
F4.. HEWLETT
~~PACKARD

Dynamic Scheduling Techniques
for VLIW Processors

B. Ramakrishna Rau
Computer Research Center
HPL-93-52
June, 1993

instruction-level
parallelism, VLIW
processors,
superscalar
processors,
pipelining, multiple
operation issue,
scoreboarding,
dynamic scheduling,
out-of -order
execution

VLIW processors are viewed as an attractive way
of achieving instruction-level parallelism because
of their ability to issue multiple operations per
cycle with relatively simple control logic. They
are also perceived as being of limited interest as
products because of the problem of object code
compatibility across processors having different
hardware latencies and varying levels of parallel
ism. In this paper, we introduce the concept of
delayed split-issue and the dynamic scheduling
hardware which, together, solve the compatibility
problem for VLIW processors and, in fact, make it
possible for such processors to use all of the inter
locking and scoreboarding techniques that are
known for superscalar processors.

© Copyright Hewlett-Packard Company 1993

Internal Accession Date Only

1 Introduction

Traditionally, VLIWprocessors have beendefmedby the following set of attributes.

• The ability to specifynwlliple, independent~rations in each instruction. (We shall refer

to such an instruction as a MultiOp instruction. An instruction that has only one operation

is a UniOp instruction.)

• Programsthat assume specificnon-unit latenciesfor the operationsand which, in fact, are

only correctwhen those assumptions are true.

• The requirement for static, compile-time operation scheduling takinginto accountoperation

latencies and resource availability.

• Consequently, the requirementthat the hardware conformexactly to the assumptions built

into the program with regardsto the numberof functional unitsand the operation latencies.

• The absence of any interlockhardware, despite the fact that multiple,pipelined operations

are beingissuedeverycycle.

The original attraction of this style of architecture is its ability to exploit large amounts of

instruction-level parallelism (ILP) with relatively simpleandinexpensive controlhardware. Whereas

a number of VLIW products have been built which are capable of issuing six or more operations

per cycle [1-3],it has just not provenfeasible to buildsuperscalar productswith this level of ILP [4

9]. Furthermore, the completeexposureto the compilerof the availablehardwareresourcesand the

exact operation latencies permitshighlyoptimized schedules.

These very same properties have also led to VLIWprocessors beingperceivedas of limitedinterest

as products. The rigid assumptions built into the program about the hardware are viewed as

precluding object code compatibility between processors built at different times with different

technologies and, therefore, havingdifferent latencies. Evenin the contextof a singleprocessor, the

need for the compiler to schedule to a latency, that is fixed at compile-time, is problematic with

operations such as loads which can have high variability in their latency depending on whether a

cache hit or miss occurs.Because of this latter problem, VLIW productshave rarely adhered to the

ideal of no interlock hardware, whatsoever. Interlockingand stalling of the processor is common
when a load takes longerthan expected.

- 1 -

Superscalar processors and other dynamically scheduled processors, at least in principal, are better

equipped to deal with variable latencies. In fact, it is fair to say that when the variability is low, such

processors are quite successful in dynamically scheduling around the mis-estimated latencies. A

broad range of instruction issuing techniques, developed over the past three decades, can be brought

to bear on this task. Examples include the CDC 6600 scoreboard [4, 10], the register renaming

scheme, known as Tomasulo's algorithm, incorporated in the IBM 360/91 [11,5], the history me,

reorder buffer and future me [12], the register update unit [13] and checkpoint-repair [14].

The conventional wisdom is that dynamic scheduling using such techniques is inapplicable to

VLIW processors. The primary objective of this paper is to show that this view is wrong, that

dynamic scheduling is just as viable with VLIW processors as it is with more conventional ones. A

first step towards understanding how to perform dynamic scheduling on VLIW processors is to

recognize the distinction between traditional VLIW processors and a the concept of a VLIW

architecture.

A VLIW processor is defined by a specific set of resources (functional units, buses, etc.) and

specific execution latencies with which the various operations are executed. If a program for a

VLIW processor is compiled and scheduled assuming precisely those resources and latencies, it

can be executed on that processor in an instruction-level parallel fashion without any special control

logic. Conversely, a VLIW processor that has no special control logic can only correctly execute

those programs that are compiled with the correct resource and latency assumptions. VLIW

processors have traditionally been built with no special control logic and this has led to the

conclusion that VLIW processors must necessarily be designed in this fashion.

A different view of VLIW is as an architecture, i.e., a contractual interface between the class of

programs that are written for the architecture and the set of processor implementations of that

architecture. The usual view is that this contract is concerned with the instruction format and the

interpretation of the bits that constitute an instruction. But the contract goes further and it is these

aspects of the contract that are of primary importance in this paper. First, via statements about the

operation latencies, the architecture specifies how a program is to be interpreted if one is to correctly

understand the dependences between operations. In the case of a sequential architecture, all latencies

are assumed to be a single cycle. So, the input operands for an operation are determined by all the

operations that were issued (and, therefore, completed) before the operation in question.

In the case of programs for VLIW architectures, where operations have non-unit latencies, the input

operands for an operation are not determined by all the operations that were issued before the

-2-

operation in question. What matters is the operations that are supposed to have completed before

the issuance of the operation in question. Operations that were issued earlier, but which are not

supposed to have completed as yet, do not impose a flow dependence upon the operation in

question. In addition, a VLIW architecture guarantees the absence of any flow dependences

between the operations in a single instruction.

We introduce the following terminology to facilitate our discussion. A program has unit assumed

latencies (UAL) if the semantics of the program are correctly understood by assuming that all

operations in one instruction complete before the next instruction is issued. A program has non
unit assumed latencies (NUAL) if at least one operation has a non-unit assumed latency, L,

which is greater than one, i.e., the semantics of the program are correctly understood if exactly the

next L-I instructions are understood to have been issued before this operation completes. An

architecture is VAL (NUAL) if the class of programs that it is supposed to execute are VAL

(NVAL). We shall use the terms NUAL program and latency-cognizant program

interchangeably.

A point of confusion that is worth clearing up is the distinction between a latency-cognizant

program and a latency-cognizant compiler. In the case of the former, the semantics of the program

can be understood only with full knowledge of the latencies. A latency-cognizant compiler, on the

other hand, makes use of its knowledge of or estimates of the latencies in crafting a good schedule

but then, if generating code for a VAL architecture, generates a program that is not latency

cognizant, i.e., the semantics of the program can be understood by assuming that each operation

completes in a single cycle.

This paper addresses the following questions:

• How does one determine the dependence semantics of latency-cognizant programs?

• How does one do dynamic scheduling for a latency-cognizant program?

• How do the unique aspects ofVLIW architectures, namely, NUAL and MultiOp, affect the

mechanisms used to effect scoreboarding and out-of-order execution?

Due to space considerations, this paper will not discuss the issue of how one provides precise

interrupts for VLIW architectures. The mechanism developed in this paper, i.e., split-issue, supports

precise interrupts. However, the issues involved are too numerous and subtle to be dealt with

summarily. The hardware support needed for speculative execution is very closely related to that for

providing precise interrupts. In both cases, it must be possible to back up instruction issue to an

- 3 -

earlier point and then resume execution from there correctly. Since we are not addressing precise

interrupts, we shall also ignore the topic of speculative execution. Lastly, we shall simplify our

discussion by ignoring predicated execution [IS, 3]. Predicated execution poses some difficult

problems for out-of-order execution which are unrelated to whether the architecture in question is

VLIW.

In Section 2 we review dynamic scheduling and out-of-order execution for UAL programs. In

Section 3 we examine the manner in which the semantics of a NUAL program are to be interpreted

and we introduce the concept of split-issue. Section 4 extends UAL dynamic scheduling techniques

and mechanisms to the NUAL domain and evolves the structure of the delay buffer--the minimal

additional hardware structure required to support scoreboarding and out-of-order execution of

NUAL programs. Section 5 attempts to place these new ideas in perspective.

2 Dynamic scheduling of VAL programs

The semantics of a conventional, sequential program are understood by assuming that each

instruction is completed before the next one is begun. If program time is measured in units of

instructions, the execution latency of every operation has to be one cycle. If the actual latency of all

operations is in fact a single cycle, then an instruction may be issued every cycle for a UAL

program without the need for any interlock hardware and without any danger of violating the

semantics of the program.

If some or all of the actual execution latencies are greater than one cycle, or if one wishes to issue

more than one instruction per cycle, then it is necessary to provide instruction issue logic to ensure

that the semantics of the program are not violated. In particular, it is important for the issue logic to

understand when an instruction is dependent upon another one as a result of their accessing the

same register. The determination of such dependences relies upon the knowledge that a UAL

program is being executed; the semantics of a given operation, and the data that it uses as its input,

assume that every sequentially preceding operation has completed before it begins execution.

2.1 Data dependences

The discussion of non-sequential instruction issue policies is facilitated by a parallel micro-model

of an operation. The traditional dyadic operation, such as an integer add, may be viewed as

composed of four micro-operations: two which read the specified source registers, one which

performs the computation once the first two micro-operations have completed, and a fourth that

-4-

writes the result to the destination register after the computation is complete. The precedence

relationships between these micro-operations is represented by the partial ordering shown in

Figure Ia, We shall assume that buffering is available on each arc in this graph to permit the micro

operations to be performed asynchronously with respect to one another, subject only to the stated

precedence relationships.

The correct ordering between the micro-operations of distinct operations is obtained by requiring,

on a register by register basis, that all accesses to a given register are performed in the same order

as that specified by the sequential program. This total ordering of accesses to a given register can be

relaxed somewhat; whereas read-write access pairs must maintain the original sequential order

between each other, as must write-write pairs, there is no need to maintain the ordering between

read-read pairs that were not separated by a write. Thus, the original total ordering of accesses to a

register can be replaced by the partial ordering shown in Figure 1b. Although the set of reads that

are sandwiched between two writes must maintain their ordering with respect to the two writes, they

are unordered with respect to one another. If two writes occur one after the other, in the original

sequential ordering, without an intervening read, the ordering between the two writes must be

preserved.

write

rl +12~ r3

(a)

readr1 read r2

\ I
compute

f
writer3

_(+~Hd
write

~d~+~_
write/,"
(b)

Figure 1. (a) The parallel micro-model of a dyadic operation. (b) The minimal partial ordering that must be
maintained between the accesses to a given register to ensure correct semantics.

-5-

The precedence relationships in Figure 1b have been classified as flow, anti- and output

dependences [16]. The precedence relationship between two successive writes is an output

dependence, that between a read and the immediately preceding write is a flow dependence, and the

precedence relationship between a read and the immediately succeeding write is an anti-dependence.

Collectively, these dependences are termed data dependences. They must all be honored.

2.2 Instruction issue policies

We shall use the following terminology in this paper. An operation is said to have been issued

once its dependences upon previously issued, but as yet uncompleted, operations have been

analyzed and it has been released to execute, with no further involvement from the instruction issue

unit, as soon as those dependences have been removed. An operation is said to be initiated when it

actually begins executing on some functional unit. The operation has completed once it has

fmished execution on the functional unit, and it has retired once the side-effects of the operation,

i.e., the update of the destination register and the flagging of any exceptions, have been committed

to the processor state. Since we are ignoring the subject of interrupts and exception in this paper,

completion and retirement collapse into a single event. Between issuance and initiation, the

operation waits in a buffer that we shall refer to generically as a reservation station.

Since instruction issue policies for NUAL programs build upon those for VAL programs, we shall

briefly review the latter. An instruction issue policy is defmed by the types of dependences whose

occurrence it precludes and by its actions when a particular type of dependence is encountered. All

correct issue policies must honor the partially ordered dependence graph that exists between the

reads and the writes to a particular register (Figure lb). A large amount of work has been done in

this area, and it has been pulled together and analyzed admirably by Johnson [17]. We shall review

these policies from a somewhat unusual viewpoint, one that is better suited to the extension of these

policies to NUAL programs.

Instruction issue policies may be broadly divided into two approaches.

A The contents of a register can either be an actual datum or a symbolic value, i.e., a surrogate

for or the name of the as yet uncomputed datum.

B. The contents of a register may only be a datum.

In the first case, even though the result of an operation will not be available for some time, a tag can

be allocated to represent its symbolic value and this tag can be "written" to the destination register

-6-

immediatelyor, in other words, associated with that destination register. Since this happens in the

samecycle that the operation was issued, the operation appears to haveunit latencywhen viewedat

the level of symbolic values. Furthermore, when an operation is issued, there is always a value

available in the sourceregisters, eitheran actualvalueor a symbolic one. Consequently, instruction
issue need neverbe interrupted unlessthe pool of tags runs out

Of course,with the exceptionof copy operations, operations cannot proceeduntil the actualvalues

of their sourceoperands are available'. In the meantime, theywait in reservation stations. Each time

an operation completes, the tagcorresponding to the symbolic valuefor the result is broadcast along

with the actualvalue. Everyregisteror reservation station containing this symbolic value replaces it

with the actualvalue. Also,at this time, the tag for the resultis returned to the pool of tags available

for re-allocation. When the actual values for both source operands are available, the reservation

station contends for thefunctional unit on whichthe operation willbeexecuted.

This approach can be sub-divided into two policiesof interestbased on the numberof tags that are

available to serveas the symbolic valueof a given register.

Al. Multiple tags can be allocated to represent multiple, distinct symbolic values associated

witha given register.

A2. Only a single tag is availableto represent the multiple, distinctsymbolic values associated

with a givenregister. For convenience, and withoutloss of generality, we shall assumethat

this pre-allocated tag is identical to the address of the register.

Policy AI, with minor and insignificant differences, is what is commonlyknown as the Tomasulo

algorithm [11]. This entails the use of reservation stations and registerrenaming.

Policy A2 corresponds to the use of reservation stations (withoutrenaming) to enable the issuance

and settingaside of operations, the actualvalues of whosesourceoperands are not as yet available,

or operations for whicha functional unit is not immediately available. However, since thereis onlya

single tag available to use as a symbolic value, therecannotbe more than one outstanding updateof

a registerat anyone time.Thus, instruction issuemustblockon an outputdependence.

1 This is not sttictly true. For iDstance, an integer multiply operation can proceed even if ODe of its source operands is a symbolic value, if the

lCtual valueof the othersource operand is known to be zero. In viewof the complexity of implementing such a strategy and thequestionable

benefits derived from it, weshallignore suchpossibilities.

-7-

In the case of approach B, since one deals only with actual values, the illusion of single cycle

execution cannotbe sustained. Two instruction issuepolicies can be defmed for this approach

B1. Stall instruction issue if a dependence is encountered, i.e., if either the source or the

destination register, for theoperation that is aboutto be issued, has a pending write.

B2. Continue instruction issue even when dependences are encountered, but provide

mechanisms thatenforce the partial ordering of accesses to eachregister.

The second policy leads one to mechanisms such as the dispatch buffer [18] or partial renaming

[17]. Johnson has arguedpersuasively that the secondpolicy is not worth pursuing since it leads to

implementations thatare moreexpensive but lesseffective than those for Al and A2.Consequently,

we shalllimitourselves to considering onlypolicies AI, A2 andBI.

Our discussion, thus far, has beenin the contextof a singleregisterfile, Since all operations source

and sink: the sameregister file, no distinction can be madebetween the register access policy and the

instruction issue policy. When there are multiple register files and operations which source one

register file but sink a differentone, the instruction issue policy dependsupon the register access

policies of both register files, We need a way to talk about instruction issue policies and register

access policiesas distinctentities. The view that we shall adopt is that the policiesAI, A2 and BI

are register access policies which describe the manner in which a register file and its contents can be

manipulated. Each register accesspolicyspecifiescertain actionsand constraints that apply when

that registerfile is a sourceor a destination of an operation.

Table 1 codifies the actions and constraintsof each register access policy (column 1) when that

register file is the source (column 2) and whenit is the destination (column 3). As a sourcethereare

two possibilities: SF and RS. SF states that instruction issue ltalls when a flow dependence is

encountered. RS specifies the use of reservation ltations to set the operation aside when a flow

dependence is encountered. As a destination, too, there are two possibilities: SO and RR. SO states

that instruction issue ltalls when an Qutput dependence is encountered. RR specifies the use of
registerrenaming to eliminate all outputdependences.

- 8 -

Table 1.The three instruction issuepoliciesof interestfor a UALprogram.

Register File Policy Instruction Issue Policy

Source Operands Destination Operand

Al RS RR

A2 RS SO

Bl SF SO

When the source and destination register files are the same, register access policies AI, A2 and BI

correspond to the instruction access policies RSRR, RSSO and SFSO, respectively. (The first two

and last two letters indicate the policies for the source operands and the destination operands,

respectively.) SFSO is the simplest policy in which instruction issue stalls whenever either a source

or destination register has a pending write against it. All that is needed is an invalid bit per register

to indicate that the register has a pending write. RSSO does not stall issue when a source register's

invalid bit is set. Instead, it places the operation in a reservation station which is the additional

hardware required by this policy. However, it does stall issue if the destination register's invalid bit

is set. RSRR does not stall issue in either situation. The reservation station hardware is not

appreciably more complex than for RSSO. However, hardware is now needed to allocate distinct

tags and to return them to the pool once the result has been computed. Also, the register file is more

complex because a tag must be associated with each register.

With two policies each on the source and destination sides, we have four possible instruction issue

policies. The missing one, SFRR, causes instruction issue to stall when a flow dependence is

encountered even though all of the mechanisms to deal with output dependences have been

provided. Since flow dependences are, typically, the more important obstacle to successful out-of

order execution than are output dependences, it seems unreasonable to cater to the latter and not to

the former. Accordingly, we do not consider this policy in this paper.

-9-

3 Semantics of NUAL programs

The semantics of a sequential program are understood by viewing each instruction as occurring

atomically. within a single cycle. and concurrent with no other instruction. In contrast, the semantics

of a NUAL program must recognize that each operation has two distinct events. in general. at two

distinct points in time. These are the start of the operation. when the source registers are accessed.

and the end of the operation. when the destination register is written. Each of the pair ofevents for

one operation may have a precedence relationship with either one of the pair of events for another

operation. Correct execution of a NUAL program demands that all of these precedence

relationships be honored. The time at which these events occur in a NUAL program is measured in

units of instructions. Since an instruction is a set of operations that is intended to be issued in a

single cycle. this is equivalent to measuring time in cycles if one instruction is issued every cycle.

When there is the potential for confusion. we shall refer to this as the virtual time of the program to

distinguish it from the real. elapsed time during execution.

3.1 Dependence semantics of a NUAL program

Any form of dynamic scheduling requires the ability to re-create the dependence graph of the

NUAL program. So. the question is how does one do this given the program and the assumed

operation latencies? As with UAL operations (Figure la), a NUAL operation may be viewed as

composed of multiple micro-operations. The difference is that the write micro-operation at the end

of the operation is understood to occur after the read micro-operations with a time interval equal to

the assumed latency. This difference completely alters the semantics of a program. Consider the

fragment of a NUAL program shown in Figure 2a. Since it is a UniOp program. we shall refer to

each operation by the number of the instruction that it is in. H this is interpreted as a UAL program.

the rust load. operation #1. is irrelevant since rl is immediately overwritten by the operation #2.

Operations #11 and #12 are both flow dependent upon the operation #2. operation #11 is irrelevant.

operation #14 is flow dependent upon operation #12 and operation #15 is flow dependent upon

operation #14.

Figure 2b illustrates how this NUAL program fragment should be interpreted correctly to

understand the actual semantics and dependence structure. assuming the latencies as specified. Each

operation in Figure 2a has been split into two operations in Figure 2b. The Phase l operation

consists of the read micro-operations and the actual computation micro-operation. The Phase2

operation consists of the write micro-operation and is understood to execute in a single cycle.

Anonymous temporary registers (vl •...• v5) convey the results of the Phasel operations to the

- 10-

corresponding Phase2 operations. These temporary values, by their very nature, are written and read

exactly once each. In Figure 2b, a Phase2 operation is interpreted as being issued later than the

corresponding Phasel operation byan interval equal to the assumed latency lessonecycle.

Instruction

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Instruction

Operation

rl load(r2)
rl = load(r3)

r4 fmul(rl, r5)
r4 fadd(rl, r6)

r7 fmul(r4, r9)
r7 fadd(r7, r8)

(a)

Phasel Operation Phase2 Operation

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

v l load(r2)
v2 = load(r3)

rl = vI
v3 fmul (rL, r5) rl = v2
v4 fadd(rl, r6}

r4 = v4
v5 fmul(r4, r9) r4 = v3
v6 fadd(r7, r8)

r7 = v6
r7 = v5

(b)

Figure 2. (a) A NUAL code segment and (b) its UAL code equivalent after splitting. The assumed operation
latencies are 10cyclesfor load, 4 cyclesfor floating-point multiply and 2 cyclesfor floating-point add. The empty
instructions are understood to contain no-op operations.

From an inspection of Figure 2b, it is now clear that operation #11 is flow dependent upon

operation #1, operation #12 upon operation #2, operation #14 upon operation #12, and operation

- 11 -

#15 is not flow dependentupon any of the other five operations. Operation#15 is also irrelevant

unless there is a Phase1 operation that reads r7 in instruction 17.Thereafter, the value in r7 is that
deposited by operation #14. Furthermore, there is an anti-dependence from operation #14 to

operation #11! Operation #11 may not write r4 beforeoperation #14 reads it, otherwiseoperation

#14 gets thatvalueratherthanthe result of operation #12.

What Figure 2b illustrates is that we can interpret NUAL programs as if they are UAL programs

once the operations have been split into their Phase1 and Phase2 components and the Phase2

component is understood to issue with a delay corresponding to the assumed latency. One might

suspectthat if a program can be interpreted as if it is a UALprogram that it can alsobe dynamically
scheduledusing all the mechanisms and techniques that have been developed for UAL programs.

This is, in fact, the case. The concept of splittinga NUALoperation and delaying the issuanceof

the Phase2 operation we shall refer to as split-issue. Also, we shall use the term augmented

(MuldOp) instruction to refer to the set of Phase1 operations from a single MultiOp instruction

along with all of the Phase2 operations (from earlier MultiOp instructions) that are issued

concurrently with thesePhase1 operations.

3.2 Split-issue

Split-issue is the mechanism which permitscorrectexecution of a NUALprogrameven when the

actual latencies do not agree with the assumedlatencies. Furthermore, it enables well understood

out-of-order-execution techniques to be employed with NUAL programs. We shall describe the

concept here in its most general form. The generalhardware model is described in Section4.1. In

certain special casesof interest, it simplifies to a ratherinexpensive implementation.

With UALprograms, instruction interpretation comprises three steps(given that we are ignoring the

preciseinterrupt issue). Theseare

1. decode and issue,

2. initiate, and

3. complete andretire

With NUAL programs we add one more actionwhichis that of splitting. Once an instruction is in

the instruction register, each operation is decoded andsplit into its Phase1 and Phase2components.

An anonymous registeris assigned to be the destination of the Phase1 operation and the sourcefor

the Phase2 operation. The Phase1 operationis issued immediately (in virtual time) in accordance

- 12-

with the instruction issue policy that is being employed (Figure 3a). Either immediately or

eventually, it is initiated, i.e., begins execution, then completes and is retired. The Phase2 operation

is inserted into a list which is ordered by the virtual time at which the Phase2 operations should be

issued! (Figure 3b). For each Phase2 operation this is computed as the virtual time at which the

Phase 1 operation is issued plus the assumed latency less one cycle. After the appropriate delay

(measured in units of MultiOp instructions), the Phase2 operation is issued. Either immediately or

eventually it executes, i.e., performs the copy from the anonymous register to the architectural

register, and is retired.

I
Decode, Split, Issue

and Rename Phase1

In.iate

Col11llelion or Raliramant

(a)

I
Decode, Split

and DelayPhase2

Delayed-lssue Instruction Buffer

Issue and Rename

Copy andI.....ment

(b)

Figure3: (a)Execution phases fora Phase! operation. (b) Execution phases fora Phase2 operation

1 This is the conceptual view. There are any number of ways of actually implementing this.

- 13-

3.3 Specification of the assumed latency

The latency assumed by each operation may be specified in a number of ways. In decreasing order

of generality and flexibility, these are:

• a field in each operation specifying the assumed latency,

• an execution latency register (ELK) per opcode or per set of opcodes which contains

the assumed latency of that opcode or opcode set, and

• an architecturally specified latency for each opcode.

The rustapproach permits the specification of distinct assumed latencies for different occurrences

of the same opcode. Although this can be quite useful, it is rather extravagant in its use of

instruction bits. The Horizon architecture provides for such a latency specification per MultiOp

instruction [19]. Presumably, the value specified must be the maximum of the assumed latencies

across all operations within a single instruction.

The second approach.has two sub-cases depending on how the assumed latency is deposited into

the ELR. One option is to provide all the assumed latencies in the program header. Prior to

launching the program, the runtime system transfers this information into the ELR's which are part

of the processor state, but inaccessible to user code. The second, more dynamic option is to make

the ELR's visible to the program and to provide opcodes that load and, perhaps, store the contents of

the ELR's. This second option provides the capability to keep changing the assumed latency of an

opcode albeit not as flexibly as with the latency-field-per-operation approach. (Such a capability

was provided in the Cydra 5 for specifying the assumed latency of load operations [20].)

With the third approach, there is no explicit specification of the assumed latencies. Instead, they are

specified in the architecture specification and are fixed across all programs and across all

processors within the architectural family. Only in this last case is it appropriate to use the term

"architectural latencies" for the assumed latencies. This is the approach commonly used in the past

by VLIW processors [1-3].

It is worth emphasizing that the assumed latency need not be the same as the hardware latency (or

even an estimate thereof) as long as some form of scoreboarding or dynamic scheduling is

available. A few examples illustrate this point. Imagine that after scheduling code with full

knowledge of the hardware latencies, one finds a large number of contiguous instructions

- 14-

containing nothing but noops. It is perfectly correctto deleteall thoseinstructions while at the same

time reducing the assumed latencies of all operations, whoseexecution spans those instructions, by

the number of deleted instructions. (Doing so would require the ability to specify an assumed

latency per operation.) At runtime, thesenoopcycleswillbe dynamically inserted by the instruction

issue logic. There are two motivationsfor adjusting the assumed latencies in this manner. One is

that the code size is reduced by eliminating the noop instructions. The second is that, if at some

subsequent time this program is executed on a machine with shorterlatencies, the noopcyclesmay

not need to be dynamically insertedand the program's performance will benefitfrom these reduced

latencies.

A secondexampleis motivated by the possibility that latencies on a future machine mightbe longer

than those on the current one. Assume a piece of code with adequate instruction-level parallelism

such that the scheduled code has few noop instructions in it. Considera particularoperation whose

result is first used wellafter it has been generated (assuming currentlatencies). This program is still

correct if the assumedlatencyis increased beyond the current hardware latency to a value equal to

the time interval between the start of this operation and its first use. The advantage so doing is that

there will beno performance degradation on subsequent machineswith longer latencies as long as

the latenciesdo not exceed this assumed latency. This is the mannerin whichassumed latencies are

used in Horizon [19].

Lastly, consider a loop with no loop-earried dependences. Over-estimating the hardware latencies

contributes only to the startuppenaltyof the loop, whereasunder-estimating them leads to stalling

instruction issue on every iteration. For loops with large trip counts, it is preferable to specify

assumed latencies that are largeenoughthat they will rarelyunder-estimate the actuallatencies that

mightbeencountered acrossall members of this architectural family.

4 Dynamic scheduling techniques for NUAL programs

4.1 A machine model

The generalmachinemodelassumed in this paper is shownin Figure4. Instructions are fetched or

prefetchedinto the instructionbuffer as in any other processor. These instructionsare assumed to

be MultiOp (which includes UniOp instructions as a special case). An additional, post-decoding

step,whichwe have termed splitting, exists. During this step,each operation in the instruction that is

about to be issued is split into its PhaseI and Phase2 components by the splitter. The Phase2

- 15 -

operations are placed in the first-in-first-out delayed-issue instruction buffer, appropriately far

back, so as to be issued with a delay that is one less than the assumed latencyl. The Phasel

operations are placed in the instruction register immediately along with any Phase2 operations

which are at the front of the delayed-issue instruction buffer. The set of Phasel and Phase2

operations that are placed in the instruction register during the same cycle constitute an augmented

(MultiOp) instruction.

The instruction issue unit performs one of three actions upon each operation in the instruction

register depending on the current situation. If the operation has no dependence conflict with any

previously issued operation, and if the appropriate functional unit is available, the operation goes

directly into execution. If either a dependence conflict exists or if the required functional unit is not

available, the operation is placed in a reservation station to await the condition under which it can go

into execution. Ifno reservation station is available (including the case in which reservation stations

are not provided in the hardware) the operation cannot be issued. All of the operations in a single

augmented instruction are decoded and issued simultaneously from the instruction register. Ifeven

one operation cannot be issued, then none of them are issued. In this case, we say that instruction

issue has stalled.

Phasel and Phase2 operations are issued to distinct types of reservation stations, the structure of

which we shall examine shortly. The functional units corresponding to the Phasel operations are

those that implement the functionality of the opcode repertoire, e.g., integer ALU's, floating-point

adders and load-store units. In general, these functional units have latencies of one or more cycles

and they may be pipelined. The implicit opcode for a Phase2 operation corresponds to a copy

operation. This operation is assumed to complete in a single cycle. The "functional unit" that

implements this is shown in Figure 4 as the copyback unit. Phase! operations access the

architectural register me for their source operands and access the anonymous delay register file

for writing the destination operand. Conversely, Phase2 operations access the delay register me for

their source operand and the architectural register me for writing the destination operand.

1 The usumption here is that the code has been scheduled such that two operations on the same functional unit never complete at the same

time since this would constitute an over-subscription of the result bus. This also implies that there will never be the need to schedule two Phase2

operations 011 the same functional unit at the same time.

- 16-

IDStruction

lDstnK:tion~--I
Bufilr

Instruction Issue Unit

Phase2
Reservation

Stltions

De1ayed-lmJe
IDstruction

Bufilr

]~
Pipeline

I nstruetion Register

Ai teaura1
Register

File

Phasel
Resel'Vation

Stations

copy k
Unit

Figure 4. Processor organization for supporting split-issue with out-of-order execution.

Figure 4 displays a single architectural register file, a single execution pipeline, a single delay

registerfile and a singlecopyback unit In general, a processor might possessmultiplearchitectural

registerfiles (e.g., integer and floating-point). There may be multiplefunctional units that access a

givenarchitectural register file. Furthermore, certain operations may accessone architectural register

file as the sourceand anotherone as the destination. Withoutloss of generality, we shall focus on a

single architectural register file. We shall assume that there is a unique delay register file and

copyback unit per functional unit. Thus, each delay register file is written to only by one specific

functional unit and is read by a singlecopyback unit. In comparison to the architectural registerfile,

- 17 -

the delay register me can be implemented less expensively since it has but a single read port and a

single write port.

4.2 Instruction issue strategies for NUAL programs

Ifwe assume that all architectural register files have the same register access policy and, likewise,

that all delay register files have the same register access policy, then the instruction issue policies

for the Phasel and Phase2 operations are completely specified by the two register access policies

(Table 2). For each pair of architectural register me access policy (row) and delay register me

access policy (column), the table entry specifies the corresponding Phasel and Phase2 instruction

issue policies. Given that we have restricted our discussion to three register access policies, there are

nine possible NUAL instruction issue policies. We shall also find it useful to consider, for the

architectural register me, the null access policy of having no interlocks whatsoever on accesses to

the architectural registers'. This increases the number of possible instruction issue policies to

twelve.

Three of these instruction issue policies tum out to be uninteresting. These are the ones in the first

column corresponding to delay register me access policy B1 (SFSO) and architectural register file

policies AI, A2 and B1. Since instruction issue stalls if the actual value of a Phase2 operation is not

available, and since Phase2 operations complete in a single cycle, a Phase2 operation can never

complete late with reference to the program's virtual time. Consequently, at the beginning of every

cycle when instruction issue is not stalled due to a Phase2 flow dependence, every Phase1 operation

will fmd that its (architectural register me) source operands are available and that there are no

outstanding writes against its (delay register file) destination. Therefore, it is unnecessary to do any

dependence checking at all when accessing the architectural register file,

The instruction issue policy for which the architectural register file is not interlocked and the delay

register me policy is B1 is termed latency stalling. The nature of this policy is that instruction

issue stalls when the assumed latency of an operation has elapsed, but the actual latency has not. In

the program's virtual time, the assumed latency is never exceeded and so no dependence checking

hardware is needed. This policy is of particular interest since it eliminates the requirement for

1 We ignOl"C the case in which the delay register file is not interlocked. This is feasible only if all actual lltcncies lIR guaranteed to be less

than or equal to the assumed ones. In this case the architectural register file, too, would have no interlocks.

- 18 -

interlock hardware on the architectural register file which, in an ILP processor, may be expected to

be highly multiported.

The other three policies in the first column degenerate to latency stalling and are not of interest as

distinct policies. Also, if the architectural register file is not interlocked, the only acceptable policy

for the delay registers is B 1. Correctness requires that results never be written late, relative to the

program's virtual time, into the architectural register file, which precludes Al and A2.

Table2. Insttuetionissuepoliciesof potential interestfor NUALprograms. Entriesspecifythe policies
for Phase! and Phase2operations, respectively. The lightlyshadedentriesare of no interest. The heavily
shaded entriesare not feasible.

Architectural
Re . ter File Polie

Non-interlocked

Bl: SFSO

A2:RSSO

AI: RSRR

Bl: SFSO A2:RSSO

SFSO I RSSO

RSSO/RSSO

RSSO/RSRR

AI: RSRR

SFRRIRSSO

RSRRlRSSO

RSRR/RSRR

This leaves seven policies of possible interest. Each of these policies may be combined with

multiple instruction issue. Note that by this we mean the issuance, each cycle, of more than one

MultiOp instruction, each one containing multiple operations. The program's virtual time must

advance by multiple cycles on each unstalled real cycle. The net effect must be identical to that

obtained by issuing one MultiOp instruction at a time while running the instruction issue logic with

a cycle time that is a sub-multiple of the actual instruction issue cycle time. Other than the additional

requirement of performing split-issue, the implementation issues are very similar to those for a

multiple-issue superscalar processor [17].

The operations that we have been considering thus far have been register-register operations. By

generalizing from registers to all types of processor state, such as the program counter and the

program status word, operations such as delayed branches can be included in this same framework.

As far as their register-based dependences are concerned, loads and stores can also be viewed

- 19-

within the same framework. A load can be viewed as a register-register NUAL operation which

takes an address from a source register and deposits the contents of the addressed memory location

in the destination register. Likewise, a store has two source operands but no destination register. On

the other hand, loads and stores also have dependences between one another via their accesses to the

memory space. Conceptually, these too, can be treated by viewing the entire memory space as a

register me. In practice, given the size of the memory space, different scoreboarding and out-of

order mechanisms (e.g., associative store buffers [17]) must be employed than those that are used

for register-register operations.

4.3 General structure of the reservation stations for NUAL

Figure.S shows the structure of the reservation stations. A reservation station consists of two parts:

the input section which relates to the source operands of the operation, along with the opcode and,

second, the output section that pertains to the result operand (Figure 5a). The detailed structure of

each section depends upon the instruction issue policy as well as on the type of register file to

which it corresponds. For a Phasel operation, the input section is that for an architectural register

me and the output section is that for a delay register me. For a Phase2 operation, it is just the

opposite. Figures 6b and 6c display the detailed structure of the input and output sections

corresponding to an architectural register me and the delay register me, respectively.

With access policy AI, each architectural register consists of either the datum itself or the tag for its

symbolic value and an invalid bit The invalid bit is set if the register contains a tag. That portion of

the input section corresponding to each source operand has the same structure as an architectural

register. Additionally, the input section contains the opcode and a bit to indicate that this reservation

station is in use. The output section for the architectural register file under policy Al consists of the

tag that represents the symbolic value of the result (so that it can be broadcast along with the actual

value once it is available). (In the case of UAL and the absence of split-issue, the reservation station

under policy Al would consist of this pair of input and output sections.)

Under policy A2, the tag is identical with the address of the architectural register on both the source

and destination sides. Other than this, the structures of the input and output sections are identical.

The register structure is simplified; since the tag is identical to the register's address, it need not be

explicitly represented and no storage is required. Only space for the datum and the invalid bit are

needed. With policy B I, no reservation stations are needed and the register structure is the same as

that under policy A2.

- 20-

Reservation
Stations for Input section for output section for

Phasel Operations Architectural Register Delay Register File
File

Res ervat ion
Stations for Input section for Q.1tput section for

Phase2 Operations
Delay Register File Architectural Register

File

(a)

Register Input Section OUtput Section
Access for for
Policy Arch i teet ural Architect ural

Regi ster File Register File

ArchReg Sou rce 1 ArchReg Source2 ArchReg Resul t
A2 In Op

Use ~nv.1 Address I Datum nv.
1 Address I Datum Address

Bi t I I Bi t I I

ArchReg Sou rce 1 ArchReg Source2 ArchReg Resul t
Al In op

Use
nv. 1 I Datum nv. 1 I DatumTag Tag Tag

Bi t I I Bi t I I

(b)

Register Input Section OUtput Section
Access for for
Policy Delay Regist er Fi le Delay Register File

DelReg Source DelReg Result
A2 In

Use
Inv.1 Address I Datum Address
Bit I I

DelReg Source DelReg Result
Al In

Use
Inv.1 I Datum TagTag
Bit I I

(C)

Figure 5. (a)The structure of reservation stations for Phase! and Pbase2 operations. (b) Thedetailed struCture of
thereservation station input and output sections that are associated with thearchitectural register files. (c) The
detailed structure of the reservation station input and output sections that are associated with the delay register
files.

- 21 -

In principle, the input and output sections associated with the delay register file are similar to those

for the architectural register file, except for a couple of differences First, since there is only one

possible opcode for a Phase2 operation (copy), it need not be explicit in the input section. Second, a

Phase2 operation has a single source operand. Together, these simplifications yield the input and

output sections shown in Figure 5c for policies Al and A2.

4.4 The delay buffer: simplified hardware support for NUAL

Certain simplifications result from the stylized manner in which the delay registers and the Phase2

reservation stations are used. Generally, with out-of-order execution, multiple operations might use

the result of a given operation. Consequently, a "linked list" of dependent operations must be

created. This is implemented by broadcasting the result along with a tag and having every waiting

operation perform an associative comparison between the broadcast tag and the tag that is being

waited on. In the case of the delay register file, there is always exactly one dependent operation. So,

instead of associative hardware, the destination register can directly point to the reservation station

of the dependent operation and forward the result to it when available. Better yet, the delay register

file and the Phase2 operation's reservation station can be combined into a single structure

(Figure 6a). Effectively, a reservation station is allocated to a Phase2 operation at the same time that

the delay register is allocated to the corresponding Phasel operation, i.e., when the original

operation is split and the PhaseI operation is issued.

This combination yields further simplifications. Figure 6a shows a delay register concatenated with

a Phase2 operation's reservation station. The tag and datum fields in the reservation station can be

eliminated since they replicate identical fields in the delay register. The "in use" bit of the

reservation station can be eliminated since its state is implied by the joint state of the two invalid

bits. The resulting simplified structure is shown in Figure 6b with the invalid bit of the reservation

station renamed the copyback bit The invalid bit is set when the Phasel operation is issued and

reset when it completes. The copyback bit is set when the Phase2 operation is issued and is reset

when it completes. Ifeither bit is set, the delay register cum reservation station is in use.

Once the delay registers have been combined with the Phase2 reservation stations, register access

policy Al becomes pointless. This policy is motivated by the desire to permit multiple tags to be

associated with the same register, i.e., to have multiple, concurrently active reservation stations

associated with the same delay register. This is precluded once the delay registers and the

- 22-

reservation stations have beencombined; Al degenerates to A2. At this point, the tag is the sameas

the address of the delayregisterand may be eliminated (Figure 6c).

ArchReg Resul t

Tag or
Address

(a)

Delay Register ArchReg Result

Inv.
1

Tag I Datum Copy I Tag or
Bit I I

Back I Address
Bit

(b)

Delay Register ArchReg Resul t

nv.
1

Datum Copy I Tag or

Bit I Back IAddress
Bit

(c)

Figure 6. (a) The concatenation of the delay register with the reservation station for Pbase2 operations. (b) The
combined delay register and reservation station after optimizing away the redundant portion. (c) The combined
delay register and reservation station after eliminating register renaming.

The Phase2 operation that is inserted into the delayed-issue buffer contains the addresses of the

source delay register and the destination architectural register. In addition, by virtue of where the

Phase2 operation is inserted into the delayed-issue buffer, the time of issue for this operation is

specifiedimplicitly. The final simplification is to combine the delayed-issue buffer with the delay
register cum reservation station by noting that space is alreadyprovided in the latter for the tag or

the architectural registeraddresscorresponding to the destination, and need not bereplicated in the

split-issue buffer. The delay register me address in the Phase2 operation need not be specified

since, after combining, the delay register address is the same as the addressthat was used to access

the delayed-issue buffer. For brevity, we shall refer to the combined delayed-issue buffer I delay

register me I Phase2 reservation stationsas the delay butrer, and each element of the delay buffer

has the structure shownin Figure6c.

- 23-

The only loose end left is the specification of the correct time for issuing the Phase2 operation. This

can be done by organizing the delay buffer as a circular buffer. The Pbase2 Issue Pointer (PIP)

points to an element of the delay buffer and, each time an augmented instruction is issued, the PIP

moves forward by one element. On each instruction issue cycle, the Phase2 operation that has just

been split off is allocated the delay buffer element that is ahead of the PIP by the assumed latency

less one. The address of this element is used by the Phase I operation to specify its destination. The

invalid bit in this element is set at this time, to bereset when the Phasel operation completes and the

result is written into that delay buffer element At this time, the copyback bit in this element will be

in the reset state. The Phase2 operation is issued when the PIP arrives at this element

If the result is computed sooner than the assumed latency, it is written into the delay buffer element,

the invalid bit is reset but, since the copyback bit is not set, it is not written to the destination

architectural register. When the PIP reaches this delay buffer element, the invalid bit is not set and,

so, the datum is written to the destination architectural register.

If the result is computed later than the assumed latency, then the invalid bit is still set when the PIP

arrives at this element. Two actions are taken. First, the copyback bit is set to indicate to the

hardware that the result should be written to the destination architectural register as soon as it is

available. Second, if access policy Al is being employed for the architectural register me, the

address of the destination architectural register in the delay buffer element is replaced by the tag for

the symbolic value that is placed in the destination architectural register. As a result, the copyback

bit will be set at the time that the result is written into the delay buffer element. So, the result will

also be written to the destination architectural register and both the invalid and the copyback bits

will be reset. When both the invalid and the copyback bits are reset, the delay buffer element is no

longer in use and may bereallocated.

If the access policy for the architectural register file is AI, the copyback can be performed

immediately upon the PIP reaching a delay buffer element Since the Phase2 operation is a copy, it

can beexecuted immediately even though its source datum is not available. This is done by copying

the symbolic value in the delay buffer element (i.e., the address of that element') into the destination

architectural register and resetting the copyback bit. When the corresponding Phase1 operation

completes, it broadcasts the delay buffer address (as the tag) along with the datum. The architectural

1 More precisely, the tag should consist of the delay element address prefixed by the functional unit identifier so that the tags corresponding to

different functional units are distinct.

- 24-

register and any Phasel reservation stations that contain that tag replace their tags with the datum.

At the same time, the invalid bit in the delay buffer element is reset. The copyback bit can be

eliminated since it would be reset the very cycle it is set Thus, the delay buffer element is no longer

in use as soon as the PIP has passed over it and the invalid bit is reset. Also, note that the allocation

of a tag for the destination architectural register is no longer needed since the address of the delay

buffer element serves that function.

Instruction issue must stall either if the delay buffer element that is about to be allocated is still in

use or if, in a wraparound sense, it is more than one lap ahead of the PIP. The latter constraint

implies that there must be at least as many delay buffer elements as the longest assumed latency,

else deadlock will occur. Thus, the maximum possible assumed latency, for the operations that

execute on each functional unit, is an architectural parameter.

With latency stalling, instruction issue must stall when the PIP points to an element whose invalid

bit is still set and can only resume once that bit is reset. In this case as well, the copyback bit is

redundant (it will never be set) and may be eliminated from the structure of the delay buffer

element. A delay buffer element is in usefrom the time that its invalid bit is set until the PIP passes

over it. Interestingly, this is almost exactly what the collating buffers associated with the Cydra 5's

memory pipelines were [20]. In the Cydra 5, this capability was motivated by the variability of the

load latency due to interference in the interleaved main memory. The assumed latency for loads was

specified by writing the assumed latency into the memory latency register (MLR). It is of obvious

value to extend this concept to all the functional units in order to address the variability of hardware

latencies across multiple implementations of a NUAL architecture.

The net outcome of this process of simplification is that the hardware for supporting the dynamic

scheduling of NUAL programs, over and above that needed for UAL programs goes from three

additional structures (the delayed-issue buffer, the delay register me and the Phase2 reservation

stations) to just one relatively simple one per functional unit: the delay buffer. The delay buffer has

only a single read port, a single write port, no associative hardware and a very simple

allocationldeallocation process. All of these contribute to its being relatively inexpensive.

Furthermore, most of this hardware is already present in some other form. The normal staging of

pipelined operations in UAL architectures requires that the destination address bebuffered from the

time of issue until the result is written to the architectural register. This hardware is subsumed by

the delay buffer structure that we have developed. The delay registers provided in the delay buffer to

hold data until it is time to write them to the architectural register me would show up as additional

architectural registers in a UAL architecture. It would appear to be a poor trade-off to replace delay

- 25-

registers which have one port each for reads and writes with architectural registers which must

necessarily be highly multiported.

5 Discussion

In retrospect, the function and structure of the delay buffer are simple and obvious. The delay

buffer causes results to be written to the architectural register file as soon as they are available just

as long as it is not sooner than the assumed latency. The invalid bit and the datum field serve the

function of buffering results that are computed too soon and the copyback bit records that the result

is overdue and need not be buffered once available. As a side benefit, the address of the delay buffer

element allocated to each Phasel-Phase2 operation pair serves as the tag if register renaming is

employed in the architectural register file,

The complexity of the architectural register file and the Phasel reservation stations, as a function of

the register access policy, is unaffected by the fact that we are considering NUAL rather than VAL

programs. For each architectural register access policy, the delay buffer guarantees that the result

will not be written back any sooner than the NUAL semantics specify. In practical terms, the most

interesting instruction issue policy is latency stalling since the architectural register files require no

interlock hardware at all. Note that for VAL programs, this degenerates to sequential execution, a

totally uninteresting option if ILP is the objective. NUAL, on the other hand, makes this a viable

option and, in fact, the preferred one.

The objective of this paper was to establish that VLIW and dynamic scheduling are not

contradictory concepts. This we have done. In fact, latency stalling is a simple and eminently

practical scheme for use with VLIW and the delay buffer in conjunction with split-issue can

support arbitrarily sophisticated access policies for the architectural register file. Though possible,

there is still the question of how desirable it is to perform dynamic scheduling that is more complex

than latency stalling. The author is not a proponent of using dynamic scheduling to effect large

scale code re-ordering at runtime, whether for VLIW or superscalar processors. The hardware

penalties are just too high. This function is best performed by a latency-cognizant compiler. On the

other hand, it is clear that small-scale re-ordering or, at the very least, some form of interlocking is

unavoidable in the face of variable delays and the need for object code compatibility across a family

of machines.

VLIW has two main, unique attributes: MultiOp and NUAL. Let us examine the value of each one

in the context of the following assumptions: that ILP is an essential feature for high-performance

- 26-

microprocessors and that a significant and increasing fraction of a microprocessor's workload has

levels of ILP that permit and make desirable the issuance of well over 4 operations per cycle. This is

our belief and although there are those that would dispute one or both assertions, we do not have the

luxury of debating these points in this paper. What are our options in light of these assumptions?

Superscalar is almost surely unrealistic if we wish to issue six, eight or ten operations per cycle.

The source and destination registers for each instruction that is a candidate for issue must be

compared with those for all the sequentially preceding instructions which also are candidates for

issue. This is required so that one can determine, in parallel, which of those instructions may, in fact,

be issued without violating any dependences. If one attempts to issue N (UniOp) instructions per

cycle, one needs 5N(N-I)12 comparators to check for all possible flow, output and anti

dependences. Once some subset of the candidates have been issued, the remaining unissued

instructions must be compacted and additional ones must be fetched in place of those that were

issued. The hardware required is identical to the dispatch stack [18]. Apart from the cost in terms of

logic, this can dilate the cycle time or require the insertion of an additional stage in the instruction

issue pipeline. There is currently no existence proof of the ability to design a commercially

successful product that issues eight or more instructions per cycle.

In contrast, the issuance of a single MultiOp instruction with N operations incurs no complexity

since the compiler guarantees their independence. If N operations from multiple MultiOp

instructions are to be issued simultaneously, then dependence checking logic is required once again.

However, since it still is unnecessary to compare operations that are from the same instruction, the

number of comparators is reduced by a factor of at most two. We conclude from this discussion

that MultiOp is an essential feature of a highly parallel Il.P processor. How valuable is NUAL?

NUAL architectures require latency-cognizant compilation and permit the use of the relatively

simple latency stalling scheme. UAL architectures could just as well employ latency-cognizant

compilers. This would minimize the frequency with which interlocks are invoked (if the noop cycles

in the schedule are retained as noop instructions in the code). In this case the simplest access policy,

BI, may be used for the architectural register file since interlocks are rarely expected to occur. In

this form, the code is very much like NUAL code. Typically, code generation for UAL architectures

eliminates the noop instructions, relying upon the dynamic scheduling capability of the hardware to

re-insert them dynamically. In this case it is questionable whether policy BI is adequate; however,

we shall assume that it is. In the context of this paper, having ignored the topic of predicated

execution, there is little to be said in favor of either UAL or NUAL without the benefit of a detailed

analysis of the circuit design and timing of the interlock logic in both cases.

- 27-

Predicated execution is a technique which enables the elimination of conditional branches in code

and the overlapped scheduling of computations which previously contained conditional branches

[21, 15,22, 23]. Although originally developed in the context of NUAL (VLIW) architectures, in

principle predicated execution is applicable to UAL architectures as well. However, interlocking or

any form of dynamic scheduling lead to difficulties. The problem is that predicated execution

squashes an operation if its predicate is false and allows it to execute normally otherwise. Thus, the

value of the predicate determines whether an operation modifies its destination register. All of the

register access policies available to a UAL architecture require knowledge of which register is

modified by each operation. At the time of issuing an operation, if the value of the predicate is

unknown, instruction issue must be stalled. Alternatively, with policies A2 and Bl, instruction issue

can proceed using the conservative assumption that the predicate is true and that the destination

register, therefore, has a pending write to it. Subsequently, if the predicate turns out to be false, the

invalid bit for the destination register must be reset, but the resulting temporary and spurious flow

and output dependences will have compromised performance. Policy AI, register renaming, cannot

be used since subsequent operations will be waiting for the tag corresponding to an operation that

will never execute. Latency stalling, which applies to NUAL architectures, does not depend upon

knowledge of which operation is modifying which register. It merely focuses on the discrepancy

between the actual and the assumed latencies. Consequently, the presence of predicated execution

has no impact upon it.

6 Conclusions

The commonly held view has been that object code compatibility is impossible with VLIW

processors. However, VLIW is the only practical option if the goal is to exploit instruction-level

parallelism at the level of issuing six or more operations per cycle. So, it is important to develop

dynamic scheduling techniques for VLIW processors.

We have demonstrated that VLIW processors are as capable of out-of-order execution and multiple

instruction issue as are superscalar architectures. The attributes of VLIW that are central to

successfully achieving high levels of instruction-level parallel execution are MultiOp and NUAL.

The key mechanism for enabling the dynamic scheduling ofNUAL programs is split-issue, and the

preferred hardware support for it is the delay buffer. Latency stalling is a particularly simple

interlock technique that can be used with NUAL programs.

Having laid out the concepts and framework for the dynamic scheduling of VLIW processors, the

next steps for this research activity are to understand the hardware costs and performance

- 28-

characteristics of the various instruction issue policies. Of particular interest are those that utilize the

delay buffer, especially latency stalling.

Acknowledgments

The distinction between VLIW as a processor implementation and VLIW as an architecture

developed in the course of a discussion with Josh Fisher, as did the understanding of the fact that

program semantics with NUAL are defined by the latencies and that dynamic scheduling can be

performed on such programs. The recognition, that the memory latency register concept from the

Cydra 5 could be extended to all functional units via the execution latency register concept and that

this could be applied to solve the problem of code compatibility, is due to Mike Schlansker. This

paper has benefited from discussions with Mike, Vinod Kathail, Phil Kuekes and Dennis

Brzezinski.

References

1. A. E. Charlesworth. An approach to scientific array processing: the architectural design of the
AP-120BIFPS-I64 Family. Computer 14,9 (1981), 18-27.

2. R. P. Colwell, R. P. Nix, J. J. O'Donnell, D. B. Papworth and P. K. Rodman. A VLIW
architecture for a trace scheduling compiler. IEEE Transactions on Computers C-37, 8
(August 1988),967-979.

3. G. R. Beck, D. W. L. Yen and T. L. Anderson. The Cydra 5 mini-supercomputer: architecture
and implementation. The Journal of Supercomputin&7, 1/2 (1993), 143-180.

4. J. E. Thornton. Parallel operation in the Control Data 6600. Proc. AFIPS Fall Joint Computer
Conference (1964), 33-40.

5. D. W. Anderson, F. J. Sparacio and R. M. Tomasulo. The Systeml360 Model 91: machine
philosophy and instruction handling. WM Journal of Research and Deyelopment II, I
(January 1967),8-24.

6. J. E. Smith, G. E. Denner, B. D. Vanderwam, S. D. Klinger, C. M. Roszewski, D. L. Fowler,
K. R. Scidmore and J. P. Laudon. The ZS-I central processor. Fmc. Second International
Conference on Architectural Support for Pm&rammin& Lan&ua&es and Qperatin& Systems
(palo Alto, California, October 1987), 199-204.

7. R. D. Groves and R. Oehler. An WM second generation RISC processor architecture. fmk..
1989 IEEE International Conference on Computer Desi&n: YLSI in Computers and
Processors (October 1989), 134-137.

8. K. Diefendorff and M. Allen. Organization of the Motorola 88110 superscalar RISe
microprocessor. IEEE Micro 12,2 (April 1992), 40-63.

9. E. DeLano, W. Walker, 1. Yetter and M. Forsyth. A high speed superscalar PA-RISe
processor. Pmc. COMPeON '92 (February 1992), 116-121.

- 29-

10. J. E. Thornton. PesiKn of a Computer - The Control Data 6600. (Scott, Foresman and Co.,
Glenview, lllinois, 1970).

11. R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. mM Journal
of Research and Deyelopment 11,1 (January 1967),25-33.

12. J. E. Smith and A. R. Pleszkun. Implementing precise interrupts in pipelined processors.
IEEE Transactions on Computers C-37, 5 (May 1988),562-573.

13. G. S. Sohi and S. Vajapayem. Instruction issue logic for high-performance, interruptable
pipelined processors. Proc. 14th Annual Symposium on Computer Architecture (Pittsburgh,
Pennsylvania, June 1987),27-36.

14. W. W. Hwu and Y. N. Patt. Checkpoint repair for out-of-order execution machines.lEEB
Transactions on Computers C-36, 12 (December 1987), 1496-1514.

15. B. R. Rau, D. W. L. Yen, W. Yen and R. A Towle. The Cydra 5 departmental supercomputer:
design philosophies, decisions and trade-offs. Computer 22, 1 (January 1989), 12-35.

16. D. J. Kuck. The Sructure of Computers and Computations. (John Wiley & Sons, New York,
1978).

17. M. Johnson. Superscalar Microprocessor DesiKn. (Prentice-Hall, Englewood Cliffs, New
Jersey, 1991).

18. R. D. Acosta, J. Kjelstrup and H. C. Torng. An instruction issuing approach to enhancing
performance in multiple function unit processors. IEEE Transactions Qn CQmputers C-35, 9
(September 1986),815-828.

19. M. R. Thistle and B. 1.Smith. A processor architecture for Horizon. Proc. SupercomputinK
~ (Orlando, FlQrida,November 1988), 35-41.

20. B. R. Rau, M. S. Schlansker and D. W. L. Yen. The Cydra 5 stride-insensitive memory
system. Proc. 1989 InternatiQnal Conference Qn Parallel ProcessinK (August 1989),242-246.

21. J. C. Dehnert, P. Y.-T. Hsu and J. P. Bratt. Overlapped loop SUPPQrt in the Cydra 5.~
Third InternatiQnal CQnference Qn Architectural Support fQr ProKramminK LanKuaKes and
OperatinK Systems (Boston, Mass., April 1989), 26-38.

22. S. A. Mablke, D. C. Lin, W. Y. Chen, R. E. Hank and R. A. Bringmann. Effective compiler
support for predicated execution using the hyperblock. Proc. 25th Annual InternatiQnal
SympQsium on MicrQarchitecture (1992), 45-54.

23. J. C. Dehnert and R. A Towle. Compiling for the Cydra 5. The JQurnal of SupercomputinK 7,
1/2 (1993), 181-228.

- 30-

