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1 Introduction

Considerable interest has recently been shown in high speed data transmission (100 Mb/s)
over unshielded twisted pair (UTP) cable [1,2,3]. The choice of signalling scheme for UTP
cable is influenced by regulatory limits on electromagnetic emissions at frequencies above
30MHz [4]. MLTS3 signalling has been proposed since, for random data, the bulk of this
signal’s energy is at frequencies below 0.25 * baudrate (e.g. below 25 MHz for 100Mb/s).

MLT3 ([1], 7.1.3) is a signalling scheme which encodes a binary string into a ternary string
(using the alphabet +, —, 0). The ternary strings produced contain no substring +—, —+,
+0%+ or —0%— for k > 0, (we call these forbidden substrings), resulting in the advantageous
spectral property mentioned above.

In MLT3, each binary 1 is encoded as a transition between ternary digits, consistent with
the string containing no forbidden substrings, and each binary 0 is encoded as no transition.
This encoding has two drawbacks. Among the signals which can be produced are signals
with arbitrarily large maximum run length (defined as the maximum number of consecutive
identical digits), and signals with arbitrarily large running digital sum (RDS, defined as the
number of digits + in the string minus the number of digits —). Since UTP cables are trans-
former coupled and the transmission channel therefore has no response at low frequencies,
these signals are extremely susceptible to intersymbol interference in the form of baseline
wander ([5], p.319). Furthermore, the lack of transitions in long runs of identical digits has
a deleterious effect on clock recovery circuits.

This letter reports a new coding scheme encoding binary strings into ternary strings with
no forbidden substrings, which has a bound on the RDS and maximum run length of any
signal produced.

2 Previous Approach

There is a standard way of designing a block coding scheme which encodes a binary string,
(divided into words of length £) into a ternary string, (divided into words of length m), such
that the RDS of the encoded signal is bounded. The ternary word corresponding to a given
binary word is chosen amongst one or more alternatives in such a way that if the RDS of
the encoded signal produced so far is positive, then the next word transmitted will have
a non-positive RDS, and if the RDS of the encoded signal produced is negative, then the
next word transmitted will have a non-negative RDS. This ensures that at any point in the
transmission the RDS is bounded by +3m/2.

Unfortunately, the coding schemes produced by this approach either produce signals con-
taining forbidden substrings, or are ineflicient, or unwieldy, or have unbounded maximum
run length. In the next section we shall prove the following.



Theorem 1 Under any {B/5T block coding scheme using the approach just described, such
that the output string produced contains no forbidden substrings, it is possible to produce a
signal with arbitrarily large mazimum run length.

The proof method for Theorem 1 yields similar results when applied to 5B/6T, 6B/7T,
7B/8T and 8B/9T coding schemes, giving the following.

Theorem 2 Under any block coding scheme using the approach just described, such that the
output siring produced contains no forbidden substrings, efficiency m/f is at least 80% and
m < 10, 1t is possible to produce a signal with arbitrarily large mazimum run length.

2.1 Proof of Theorem 1

In order to prove Theorem 1, we first introduce some notation.

State (n,+) means that the running digital sum is n, and the last digit sent was +.

State (n,+0) means that the running digital sum is n, the last digit sent was 0, and the last
non-zero digit sent was +.

State (n,—) means that the running digital sum is , and the last digit sent was —.

State (n, —0) means that the running digital sum is n, the last digit sent was 0, and the last
non-zero digit sent was —.

Say that a ternary string S is permissible from s iff the concatenation S’.S contains no
forbidden substrings whenever S’ is a ternary string with no forbidden substrings which
leaves the system in state (n,s) for some n. (So, for example, S is permissible from state +
iff S is a ternary string with no forbidden substrings such that either the first digit of S is
+, or the first digit of S is 0 and the first non-zero digit of S is —.)

The proof is through a series of Lemmas. The first Lemma is rather more general than
is necessary to prove Theorem 1, but this generality is useful when extending the proof of
Theorem 1 to prove Theorem 2.

Lemma 1

If m > 1 there are fewer than 2™~ MLT-3 strings of length m with non-negative digital sum
whose first non-zero digit is —.

Proof '

Let A be the set of ternary strings which begin with — and end with + and contain no
forbidden substrings, together with the empty string. For A € A, let A* be the string
obtained by reversing A and then substituting + for — and — for +. (For example, if A =
— — 0+ then A* = —0+ +.) Now define the map F from MLT-3 strings of length m with

non-negative digital sum whose first non-zero digit is —, as follows.

o If C = 0°.A.0°. —.0% with A € A, a,b,c,d > 0, and the digital sum of A is greater
than zero, then F(C) = 0*.A%.0b. — (¢



o If C = 0°.A.0° with A € A, a > 0, b > 2, digital sum of C = 0, then F(C) =
0°.A.0%"1.—

o 1O =00A0" —¢ 0%+ .07 with A A, a,be,d>0,e>0, f=0or 1, digital sum
of C = 0, then F(C) = 0%.A4*.0°. —ct=+/ od

It is straightforward to check that F' is a well-defined 1-1 function from the set of ternary
strings of length m with non-negative digital sum whose first non-zero digit is — and which
have no forbidden substings, to the set of ternary strings of length m with negative digital
sum whose first non-zero digit is — and which have no forbidden substrings. Moreover, there
is no C such that F(C) = —™. Since there are 2™ ternary signals of length m whose first
non-zero digit is — and which have no forbidden substrings, the result follows.

The rest of the proof of Theorem 1 is specific to 4B/5T codes, but the proof method can
also be applied to codes of other sizes.

Suppose (for a contradiction) that there is a 4B/5T coding scheme using the approach
described at the beginning of this section, such that the signals produced contain no forbidden
substrings, and have bounded maximum run length. Let S be the set of states (n,s) which
can be reached at the end of a codeword. The proof proceeds by lemmas, each proving that
certain states are not in S, until Lemma 11 shows that S i1s empty, a contradiction.

Lemma 2: S C {(n,s):n 2> 0 or s # +0}.

Proof: By Lemma 1, the number of codewords of length 5 with non-negative digital sum
which are permissible from state +0 is strictly less than 16. Therefore, once a 4B/5T coding
scheme reaches a state (n,+0) with n < 0, there is a non-negative probability that the
running digital sum after the next codeword will be less than n. Hence if the coding scheme
is to guarantee a bounded running digital sum by the usual method, then the coding scheme
must never reach a state (n,+0) with n < 0 at the end of a codeword.

Lemma 3: (n,4) € § for n < —1.

Proof: Suppose that it reaches a state (r,+) with n < —1. There are 18 codewords permis-
sible from + which have non-negative digital sum, but of these the three codewords 00000,
0-0+40, and 40000 leave the system in state (n,40) or (n+1,40), neither of which are in S.
There are only 15 codewords left, fewer than one for each input word. Therefore (n,+) € S,
as required.

Lemma 4: (n,—) ¢ S for n < -2,

Proof: Similar, using Lemma 3.

Lemma 5: (n,—0) ¢ S for n < —2.
Proof: Similar, using Lemmas 3 and 4.

Lemma 6: S C {(01+0)s (1}+0)1 (2: +0)1 (_1s+)! (01+)1 (11 +)a (21+)1 (Oa _0)3 (_11_0)1



(_23 _U): (11 ‘)a (01 _)& (_11 _)1 (_2: _)}

Proof: By symmetrical arguments to Lemmas 1-5, there is no state (n,—0) with n > 0,
(n,—) with n > 1, (n,+) with n > 2, or (n,40) with n > 2,in S. The Lemma follows from
this and the results proved so far.

Lemma 7: (23 +)?(_2$ _)1 (11_)7(_11 +) 9—‘ S
Proof: Similar to Lemma 3, using Lemma 6

Lemma 8: (1,4),(-1,—) € S
Proof: Similar to Lemma 3, using Lemmas 6 and 7

Lemma 9: (2,40) ¢ S

Proof: Suppose that (2,40) € S. There are exactly 16 codewords with non-positive digital
sum which are permissible from +0 and take the system from state (2, +0) to one of the states
(0, +0),(1,+0),(2,40),(0,+),(0,-0),(-1,-0), (-2, —0),(0,—). By the previous lemmas, S
is contained in this set of states. One of these 16 codewords is 00000. Since there are 16
possible input words, 00000 must be the encoding of an input word w from this state, and
the end of this codeword the system is still in state (2,40). But now the encoding of a string
which takes the system to state (2,4+0) and then has input word w repeated t times will
contain a run of 5t consecutive zeroes. So in order to ensure that the maximum run length
in the transmitted signal is bounded, it is necessary that (2,40) ¢ S.

Lemma 10: (-2,—0),(0,40),(0,—0) ¢ S
Proof: Similar to Lemma 9.

Lemma 11: S is empty

Proof: By the Lemmas so far, S C {(0,+),(0,-),(1,+0),(—1,—0)}. But for each state (n,s)
in this set, there are fewer than 16 codewords permissible from s which take the system from
state (n, s) to a state in the set. The result follows. D.

3 A new coding scheme

We now describe a coding scheme with £ = 5, = 6 (and so efficiency 5/6) which ensures
that the RDS is bounded, but which is not designed using the above approach. The coding
scheme uses the table in Fig.1, which is used to encode a binary data string in the following
way.

Set n = 0. Toss a coin: if it comes up heads then set s = 40, and if it comes up tails then
set s = —0.

After having encoded a binary word, update n by adding the RDS of the encoded word to
it, and update s as follows:

o If the encoded word ended +, put s = +; if it ended —, put s = —



e If the encoded word ended + followed by at least one 0, put s = +0; if it ended —
followed by at least one 0, put s = —0.

e If the encoded word consisted entirely of 0s, and the current value of s 1s + or 40, put
s = +0; if the encoded word consisted entirely of Os, and the current value of s 1s — or

—0, put s = —0.

To encode a binary word b, if s € {+, 40}, take the word which is in row b and the appropriate
column of Fig.1. If s € {—,—0}, take the the word which is in row b and the appropriate
column of Fig.1, and replace each occurrence of + in this string by —, and each occurrence
of — by +. The resulting word is the encoding of b.

Some properties of the coding scheme

The signals produced by the coding scheme have bounded RDS. To see why, first observe
that each entry in the first two columns either has negative RDS, or has RDS zero and + as
its last non-zero digit. It follows that if n > 0 and s € {+, 40} then the next change to n
will decrease n.

Now observe that each word which is obtained by replacing + for — and — for + in an entry
in the last two columns either has non-positive RDS, or has RDS 1 and + as its last non-zero
digit. Suppose that n > 0 and s € {—, —0}. Then at the end of the next word either (a) n
is decreased, or (b) n is unchanged (in particular > 0) and s € {+,+40}, so that the next
change to n decreases it, or (c) n is increased by exactly 1 and s € {+,+0}, from which the
next change to n decreases it, or (d) n is unchanged and s € {—,—0} as before. Hence the
next change to n either decreases n, or increases n by exactly 1 and leaves the system with
s € {+,40} and n > 0, from which the next change to n will decrease n.

Therefore the value of n is bounded above by m + 1, and hence the RDS is bounded above.
A symmetrical argument shows that the RDS is bounded below. Any table satisfying the
conditions observed on the column entries will also give rise to a coding scheme with a
bounded RDS. In this particular case the RDS is always between %5.

Although it is necessary to keep track of n and s to encode, this is not necessary when
decoding, because each word of 6 ternary digits can be the encoding of at most one 5 bit
word. Therefore decoding can be performed by a simple lookup table.

Any signal produced by the coding scheme has at most 11 consecutive zeroes, and at most
7 consecutive + or — digits.

The scheme has a primitive error detection property: single errors in transmission can be
detected with a checksum. Use a checksum of three digits, which is the mod-2 digit-wise
sum of the binary numbers consisting of the first three digits of each input word. If there is
a single error in the transmitted string, this is guaranteed to be detected by the checksum.



No signal produced by the coding scheme contains a forbidden substring. The power spectral
densities of signals generated by MLT3 and the new 5B/6T coding scheme are shown in
figures 2 and 3 respectively. Clearly, the d.c. component of the signal produced by the new
coding scheme is zero, but otherwise the spectral densities are similar. Also shown in figures
2,3 are simulated eye diagrams at the output of an ideal raised cosine channel, modified by a
first order low frequency roll off at baudrate/300. While there is some closure of the vertical

eye opening at the sampling time, due to baseline wander, this effect is reduced for the new
coding scheme.

4 Conclusion

We have presented a new 5 binary/6 ternary scheme for encoding a binary string into a
ternary string without any forbidden substrings, which has a similar advantageous spectral
property to that of MLT3, and which has bounded RDS and maximum run length. Such a

scheme cannot be found using the standard construction method for block coding schemes
with bounded RDS.
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s=4+,n20s=40,n>0|s=+n<0|s=4+0,n<0
s==n<0]s=-0n<0|s=—n>0|s=-0,n>0
00000 00000~ 00000~ 00000~ 00000-
00001 0000-0 0000-0 0000-0 0000-0
00010 000-00 000-00 000-00 0060-00
00011 00-000 00-000 00-000 00-000
00100 000~0+ 000-0+ 000-0+ 000~0+
00101 00-00+ 00-00+ 00-00+ 00-00+
00110 0-0000 0-0000 0-0000 0-0000
00111 0—0++ 0-—-0++ ++0-00 0——0++
01000 0-0+00 0-0+00 0-0+00 0-0+00
01001 0-00+0 0-00+0 0-00+0 0-00+0
01010 0-000+ 0-000+ ++0-0+ 0-000+
01011 +00--0 -==000 +00—-0 =00++0
01100 0-0+40- 0-0+0- 0-0+0- 0-0+0-
01101 00-0+0 00-0+0 ++00-0 00-0+0
01110 +000—— —=—0+ +000—— =000++
01111 000--0 000--0 0-00++ 0-00++
10000 +0--00 ——=00+ +0--00 -0++00
10001 0000—- C000— +00-0+ -00+0—
10010 00---0 00---0 0-0+++ 0-0+++
10011 00--0+ 00—-0+ +000-0 -000+0
10100 +0--0+ ——=0++ +0--0+ -0++0-
10101 000--- 000-—- Q0-0++ Q0-0++
10110 00--00 00--00 0-0++0 0-0++0
10111 0—-0+ 0-——0+ +0-000 -0+000
11000 0-—--00 Q——-00 +00-00 +00-00
11001 0--00+ 0--00+ ++00-- ==00++
11010 0--0+0 0-—-0+0 +0-0+0 -0+0-0
11011 +0-——- ——0000 ++0000 —0++++
11100 0--000 0--000 +0-00+ =0+00-
11101 +00--- ——-0+0 +++0-0 -00+++
11110 +0---90 =000+ ++000- =0+++0
11111 000000 ——0++0 ++0—0 ==0++0

Figure 1: Table for the coding scheme
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