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Afterburner: Architectural Support for
High-performance Protocols

Many researchers have observed that while the link level rates of some networks are now
in the Cbit/s range, the effective throughput between remote applications is usually an
order of magnitude less. A number of components within computing systems have been
postulated as the cause of this imbalance. Several years ago the transport and network
protocols came under great scrutiny as they were considered to be 'heavyweight' and thus,
computationally expensive. This line of thought encouraged many researchers to explore
ways to execute protocols in parallel, or to design new 'lightweight' protocols. Other sources
of problems were thought to be poor protocol implementations, high overheads associated
with operating system functions, and a generally poor interface between applications and
the network services.

Clark et al. [2] suggested that even heavyweight protocols, such as the widely used TCP lIP
protocol combination, could be extremely efficient if implemented sensibly. More recently,
Jacobson has shown that most TCP lIP packets can be processed by fewer than 100 in
structions [4]. It is now widely believed that while a poor implementation will impede
performance, protocols such as TCP are not inherent limiting factors.

One reason many implementations fail to achieve high throughput is that they access user
data several times between the instant the data are generated and the instant the data are
transmitted on the network. In the rest of this paper we analyse this behaviour in a widely
used implementation of TCP, and consider three proposals for improving its performance.
We describe our experimental implementation of one of these proposals, which uses novel
hardware together with a revised implementation of the protocol. To conclude, we present
measurements of the system's performance.

The bottleneck: copying data

We believe that the speed of protocol implementations in current workstations limited not
by their calculation rate, but by how quickly they can move data. This section first reviews
the design of a popular protocol implementation, then examines its behaviour with reference
to workstation performance.

The conventional implementation

Our example is the HP- UX implementation of TCPfIP, which, like several others, is derived
from the 4.3BSD system [7]. This overview focuses on how it treats data, and is rather brief.

Figure 1 shows the main stages through which the implementation moves data. On the
left are listed the functions which move data being transmitted; on the right are those for
received data. Curved arrows represent copies from one buffer to another; straight arrows
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show other significant reads and writes.
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Figure 1: Data movements in a typical TCP/IP implementation

Transmission Producer is a program which has a connection to another machine via a
stream socket. It has generated a quantity of data in a buffer, and calls the send function to
transmit it.

Send begins by copying the data into a kernel buffer. The amount of data depends on
the program - not on the network packet size - and it may be located anywhere in the
program's data space. The copy allows Producer to reuse its buffer immediately, and gives the
networking code the freedom to arrange the data into packets and manage their transmission
as it sees fit.

Tcp.output gathers a quantity of data from the kernel buffer and begins to form it into
a packet. Where possible, this is done using references rather than copying. However,
tcp.output does have to calculate the packet's checksum and include it in a header; this
entails reading the entire packet.

Eventually, the network interface's device driver receives the list of headers and data pointers.
It copies the data to the interface, which transmits it to the network.

Reception The driver copies an incoming packet into a kernel buffer, then starts it moving
through the protocol receive functions. Most of these only look at the headers.

Tcp.jnput, however, reads all the data in the packet to calculate a checksum to compare with
the one in the header. It places valid data in a queue for the appropriate socket, again using
pointers rather than copying.
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Some time later, the program Consumer calls the function recv, which copies data from the
kernel buffer into a specified area. As with send, Consumer may request any amount of data,
regardless of the network packet size, and direct the data anywhere in its data space.

Where does the time go?

The standard implementation of TCP/IP copies data twice and reads it once in moving it
between the program and the network. Clearly, the rate at which a connection can convey
data is limited by the rates at which the system can perform these basic operations.

As an example, consider a system on which the Producer program is sending a continu
ous stream of data using TCP. Our measurements show that an HP 9000/730 workstation
can copy data from a buffer in cache to one not in the cache at around 50 Mbyte/s", or
19 nanoseconds per byte. The rate for copying data from memory to the network interface
is similar. The checksum calculation proceeds at around 127 Mbyte/s, or 7.6 ns per byte.
AU of these operations are limited by memory bandwidth, rather than processor speed.

Each byte of an outgoing packet, then, takes at least 45.6 ns to process: the fastest this
implementation of TCP/IP can move data is about 21 Mbyte/s (176 Mbits/s). Overheads
such as protocol handling and operating system functions will ensure it never realizes this
rate.

Several schemes for increasing TCP throughput try to eliminate the checksum calculation.
Jacobson [5] has shown that some processors, including the HP 9000/700, are able to calculate
the checksum while copying the data without reducing the copy rate. Others add support
for the calculation to the interface hardware. Still others propose simply dispensing with the
checksum in certain circumstances.

Our figures, however, suggest that for transmission, the checksum calculation accounts for
only about one-sixth of the total data manipulation time: getting rid of it increases the
upper bound to around 25 Mbyte/s (211 Mbits/s). Each data copy, on the other hand,
takes more than a third of the total. Eliminating one copy would increase the data handling
rate to more than 36 Mbyte/s (301 Mbits/s), and removing both a copy and the checksum
calculation would increase it to 50 Mbyte/s (421 Mbits/s). Clearly, there are considerable
rewards for reducing the number of copies the stack performs.

For a better idea of the effect the changes would have in practice, we need to include the
other overheads incurred in sending packets. In particular, we need to consider the time
taken by each call to send, and the time needed to process each packet in addition to moving
the data. On a 9000/730, these are roughly 40 p.s and 110 p.s respectively. These times
are large, but include overheads such as context switches, interrupts, and processing TCP
acknowledgements.

1 We use the convention that Kbyte and Mbyte denote 210 and 220 bytes respectively, but Mbit and Gbit denote 106 and
109 bits.
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Table 1 gives estimates of TCP throughput for three implementations: the conventional
one, one without a separate checksum calculation ("two-copy" for short), and one using
just a single copy operation. The estimates assume a stream transmission using 4 Kbyte
packets, with each call to send also writing 4 Kbytes. Even with such small packets and
large per-packet overheads, the single-copy approach is significantly faster.

Implementation

Conventional
Two-copy
Single-copy

Time per packet (ps)
sendf ) packet data T tal

40 110 187 337
40 110 156 306
40 110 78 228

Throughput
(Mbytejs)

11.6
12.8
17.1

Table 1: Estimated TCP transmission rates for three implementations

Analysing the receiver in the same way gives similar results, as shown in table 2. The main
differences from transmission are that copying data from the interface to memory is slower,
at around 32 Mbytejs, or 30 ns per byte, and that the overheads of handling an incoming
packet and the recv system call are also smaller, approximately 90 ps and 15 ps respectively.

Implementation

Conventional
Two-copy
Single-copy

Time per packet (ps)
recvf ) packet data Total

15 90 256 361
15 90 193 298
15 90 124 229

Throughput
(Mbytejs)

10.8
13.1
17.1

Table 2: Estimated TCP reception rates for three implementations

Before we consider the single-copy approach in more detail, we examine the trends in two rel
evant technologies: memory bandwidth and CPU performance. Memory bandwidth affects
the transmission of every byte and, for large packets, is arguably the limiting factor. CPU
performance determines the time to execute the protocols for each packet, but this effort
is independent of the length of the packet. (A more detailed look at the effect of memory
systems is given by Druschel et al. [3] in this issue.)

Over the past few years main memory (Dynamic RAM) has been getting faster at the rate of
about 7% per annum whereas CPU ratings in terms of instructions per second have increased
by about 50% per annum. We believe that reducing the number of data copies in protocol
implementations will yield significant benefits as long as this trend continues.
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Minimizing data movement

Several suggestions have been made to reduce the number of times that application data
must be accessed [3]. This section describes three of them: copy-on-write, page remapping
and single-copy.

Copy-on-write When a program sends data, the system makes the memory pages that
contain the data read-only. The data go to the network interface directly from the program's
buffer. The pages are made read-write again once the peer process has acknowledged the
data.

The program is able to continue, but if it tries to write to the same buffer before the data
are sent, the Memory Manager blocks the program and the networking code copies the data
into a system buffer. (In a variation called sleep-on-write, the Memory Manager forces the
process to wait until the transmission is complete.)

Copy-on-write needs changes to the system's Memory Manager as well as the networking
code. For best performance, programs should be coded not to write to buffers that contain
data in transit.

Page remapping The system maintains a set of buffers for incoming data. The network
interface splits incoming packets, placing the headers in one buffer and the data in another
starting at a memory page boundary. When a program receives the data, if the buffer it
supplies also starts on a page boundary, the Memory Manager exchanges it for the buffer
containing the data by remapping the corresponding pages, i.e., by editing the system's
virtual memory tables.

Page remapping needs changes to both the memory management and networking code. In
addition, the network interface hardware has to be able to interpret incoming packets well
enough to find the headers and data. Application programs must be written to use suitably
aligned buffers.

Single-copy This technique works when both sending and receiving data. It needs a
dedicated area of memory which the processor and network interface share without affecting
each other's performance.

When a program sends data, the networking code copies the data immediately into a buffer
in the dedicated area. The various protocol handling routines prefix their headers to the
data in the buffer, then the network interface transmits the whole packet in one operation.

The interface places incoming packets in buffers in this area before informing the network
code of their arrival. The data remain in the dedicated buffer until a program asks to receive
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them, when they are copied into the program's buffer.

The single-copy technique only affects the system's networking code. Significantly, user
programs get the full benefit without being altered in any way.

All three techniques can reduce the number of copy operations needed by a protocol imple
mentation. All need hardware support of some kind, and their relative effectiveness depends
on the characteristics of that support and of the data traffic being handled. In our view,
single-copy has three distinct advantages over the others, for general TCP traffic. First,
it affects only the networking code in the system. Second, it speeds up both sending and
receiving data. Third, most existing programs benefit without being recoded or recompiled.

The Afterburner Card

Van Jacobson has proposed WITLESS 2 [4], a network interface designed to support single
copy implementations of protocols such as TCP. We previously built an FDDI interface,
Medusa [1], as a test of the WITLESS architecture. The results were excellent, and we
decided to adapt the design to support link rates up to 1 Gbit/s.

Afterburner is designed for the HP 700 series of workstations. It occupies a slot in the
workstation's fast graphics bus, and is mapped into the processor's memory. Figure 2 shows
Afterburner's architecture.

The focus of the card is a buffer built from three-port Video RAMs (VRAMs). One port
provides random access to the buffer for the workstation's CPU; the other two are high-speed
serial ports connected to fast I/O pipes. To the CPU, the VRAM is one large buffer, but
Afterburner itself treats the VRAM as a set of distinct, equal-sized blocks. The block size
is set by software when the card is initialised, and ranges from 2 Kbytes to 64 Kbytes.

Sending and receiving data The CPU and Afterburner communicate with each other
mainly through four FIFOs: two for transmission [Tx) and two for reception (Rx). An
entry in one of these FIFOs is a descriptor which specifies a block of VRAM and tells how
many words of information it contains. Descriptors in the Tx.Free and Rx.Free FIFOs
identify blocks of VRAM available for use; those in the Tx.Ready and Rx.Ready indicate
data waiting to be processed.

To transmit a message, the CPU writes it into the VRAM starting at a block boundary, then
puts the appropriate descriptor into the Tx.Ready FIFO. Afterburner takes the entry from
the FIFO and streams the message from the VRAM to the Tx.Data FIFO. When finished,
Afterburner places the block address into the Tx.Free FIFO.

Similarly, when a message arrives on the Rx.Data FIFO, Afterburner takes the first entry

2Workstation Interface That's Low-cost. Efficient, Scalable, and Stupid
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Figure 2: Afterburner Block Diagram

from the Rx.Free FIFO, and streams the data into the corresponding block of VRAM. At
the end of the message, Afterburner fills in the descriptor with the message's length, then
puts it in the Rx.Ready FIFO. When the CPU is ready, it takes the descriptor from the
Rx.Ready FIFO, processes the data in the block, then returns the descriptor to the Rx.Free
FIFO. The CPU has to prime the Rx.Free FIFO with some descriptors before Afterburner
is able to receive data.

Large messages Although Afterburner allows VRAM blocks up to 64 Kbytes in size, it
provides a mechanism for handling large packets that is better suited to the wide range of
message sizes in typical IP traffic. Packets can be built from an arbitrary number of VRAM
blocks.

In addition to specifying a block and the size of its payload, the descriptor in a FIFO contains
a flag to indicate whether the next block in the queue belongs to the same message. To send
a message larger than a VRAM block, the CPU writes the data in several free blocks - they
need not be contiguous - then puts the descriptors ill the right order into the Tx.Ready
FIFO, setting the "continued" flag in all but the last. Afterburner transmits the contents
of the blocks in order as a single message. Long incoming messages are handled in a similar
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way.

Interrupts When Afterburner has received data, it has at some point to interrupt the host.
Because interrupts can be expensive - several hundred instructions - it is important for the
card to signal only when there is useful work to do. Afterburner provides several options.
The simplest is to interrupt when Rx.Ready becomes non-empty. When long packets are
common, the most useful is to interrupt when Rx.Ready contains a complete message, i.e.,
Rx.Ready contains a block with the "continued" bit not set.

The card is also able to interrupt the host when it has transmitted a block (the Tx.Free
FIFO becomes non-empty) or when it has transmitted all it had to do (the Tx.Ready FIFO
becomes empty). Normally, the card would be configured to interrupt only for incoming
data.

Link Adapters So far, we have not mentioned the connection to the physical network.
When we began to design Afterburner there was no obvious choice for a network operating
at up to 1 Gbit/s. Rather, there were several possibilities. So, Afterburner is not designed
for a particular LAN: it has no MAC or Physical layer devices. Instead, it provides a simple
plug-in interface to a number of "Link Adapters", each designed to connect to a particular
network.

The interface consists of three connectors. One provides a simple address and data bus
for the host CPU and Link Adapter to communicate directly. The other two connect the
Adapter to Afterburner's input and output streams. When Afterburner and an Adapter are
mated, the combined unit fits into the workstation as a single card.

To date, three link adapters have been designed: one for HIPPI [8], one for ATM, and one
for Jetstream, an experimental Gbit/s LAN developed at HP Labs in Bristol.

One substantial benefit of the separation between Afterburner and the link adapter is that
network interfaces do not need to be redesigned for each new generation of workstation.
Only the Afterburner card needs to be redesigned and replaced, and typically, the redesign
affects only the workstation interface.

A Single-copy Implementation of TCP-IP

This section describes an implementation of TCP lIP that uses the features provided by
Afterburner to reduce the movement of data to a single copy. The changes we describe were
made to the networking code in the 8.07 release of HP-UX, itself derived from that in the
4.3BSD system.

Ours is not a complete reimplementation of TCP, but simply adds a single-copy path to
the existing TCP code. We did this for practical reasons, but a side-effect is that protocol
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processing hasn't changed: any changes in performance are mainly from changes in data
handling.

The principles of the single-copy implementation are simple: put the data on the card as early
as possible, leave it there as long as possible, and don't touch it in between. Figure 3 gives a
very simple view of the single-copy route. Compared with the conventional implementation
(figure 1), the socket functions send and receive do most of the work, including the one data
movement. The other protocol functions handle only a small amount of control information,
represented by the dotted lines.

Transmit Receive

Program buffer
Produce' _I 1- Consume,

..nd(j (---) recvt)

Interface buffer
.•.•'-f L- -J

.......
driver' "'driver

Figure 3: The single-copy approach

In the remainder of this section, we give an overview of the main features of our single
copy stack compared with the standard one. We also discuss a number of issues which have
emerged during the course of the work.

Data structures - mbufs and clusters

The networking code keeps data in objects called mbufs. An mbuf can hold about 100 bytes
of data, but in another form, called a cluster, it can hold several Kilobytes. Most networking
data structures, including packets under construction and the kernel buffer in figure 1, consist
of linked lists, or chains, of mbufs and clusters. The system provides a set of functions for
handling mbufs, e.g, for making a copy of a chain, or for trimming the data in a chain to a
particular size.

Normally, clusters are fixed-size blocks in an area of memory reserved by the operating
system. We enhanced the mbuf-handling code to treat blocks of Afterburner's VRAM buffer
as clusters. Code is able to tell normal clusters from single-copy ones.

Single-copy clusters carry additional information, for example, the checksum of the data in
the cluster. However, the main difference in handling them is that, in general, code should
not try to change their size nor move their contents. Either of these operations would imply
having to make an extra pass over the data, either to copy it, or to recalculate a checksum.
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This characteristic also has an effect on the behaviour of the protocol which we discuss
further below.

We have had to alter several of the mbuf functions in the kernel to take these differences
into account. To support the use of the on-card memory as clusters, we have written a small
number of functions. The most important is a special copy routine, functionally equivalent
to the BSD function bcopy. It is optimised for moving data over the I/O bus, and also
optionally uses the card's built-in unit to calculate the IP checksum of the data it moves.
Another function converts a single-copy cluster into a chain of normal clusters and mbufs; it
also calculates the checksum.

Sending data

As before, Producer has already established a socket connection with a program on another
machine, and calls the socket send function to transmit it.

The socket layer - send Send decides, from information kept about the connection:
to follow the single-copy course. It therefore obtains a single-copy cluster and copies the
data from Producer's buffer into it, leaving just enough room at the beginning of the cluster
for headers from the protocol functions. The amount of space needed is a property of the
connection and is fixed when the connection is established. It depends on the TCP and IP
options in use". The copy also calculates the checksum of the data, and send caches this in
the cluster along with the length of the data and its position in the stream being sent.

The data in the single-copy cluster are now physically on the interface card. Logically,
however, the cluster is still in the the send socket buffer - the queue of data waiting to be
transmitted on this connection. Often, the last mbuf in the queue is a single-copy cluster
with some room in it, so, when possible: send tries to fill the cluster at the end of the socket
buffer before obtaining a new one.

TCP.out.put In general, the send socket buffer is a mixture of normal mbufs and both
normal and single-copy clusters. To build a packet, tcp.output assembles a new chain of
mbufs that are either copies of mbufs in the socket buffer or references to clusters there. It
also ensures that the packet's data is either in normal mbufs and clusters or in a single-copy
cluster - never both.

Tcp.output sets the size of normal packets based on its information about the connection,
and collects only as much as it needs from the socket buffer. Conversely, it treats single-copy
clusters as indivisible units, and sets the size of the packet to be that of the cluster",

3ln future, using Afterbunler's ability to form packets from groups of VRAM blocks will remove the need to leave this space

4 This can have undesirable effects, which are discussed under "Issues".
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As in the normal stack, tcp.output builds the header in a separate (normal) mbuf, and prefixes
it to the single-copy cluster. An important part of the header is the packet checksum, which
covers both data and header. With normal packets, tcp.output reads all the data in a normal
packet to calculate the checksum. A single-copy cluster already contains the data's checksum,
so the calculation involves only the header and some simple arithmetic.

When the TCP header is complete, tcp.output passes the packet to the ip.output and link
layer functions. These are the same for both normal and single-copy packets, so we shall not
discuss them here.

The device driver Here, the packet is sent to the network. With single-copy chains, all
the driver has to do to complete the packet is to copy the various protocol headers at the
beginning of the chain into the space the send function left at the beginning of the single-copy
cluster. With chains of normal mbufs, the driver copies the contents of the mbuf chain onto
the card, using a VRAM block from a small pool reserved for the driver. When ready, the
driver constructs the descriptor for the packet and writes it to the Tx.Ready FIFO.

Receiving data

Receiving packets is more complicated than sending them. The sender knows everything
about an outgoing packet except whether it will arrive safely, and it can reasonably expect
its information to be accurate. The receiver, on the other hand, has to work everything
out from the contents of the packet, and - until it knows better - it has to assume that
information may be wrong or incomplete.

The device driver To decide whether the packet should take the single-copy or normal
route, the driver examines the incoming packet to discover its protocol type, the length of
the packet, and the length of its headers. There are four cases:

Non-IP packets. The driver copies the entire packet into a chain of normal mbufs.

Small IP packets (less than 100 bytes). The driver creates a chain of two normal
mbufs: the first contains the link header. the second contains the whole IP packet.

Large TCPlIP packets. The driver creates a chain of three mbufs. The first two
are normal, and contain the headers. The third is a single-copy cluster - the VRAM
block containing the packet.

All other IP packets The driver creates a chain of normal mbufs. The first contains
the link header, the second, the IP and other headers. The remainder contain data.

Small packets are treated specially for several reasons. Many such packets have only one or
two bytes of payload. e.g, single characters being typed or echoed during a remote login. It's
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quicker to process these packets as one mbuf in the conventional stack than it is to process
a single-copy chain. Also, copying in the data immediately frees the VRAM block for re
use. Because buffers on the card are a relatively scarce resource, this is important when the
receiving application is very slow or when the transmitter is sending a rapid stream of short
messages.

Tcp.Input The first thing tcp.input normally does with an incoming packet is to calculate
its checksum and compare it with the one in the TCP header. This checks the integrity of
both header and data. It is possible, however, to defer the checksum calculation until later.
The important thing is to ensure that an erroneous packet doesn't cause tcp.input to change
the state of some connection.

When it receives a single-copy packet, tcp.input checks the header for three things: that the
packet is for an established connection; that the packet simply contains data, not control
information that would change the state of the connection; and that the data in the packet
are the next in sequence on the connection. Tcp.input converts any packet that fails one of
these tests into normal mbufs, calculating the checksum in the process, then processes it as
usual.

A single-copy packet that passed the tests is easy for tcp.input to handle. It calculates the
checksum of the packet's TCP header, and stores it and a small amount of information from
the header in the cluster, then appends the cluster to the appropriate receive socket buffer.
Even if one is eventually found to be in error, it won't have changed the connection state.

These tests are slight extensions of ones already in the conventional stack. Tcp.input imple
ments a feature called "header prediction" that tests most fields in the TCP header against
a set of expected values. Packets which match are able to be processed quickly; all others,
including those that alter the state of the connection or that require special processing, take
a slower route. In typical stream connections, the only packets needing special treatment
are those which establish or close the connection.

The socket layer - recv This is the most intricate area of the single-copy code. As well
as copying data from the socket buffer into a buffer in the program, recv has to verify the
data are correct, acknowledge data, manage data the program has not yet asked for, and
keep the information about the state of the connection up to date. To complicate matters,
the receive socket buffer is a mixture of normal and single-copy mbufs.

In the simplest case, the socket buffer contains one single-copy cluster, and the program asks
recv for as much data as it can provide. Recv copies all the data from the cluster to the
program's buffer, calculating the checksum as it does so. It then compares the result with
the checksum tcp.input placed in the cluster header. If the two match, it removes the cluster
from the socket buffer and updates the socket and TCP control information. This causes
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TCP to acknowledge the new data in due course. Should the checksum test fail, recv restores
the buffer as far as possible to its original condition, although the original contents are lost.
Recv then acts as if the packet had not arrived, returning EAGAIN or EWOULDBLOCK as
appropriate.

When the program requests an amount smaller than that contained ill a single-copy cluster,
recv must honour the request while still calculating the checksum of the entire packet. The
simplest way to handle this is to convert the cluster to ordinary mbufs, verify the checksum,
then copy the required data into the program's buffer. This does, however, mean copying
the data twice.

The same situation arises in a more general form whenever the program asks recv for an
amount that isn't contained in an integral number of clusters. Recv's semantics, however,
allow it to return less than the requested amount. A reasonable solution in this case is to
return the largest amount which doesn't require a single-copy cluster to be split.

Issues

We now consider some of the more substantial issues that have arisen from our single-copy
implementation of TCP.

Building packets in the socket layer

Once send has built a single-copy cluster, it is difficult to change what it has done. The
problem is that send does not have all the information it needs to know how much data to
place in each cluster: it has to guess. Upper bounds exist: the capacity of the cluster, the
maximum segment size negotiated by TCP when the connection was set up, and the largest
window the receiver has advertised. These can be too large. Consider a connection which
starts with a segment size of 8 Kbytes and an initial receiver window of 32 Kbytes which
later shrinks to 4 Kbytes. Following the naive policy, send continues to generate 8 Kbyte
packets, and TCP must send them. The receiver trims incoming packets to fit its window,
so when it receives an 8 Kbyte packet, it deletes the last half. Then the sender retransmits
the whole packet, and the receiver discards the first half. While this costs the sender very
little, it increases the amount of traffic and worst of all, makes more work for the receiver,
which presumably is busy already.

The ideal would be for sosend to know in advance how large the receiver's window will be
when TCP sends the packet being built. This is not necessarily the same as the contemporary
window size; several packets may be transmitted before this one, and more significantly, there
is no way to tell what acknowledgements the sender will receive in the interim. One possible
approach is to estimate the future window size, for example, by using a weighted average of
the last few known window sizes.
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Delayed checksum calculation and acknowledgements

We have already described how the single-copy implementation of TCP postpones calculating
the checksum of incoming data until some program actually asks to receive it. There is a
further issue: how do we ensure that the receiver acknowledges data reliably'?

A TCP sender expects to receive an acknowledgement for data it sends within a reasonable
time, typically a small multiple of the time it would take a packet to travel from sender
to receiver and back again. If it has not received an acknowledgement, the sender assumes
the data were lost in transit and retransmits them. If this happens repeatedly, the sender
may give up and close the connection. The conventional implementation can verify and
acknowledge packets shortly after they arrive, regardless of what the receiving program is
doing. In the single-copy stack, this doesn't happen until that program actually calls recv.
Should the program be blocked for some reason - waiting for a lock, or suspended by a user
- it can't send acknowledgements, and the connection is in trouble.

We have resolved this by adapting a mechanism which, paradoxically, the conventional im
plementation uses to delay sending acknowledgements. To avoid flooding the network and
the sender with an acknowledgment for every incoming segment, TCP maintains an interval
timer, sending one acknowledgment for all data received during the period. The single-copy
implementation uses the same timer to acknowledge data on behalf of sluggish programs. On
each tick of the clock, if a receive socket buffer contains unacknowledged data and recv has
not been called since the previous tick, TCP converts the first single-copy packet in the socket
buffer into normal mbufs, verifies its checksum, and sends the appropriate acknowledgement.

On-card buffers are a limited resource

The current design of Afterburner has one megabyte of buffer space, which the software
divides almost equally between transmitter and receiver. From our experience so far, we
believe this amount is adequate for most "normal" use, but shortages can happen.

The obvious problem is heavy loading: a large number of connections, each with a few tens
of kilobytes of outstanding data could fill the card. In practice so far, this situation has
been rare. The most likely explanation is that real programs take time to process data, and
don't just send or receive it. It also seems that on workstations, normally only one or two
programs are active at anyone time.

More serious problems come from unusual programs or situations. Two sending programs,
each with quarter-megabyte send socket buffers, can usually operate smoothly in a single
Afterburner. If something causes their receivers to slow down or stop, however, they will fill
all the space available. Similarly, a single program which sends data in small messages using
the TCP_N 0 DELAY socket option can quickly monopolise the buffer space.

There are several strategies the single-copy implementation can use to reduce the problem.
Generally, these include prevention, such as attempting to detect and handle situations such
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as the TCP_NODELAY user, and repair, such as making buffer space available by moving
data from single-copy clusters into normal ones. Work continues to find the best mix of
strategies to use.

Performance

In this section we present measurements of the end-to-end performance of Afterburner and
our single-copy implementation of TCP/IP.

The tests were performed on HP 9000/730 workstations, each with 32 Mbytes of main store
and one 420 Mbyte disk. Two workstations were connected together via ribbon cables; no
link adapter was present. The benchmarks were the only active 'user' processes, but the
systems had the usual assortment of daemons in the background, and were attached to the
lab Ethernet LAN.

We used a tool called neiper] [6] to perform the measurements. As we used it, the test
measures the flow rate between a producer program on one machine and a consumer on
the other. The producer repeatedly calls send with a fixed amount of data; the consumer
continuously calls recv, requesting all available data. Neither program accesses the data
being sent or received. Netperf was written within HP, but is available from a variety of
sources, including several network archive sites.

Single-copy compared with the normal implementation

Earlier, we estimated the one-way stream throughput of three implementations of TCP/IP:
conventional, two-copy (without a separate checksum calculation), and single-copy. Figure 4
shows the results of measuring their performance. The tests used 4 Kbyte packets and 56
Kbyte socket buffers, and vary the amount of data per send from 1 to 50 Kbytes.

The results are roughly as predicted by our analysis. With the application sending at least
4 Kbytes at a time, the conventional stack delivered an average throughput of 8.4 Mbyte/s
(71 ~lbit/s). Without the separate checksum, the average throughput was 11.1 Mbyte/s
(93 Mbir/s). The single-copy implementation achieved an average of 16.6 Mbyte/s (140 Mbit/s),

Throughput and packet size

With 4 Kbyte packets, the time the system spends handling the packet is comparable to
the time it spends moving the data. Some recent work [5] has reduced these overheads
considerably. but unfortunately is not yet widely available. However, a simple way to reduce
the effect of the per-packet costs is to send larger packets.

To investigate the effect of using larger packets, we ran the same tests as before on the
single-copy implementation varying the packet size from 4 to 14 Kbytes. This socket buffer
size was 192 Kbytes; this was mainly to eliminate effects seen when the socket buffer is a
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small multiple of the packet size. Figure 5 shows the results.
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Figure 5: Single-copy throughput [or different packet sizes

As expected, an increase in the packet size results in greater overall throughput. It is also
clear that increasing the packet size yields diminishing returns in terms of performance,
and the throughput is tending towards a limit which in this case is the interface-to-memory
copy rate of 32 Mbyte/s (267 Mbit/s). It is very pleasing to see that excellent throughput
25 Mbyte/s (210 Mbit/s)- is achieved with relatively small 14 Kbyte packets. This suggests
that 64 Kbyte and even 32 Kbyte packets may prove to be unnecessary in order to achieve
Cbit/s performance in the future.
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Conclusions

Many current implementations of network protocols such as TCP/IP are inefficient because
data are often accessed more frequently then necessary. We have described three techniques
which have been proposed to reduce the need for memory bandwidth. Of these three, we
have implemented the single-copy approach, and we have measured the performance of our
implementation.

Afterburner is a network-independent card that provides the services that are necessary for
a single-copy protocol stack. The card has 1 Mbyte of local buffers, and provides a simple
interface to a variety of network link adapters including HIPPI and ATM. Afterburner can
support transfers to and from the link adapter card at rates up to 1 Gbit/s.

While the Afterburner model is quite general, our implementation is very specific to the HP
series 700 workstations. Data transfers are achieved by programmed I/O for outbound data
and by block move hardware for inbound. If we were to design Afterburner for a different
workstation, DMA might prove to be the most effective mechanism - there is no single
approach that will be best for all workstations. What is clear to us is that this decision can
be quantified and so the best mechanism can be determined by simply counting the cycles
required to move data by each of the possible methods.

Experiments with HP series 700 workstations have shown that applications can communicate
at more than 200 Mbit/s using a single-copy implementation of TCP and the Afterburner
network interface. We believe this architecture will scale to future workstations to yield
throughputs of 1 Gbit/s.
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