as

2 =P (H®)e,  pB(T®) =0, (24)
where pgf)(p,) is the characteristic polynomial of T(*). Since the calculation
of the shift vector essentially amounts to the evaluation of the characteristic
polynomial of a Hessenberg matrix, it seems unnecessarily complicated to
perform this evaluation by computing eigenvalues. Second, it has been ob-
served that the accuracy of the shift vector is sensitive to the order in which
the shifts enter the computation. While the incorporation of some sorting
procedure in the implementation of the algorithm can solve this problem,
it would certainly be preferable to use a scheme to which the ordering of
the shifts is irrelevant. Such questions are resolved by the method that we
propose in the next section.

3 The direct evaluation of the shift vector

From definition (2.2), the shift transformation is invariant under scaling

of zgf), and ps,’f)(p,) needs to be defined only to a multiplicative constant.
Accordingly, we shall use the term “characteristic polynomial” and the no-
tation p,(,’f)(,u) to designate any scaled value of the characteristic polynomial.
For simplicity, we shall also omit iteration superscripts in equations.

The determination of the characteristic polynomial of a matrix was a
major topic of early numerical analysis in connection with the solution of
the general eigenvalue problem. Up until the end of the 1930s, much effort
was devoted to the computation of the coefficients as a preliminary step to
the computation of the zeros. The best-known methods devised for that
purpose are due to Le Verrier [15], Krylov [10], and Danilevskii [3]. Lanc-
zos [11] later developed an algorithm of similarity tridiagonalization that
reduces the evaluation of the polynomial to the implementation of a simple



three-term recurrence. All these schemes are costly of computation and have
been shown to suffer from numerical instability [17]. They were replaced in
the 1950s by algorithms specifically designed for the direct evaluation of
the characteristic polynomial of Hessenberg matrices [4, 9, 17]. Hyman’s
method, which constitutes the basis for our work, is the best of the latter
for its simplicity, efficiency, stability, and accuracy. It was effectively used
by Parlett [13] with Laguerre’s iteration to produce eigenvalue solvers out-
performed only by their QR competitors. While it is generally thought of as
a scalar algorithm, its extension to the vector form (2.4) is straight-forward,
as demonstrated below.

We first summarize the original (scalar) form of the method. For a real,
unreduced, upper-Hessenberg matrix T of order m and a scalar y, consider
the system of linear equations

(I - T)x = prey (3.1)

to be solved for p,, = pm(i), given z,, = 1. Cramer’s rule applied to z,
yields the identity

where Dy, is the adjugate minor of ty,,, and A,,, = A, (1) is the determinant
of the system, that is, the value of the characteristic polynomial of T at pu.
Since T is upper-Hessenberg, Dy, is the determinant of a triangular matrix
the main diagonal of which is the sub-diagonal of T:

m~1

Dim = [] tisui.

=1

Hence, p,, differs from A,, only by a multiplicative constant, and therefore
satisfies the requirements of our problem. The numerical solution of the
system (3.1) for p,, results from using in the first equation the values of
Tm—1,Zm—2,...,%1 Obtained from the last m — 1 equations by backward
substitution. This process can be described by the following recurrence,

Ty = 1, P1 = U~ tym,
Loy —s = t_‘l_ i Pi
m—1 m—i+lm—i £ i=1,2,...,m"1, (3'2)
m
Pirl = BEmoi— D bm—ijTj,
j=m—i

which provides the values at u of all the trailing principal minors pi, k < m,
of uI — T. As the occurrence of small sub-diagonal elements may cause



overflow of floating-point representation, the implementation of the method
requires some monitoring of the magnitude of z; and, possibly, scaling. If
|| is bounded by some norm of T, accurate results can be expected [17].

We now derive the matrix algorithm to compute the shift vector of degree
m’

Zm = Pm (H)el,

for some Hessenberg matrix H of order n, n > m, whose trailing princi-
pal submatrix of order m may coincide with T. Equations (3.2) are easily
promoted to the matrix level by substituting T for x in the expressions of
pj = pj(u) and z; = xj(u). Then, defining

w; = zj(H)ey,

we immediately get the recurrence

W = ey, z1 = hy —thne,
-1
Wm—i = tm—i+lm-—izi’ .
i=1,2,...,m—1, (3.3)
m
zZiy1 = Hwp ;- Z tm—ijWj,
j=m—i

which provides the shift vectors of all degrees up to m. Note that w,,, w,,_1,...

form a triangular matrix, and constitute a basis for the subspace of dimen-
sion m — 1+ 1 if H is unreduced. Note also that each w; is a shift vector for
Pm—i since it is a scaled copy of z,,—;. Hence, by the time any z; is computed,
the choice to adjust the number of shifts to a smaller value is available at no
cost and without violation of the shift strategy if the set {w; |7 < j} is kept
in memory (a natural way to organize the computation). This is in sharp
contrast with the approach based on the calculation of the shifts, where
adherence to the strategy does not permit the construction of shift vectors
other than z,, for a given value of m. Finally, the amount of computation
required for Hyman’s method is of the order of 2m3/3 operations, which
compares quite favorably with an order of 10m3 + m3/3 operations for the
eigenvalues of T (average) and the construction of the shift vector proper.
In the context of the QR algorithm, the gains obtained in practice will be
somewhat lower than the ratio of these counts, mostly because efficiency
considerations require that m take modest values.

While the computation (3.2) is essentially a backward substitution per-
formed row-wise, it can also be organized as a forward substitution proceed-
ing column-wise by solving the system

xT(/‘I -T)= Pme?n



for pm = pm(p), given z1 = 1. The associated vector algorithm is described
by the following recurrence:

w; = ey, z1 = hy — ey,
-1

w; = t;_,2Zi-1,

t1=2,...,m (3.4)
i
z; = Hw,;- Z t;;wj,

=1

In this scheme, wy, w3, ..., w; form a triangular matrix of order %, and z; (or

W;4+1) is the shift vector associated with the roots of T’s leading principal
submatrix of order i. Because of this feature, algorithms (3.4) and (3.3) are
not interchangeable for the adjustment of the number of shifts in the course
of the computation.

4 Experiments

Our experiments were conducted on an HP 9000/720 work-station (IEEE
double precision), using two types of random matrices for H. The first type
is obtained by orthogonal reduction to Hessenberg form of matrices with
elements uniformly distributed in (—1,+1). The second type, which consists
of Hessenberg matrices with elements uniformly distributed in (-1, +1), is
known for causing convergence difficulties in the QR iteration when m takes
moderately large values [5].

In a first set of runs for 100 < n < 300 and m < n/2, our algorithm
was eight to ten times as fast as its competitor for the computation of
shift vectors, both implementations incorporating the same monitoring and
threshold-scaling procedures? for intermediate results. In other experiments
involving two levels of machine precision, we verified that, as expected, the
accuracy delivered by our algorithm is very good, and better than that which
could be obtained from the computation of eigenvalues. The relative error
measured in the £;(m) norm for the shift vector was consistently bounded by
a value near 2me, for a machine precision ¢. To achieve comparable results
with the other approach requires that the shifts be entered in the computa-
tion in some well-defined order (the order of decreasing modulus gave good
accuracy with our matrices). For relatively large values of m (m = 100) we

2For economy of computation, we try to scale as infrequently as possible, but the norm
of each w;, 1 <1 < m, must be computed and tested. Much of this work could be avoided
with the availability of an indicator of floating-point overflow that could be tested with
very little performance penalty.



encountered cases where the order of the shifts returned by hgr caused the
accuracy of the shift vector to drop to only a few digits.

As expected, the impact of the new algorithm on the time performance
of a QR eigenvalue solver was found to be less than dramatic, as modest
optimum values of m make the QR iteration proper the largely dominant
computation. We could measure gains of five to ten percent in the com-
putation of eigenvalues alone for matrix orders up to 400 at near-optimum
values of m. We did not, however, obtain measurements for cases where
inaccuracies in the shift vector would seriously affect convergence.

5 Conclusion

For its simplicity, efficiency, and accuracy, our implementation of the shift
strategy in the implicit QR algorithm is in all respects preferable to the cur-
rent practice of computing the eigenvalues of a submatrix. If no dynamic
ajustment of the number of shifts is considered, a FORTRAN implementa-
tion for large matrices should be based on formulation (3.4), which proceeds
column-wise. Formulation (3.3) should be preferred for other programming
languages, which have a contrary memory layout for two-dimensional arrays.

The algorithm’s amenability to dynamic adjustment of the number of
shifts remains, however, a good feature in search of an application, and
could not be used to improve the behavior of the QR iteration for moderately
large numbers m of shifts (roughly, m > 20). In such cases, the most efficient
implementation of the QR iteration is likely to consist of a sequence of m/k
multishift iterations, each using k of the shifts, k¥ < 16. In experiments with
k = 2 and m = 30, this approach was shown to be competitive with a block
implementation of the m-shift iteration [5]. Unfortunately, it cannot use our
algorithm and requires the computation of the shifts.

Finally, it must be noted that our scheme extends to the generalized
eigenvalue problem, and simplifies the implementation of a multishift version
of the QZ algorithm [12].
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