
~"HEWLETT
a:~ PACKARD

Randomization and Associativity in the
Design of Placement-Insensitive Caches

Michael Schlansker, Robert Shaw,
Sivaram Sivaramakrishnan
Computer Systems Laboratory
HPL-93-41
June, 1993

cache memory,
associative, stride,
random, hashing, set
lookup, data
placement

This paper presents a design for a randomized,
placement-insensitive, data cache and analyzes its
performance. An address stream is randomized
using a hash function which selects a set in an
associative cache. The manipulation of large data
structures is modeled by traversal of a cyclic
sweep address sequence and the miss ratio is
accurately determined for this sequence. A purely
analytic approach to determine cache performance
is developed. Analysis predicts regions in which a
placement-insensitive cache operates with very
few cache misses. A pseudo-random hash function
is presented and used to randomize addresses into
cache sets and a counting technique is used to
determine miss ratios. Finally, an actual cache is
simulated allowing comparison against theory. A
matrix multiply program is studied
demonstrating a close relationship between
analysis and at least one real application.
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1. Introduction

Modern RISe processors typically reference data through a first level cache. Such caches
are optimized for scalar references typical in non-numeric applications. A number of
simulation oriented studies of cache behavior have been performed in the literature [1] and
the effects of associativity on cache performance has been explored using address traces
from real programs [2] [3]. Synthetic traces have been used to model program reference
behavior and to stimulate cache models [4]. We will describe a simple, worst case,
synthetic address trace which is directly analyzed.

An important design methodology for caches is to use a direct mapped cache supporting
concurrent address translation and cache set lookup [5]. While, this is frequently a sound
design methodology, there are legitimate uses for second level caches of a radically
different, large and highly associative design. In order to demonstrate the use these
alternative cache structures, assume that scalar, data references are directed to a
conventional first level cache while latency tolerant array references with poor temporal
locality are directed to a second level cache using cache bypass instructions [6]. The usage
of this second level cache (because it contains no scalar references) is not consistent with
assumptions on which more conventional cache designs are based.

Supercomputer and mini-supercomputer processor designs have used latency tolerant
processing techniques such as vectorization or software pipelining to gain great advantage
from large high bandwidth interleaved memories. However, the supercomputer's high
bandwidth highly interleaved memory is very expensive. Microcomputer chips similar in
performance to supercomputers will be developed in future VLSI technology. Less
expensive scientific computer systems will use large, possibly multi-ported, second level
caches to mimic the capability of a supercomputer memory at a fraction of the cost.

When one designs a very large second level cache, some performance is lost due to
increases in latency. These losses must be compensated for by increases in performance
due to the availability of a large number of sets and a high degree of associativity. A large
number of sets supports a large array of cache memory chips and provides the capacity
needed to manipulate large arrays. However, if we merely increase the number of sets in a
direct mapped cache, then the joint manipulation of two (or more) data arrays when poorly
placed in the cache address space causes cache performance to degrade. The use of higher
associativity can provide robust and efficient usage of these chips when they hold large data
sets placed in a variety of structured and unstructured address patterns. This paper
describes important performance characteristics of large highly associative caches.

1.1 Motivation

In set associative cache design, a set is usually selected by taking the address of the cache
line containing the data modulo the number of sets in the cache. These caches are subject to
rather dramatic cache breakdowns when accessed with regular array-like address
sequences. Access into data sets may be regular either because they are matrix structures,
or because they have been allocated in a consistent pattern as might occur through repeated
calls to a memory allocation procedure requesting records of fixed size.

When caches are physically indexed, virtual to physical translation may provide some
element of randomness to alleviate this problem. In some settings, processors have been
designed with no virtual memory translation. In other settings processors are designed with
very large page sizes in order to minimize translation cache size requirements demanded by
large memories. Here, large datasets may occupy only one or a few pages and any benefit
due to virtual mapping randomization will be minimal. We assume that virtual address
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translation alone is not a sufficient means to alleviate cache breakdown phenomenon and
will ignore virtual translation for the rest of the paper.

Prior work has studied the blocking of matrix algorithms for execution on processors with
data caches [7]. A cache benefits from a large blocking factor by reducing traffic to a
slower main memory. In matrix multiply, for example, blocking algorithms reduce memory
traffic in linear proportion (approximately) to a blocking factor. A larger blocking factor
requires a larger second-level cache but allows more efficient computation out of a slower
main memory. So, for example, using a 200 by 200 block, we reduce main memory data
references 200 fold. A large second level cache when used with blocking allows a high
performance processor connected to slow and inexpensive main memory to achieve
supercomputer levels of performance on large data sets.

Blocking cannot always be used. Many complex programs are difficult to block especially
if blocking is performed only by a compiler. In some cases, while blocking is possible, a
blocking algorithm is not nearly as efficient as blocking for matrix multiply. In such cases it
is especially important for a cache to contain large volume of data. Performance may be
satisfactory only up to the point where the data set overflows the cache. Here again, a large
cache is backed by inexpensive main memory which supports swapping data objects into
the cache either from a single or from multiple applications.

Cache blocking algorithms result in extreme performance variation as a function of the
dimension of the manipulated matrices [7] and, certain matrix dimensions should be
avoided. When inappropriate data dimensions are selected, data is entirely located within a
small fraction of cache sets causing poor cache utilization, and serious performance
degradation. Significant performance degradation may occur even when the matrix
blocking factor is chosen as a very small fraction of the total cache size if the cache block is
placed with inappropriate static dimensionality.
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Figure 1: Set population distribution

The problem is demonstrated by traversing a 200 by 200 matrix in a 2048 set 32-way
associative cache with one word per line. The experiment is performed three times using a
static array dimensions equal to 2727, 2728, and 2729 respectively. A total of 40000
matrix addresses are mapped into the cache modulo the 2048 sets yielding a fixed number
of data words within each set. Each stride results in a set population histogram (Figure 1)
which plots, for each set population, the number of sets having that population. We see that
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the set population for the static array dimension 2727, is quite centrally distributed
(between 17 and 25). For this stride, no set holds more than 32 members and, the matrix
can be efficiently and repeatedly accessed within the cache. A small change in static
dimension to 2729, causes the set population to be more broadly distributed.
Approximately 500 sets now have population 40 and over 400 sets are empty. Catastrophic
cache breakdown has occurred at associativity 32.

It is often suggested that a programmer or a compiler should control data layout so as to
avoid cache performance degradation. This represents an important approach, but also has
significant limitations. Specific cache parameters become part of the user visible
architecture introducing significant complexity into the program tuning process. Application
programmers typically develop programs which are intended to run on many computer
systems. Data dimensions which are selected to optimize one computer system may not be
optimized for another. In some cases, especially where dynamic allocation is used, a
programmers is not intimately aware of the data layout and will have difficulty in writing
new or rewriting existing applications so as to avoid performance loss due to poor data
layout.

One solution would be to design a compiler to ensure that the machine dependent data
layout constraints are satisfied, insulating the user from these headaches. If the
manipulation of large data sets were always done within contiguous memory locations,
cache behaviour could be significantly improved. However, trends in computing have been
in exactly in the opposite direction. Virtual memory and dynamically allocated structures
have been used to simplify issues regarding the memory map for both the programmer and
the compiler. It is unlikely that this trend will reverse and data will be systematically copied
into contiguous address space.

In languages such as FORTRAN, the data layout within a program is visible to the
programmer and data reorganization can conflict with language standard compliance. The
optimization of data layout often requires analysis and optimization across multiple
procedures. In the classic environment of separately compiled FORTRAN modules this
joint analysis may not be possible. Even when entire applications are legitimately subject to
joint analysis, the technical difficulty of adjusting the actual data layout and maintaining
language standard compliance is significant. The use of pointers and dynamically allocated
structures in the C language makes the problem even more difficult. These issues pose
difficult application tuning and compiler optimization problems which will not be
immediately solved in complex situations.

This paper investigates methods to eliminate difficult to predict and catastrophic cache
breakdown. The addition of associativity alone does not solve this problem. However, we
will demonstrate techniques where by using pseudo-random hashing and significant
associativity, we eliminate hard to predict cache breakdown behavior. Higher associativity
is the price paid to gain robust and efficient usage of the large second level cache memory.

Randomization has been traditionally used in software hashing techniques in order to
rapidly index into symbols as required, for example, within a compiler [8 , 9].
Randomization has also been used to solve the problem of memory interference due to the
presence of structured data access within an interleaved memory. It has been demonstrated
that randomization can be used to make interleaved memories insensitive to the stride of
matrix problems[10-12]. Here, we extend this work to explore the use of hash functions
for the selection of cache set membership resulting in cache structures which are insensitive
to data placement.

Cache memories can use hashing to provide insensitivity to data layout. This minimizes
data layout responsibility for both programmer and compiler. Data layout insensitivity is
achieved by hashing addresses when presented to the cache so to randomize the placement
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of data across sets. The strength of this approach is that consistently high performance is
obtained without highly complex software technology. The weakness lies in the complexity
of the requisite hash function, the need for highly associative caches, and a margin of extra
memory required to achieve adequate observed performance.

Supercomputing systems are excellent candidates for the use of randomized and highly
associative caches. Traditionally supercomputing systems have suffered from very long
latency access to memory. This has resulted from the use of extremely fast processor logic
in conjunction with large arrays of slow speed memory chips. The time delay for the
propagating of signals and cycling of ram chips has resulted in significant memory latencies
whose cost was alleviated through techniques such as vectorization. If caches on extremely
fast processors are to playa key role in holding large data sets, they too will experience
difficulties traditional to supercomputer main memories. The additional time needed for
address randomization and associative lookup will be small compared to the time needed to
deliver signals and cycle ram chips in a very large second level cache array. The use of
large and highly associative caches can be seen in the design of the KSRI processor which
uses a sixteen way associative 32 MB cache on each processor [13].

1.2 Overview

A placement-insensitive cache uses hashing to pseudo-randomly place data in cache sets.
We develop an analysis of a placement-insensitive cache which relates cache performance
to size and degree of associativity. In this analysis a cache reference pattern is modeled by
placing data randomly within sets and traversing data in a reference circuit which we call
cyclic sweep. Each subsequent reference is to the least recently referenced datum. Cyclic
sweep can be viewed as a worst case temporal reference sequence in that it has no data
locality. Cyclic sweep is not intended to be used as a representative of average cache
performance. Rather, it illustrates an important component of cache behavior and helps
characterize one mode for cache breakdown. An analysis for cyclic sweep is detailed
below.

Section two develops an analytic model of random indexing into caches. This relates the
cache miss ratio to the volume of data in the cache, the size of the cache, and the degree of
associativity of the cache. Analytic models have been presented in prior work [14] but have
studied different workloads. We provide a probabilistic model which provides a better
understanding of the breakdown of associative caches when stressed by unstructured
address sequences having poor locality. While prior work has characterized both cold and
warm start cache miss characteristics [15], we focus on warm start.

Section three introduces a multiply-based hashing function and a simple mod placement
function which are used to collect experimental data. Data is placed within cache sets using
the selected hashing function and histogramming techniques are used to evaluate cache
performance. The multiply-based hash function quite accurately obeys the prediction of the
statistical model.

Section four uses a placement-insensitive cache simulation model in order to validate the
design as well as analysis techniques presented within the paper. The simulation model is
calibrated using a cyclic sweep address trace. A simple matrix multiply program is used to
demonstrate that the model yields meaningful results on this program.

2. Analytic Treatment of Random Cache Indexing

We define the parameter s to be the number of sets within a cache, ex to be the degree of
associativity and w to be the number of words per line. The total number of lines which
can be resident within the cache is s*ex. For the purposes of results within this paper,
caches have exactly one word per line (w=l). We expect that caches will be designed with

5



more than one word per line and results derived here can be extended to estimate the
performance of caches having a multiple word line, but this will not be discussed.

Let d be the number of words being accessed within the data set. We can define the fill
fraction f=d/(s*a*w). If the size of the data set exceeds the size of the cache, the fill
fraction exceeds and typically results in substantial miss penalties. The fill fraction
represents a measure of the fullness of the cache with useful data. Caches which experience
fewer misses at higher fill fraction are (in one important measure) better caches.

A cache set lookup function maps the address of each cache line to a set index in the range
O..(s-I). The classical cache set lookup function is: set=MODs(address). This function is
known to perform very well for sequential data access. A contiguous vector interleaves
perfectly among sets allowing for very effective cache utilization. Other regular access
patterns may cause cache breakdown. A hashing function which hashes a data address to
select a target set is approximated by independent uniformly distributed random trials each
selecting a cache set. The performance of this cache can be analyzed using probability
theory. The analysis assumes that all words within the data set are touched in turn before
any word is re-touched. After all words are touched, the pattern repeats. Cyclic sweep
access patterns represent important and problematic components of the actual access pattern
within matrix problems.

2.1 Calculation of the Statistical Set Population Histogram

The set population histogram describes the distribution of set membership as a function of
the number of sets, the degree of associativity, and the volume of data within the cache.
The set population histogram determines the number of misses that the cache experiences
using the cyclic sweep access pattern. In order to calculate the set population histogram, we
assume that each time a word is statically placed within cache sets, a randomly selected set
is chosen using a uniform distribution. A fully associative lookup of members within a
selected set is performed. If a miss occurs, both LRU and random replacement strategies
will be investigated.

The cache size, the fill fraction f, and the average set population A, can be calculated:

A=f x (Xsizees x (X f d
s x (X

Fix on any set within the cache. On a trial mapping of an address into the cache, the
probability that the line is mapped into the selected set is p and the probability that the line is
mapped into another set is q:

p=l!s q=l-p

Let pm(i,s,d) be the probability that the selected set contains exactly i member lines. For i
between 0 and d, a binomial density function is used to evaluate pm(i,s,d). This is
evaluated as:

pm(i,s,d)=pi qd-i c1 , O~~ ~ d!
c1 ., (d-')'1. 1.

A binomial coefficient is used to count the number of ways that exactly i of the total d cache
lines may populate a given set.

The function pm(i,s,d) can be approximated by a Poisson distribution as described in [16].
This excellent approximation, even for small d, is precise in the limit as d goes to infinity.

6



(. d) (. ':I) e-A. ,.}pm 1,S, := pa 1,1\. = ., '
1.

The Poisson density function pa(i,A.) depends only on i (the set population), and A. (the
average number of members per set). The Poisson density function is shown in Figure 2.
The parameter A.=f*a is varied in steps of .2*a. This helps illustrate the relationship
between the cache fill fraction and the cache set population distribution.

pa(i,A.), a=32, A.=f x a

f.=O.2
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Figure 2: Probability of occupancy versus set population i

Define the normalized density function pnG,A.) so that caches with differing degree of
associativity can be better compared:

pnG,A.)=pa(a*j,A.)

The normalized density function is shown in Figure 3. We have fixed the cache fill fraction
at .7 and varied the degree of associativity from 1 to 64. The argument j of the normalized
density function pnG,A.) represents a set fill fraction. A full set has i=a members in the pa
distribution corresponding to j=l members in the normalized pn distribution and a fill
fraction of 1 for that set. Note that for the topmost three data plots of Figure 3, the points at
which the function evaluates j corresponding to an integral number of sets are indicated by
markers. These points correspond to j representing integral multiples of 1/a , the smallest
unit of adding a single line to the set.
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pn(j,A) , f=.7, A=f x a
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Figure 3: normalized occupancy distribution

2.2 Probabilistic Histogram-Based Miss Calculation

Given a distribution for the set population, the steady state cache miss penalty is evaluated
for a cyclic pattern of data access touching data in a cycle spanning all elements. In cyclic
sweep any data element is touched, then a second, then a third, each distinct from all
previous until finally the first member is re-touched and the pattern repeats. Cyclic sweep is
interesting in that it represents a worst case mode for cache behavior and it represents an
important mode frequently visible when caches break down. Problems such as matrix
multiply may traverse a full MxM result matrix , or blocked matrix multiply may traverse an
MxM sub block of a larger matrix. Such problems are frequently coded so that they sweep
data access in such a circuit. Of course, in real applications there is significant deviation
from the perfect cyclic sweep described above.

For each set which has population count less than its degree of associativity, once data is
faulted into the cache, no further misses occur and the steady state cache penalty is zero. In
the normalized density plot of Figure 2, this corresponds to points to the left of j=1
(inclusive) on the horizontal axis. Conversely, points to the right of j=l represent sets
which have overflowed the associativity. Sets within this "miss region" experience an
ongoing penalty whose value depends on the replacement strategy.

The fill fraction represents the ratio of the amount of data manipulated within the cache to
the total cache size. As shown here:

i::oo

2, i pa(i,A.)
f = .:.;i=:.::O~ _
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We sum over all i the probability that a set has i elements times i to calculate a mean number
of elements per set. Divided this by a, yields the fill fraction. For very low fill fraction, the
area under and within the miss region of the population histogram is negligible, and so is
the cache miss ratio. As the fill fraction increases, the area within the miss region increases
and so does cache miss. The area within the miss region must be properly weighted to
calculate the cache miss.

The normalized density distribution becomes more sharply peaked as the degree of
associativity is increased. At constant fill fraction, the miss region shrinks with increased
associativity and thus, high associativity allows the efficient use of nearly full randomly
accessed caches. The effectiveness of hashing references into sets increases with high
associativity. This narrowing of the population distribution is illustrated in Figure 3. In the
extreme case, a fully associative cache has a single set with precisely d elements and no
statistical deviation. This cache experiences no steady state cyclic sweep misses until the fill
fraction for the entire cache exceeds one.

The LRU replacement strategy is used to exploit data references having signiftcant temporal
locality and is particularly poor for data sets having no locality. In the case of the cyclic data
reference, the LRU strategy ensures that for all sets having higher population than degree
of associativity, each reference to a new line in the set misses. When there are exactly a+1
lines in an a-way associative cache set, each reference is to precisely the line which was
most recently displaced, yielding full miss. In order to calculate the expected number of
misses in a single sweep through the data circuit, we count for all i>a, the probability that a
set has i lines times i , and multiply this product by the total number of sets s. To calculate a
miss ratio, we normalize this product by dividing by the total number of data elements in all
sets (s*A.). The miss ratio can be simplified to:

00

L pa(i,A)*i

lru_miss(f,a) = i=a+l , A=f*a
A

This lru_miss function is shown in Figure 4. In order to randomly access a cache having a
high fill fraction (>.5) and still maintain a low miss ratio, we must employ a large degree of
associativity. High associativity such as 64-way allow efficient use of the cache up to a
level of about 70% full.

The use of the set histogram to calculate cache miss ratios can be extended to other cache
replacement strategies such as most recently used (MRU) and random. The analysis of

random replacement is presented below. If i elements were resident within a single set, then
MRU replacement would incur a penalty of (i-a) for each set where i is greater than a. This
represents an optimal strategy for cyclic sweep. There is a problem in reaching this steady
state because an MRU cache might not overcome cold start. It would continually replace
recent data rather than populating the cache with newly traversed data. An initially empty
cache would overcome this problem by not invoking MRU replacement until a set is full.
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Figure 4: Miss ratio versus fill fraction and associativity for LRU replacement.

2.3 Random Replacement

Random replacement results in fewer misses than LRU replacement for cyclic sweep.
Again, in the case of the random replacement, for all sets having i <= a lines, the number
of steady state misses is zero. In the miss region, we weight the number of sets having
population i by i*mr(a,i). We define mr(a,i) to be the steady state miss fraction observed
when i data elements are cyclically referenced within a single cache set with degree of
associativity a. We can calculate mr(a,i) analytically through a Markov state analysis which
is informally described, or through random event simulation. Values for mr(a,i) presented
in the plot of Figure 5 were obtained through simulation.

A Markov analysis for mr(a,i) defines states which uniquely identify cache set membership
history. Transition probabilities connect each state to successors which assure that during a
miss, a randomly selected member within the set is replaced. When a hit occurs, each state
has a unique successor; when a miss occurs, each state has a successors each with
transition probability lIa corresponding to all replacement choices. The Markov state
analysis produces closed form results for mr(a,i) but has number of states which grow
combinatorially. Evaluating this Markov analysis is not practical for large values of a and i.
For small values of a and i, results from Markov state analysis closely match those
obtained through simulation.
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Figure 5: Single set miss ratio versus population and associativity for random
replacement.

The miss ratio under random replacement is calculated much as the LRU miss ratio, but
each term is weighted:

00

L pa(i,A)*i*mr(a,i)
rand_miss(f,a) = i=m+l , A=f*a

A
The rand_miss function is shown in Figure 6. Note that the primary difference between
LRU and random replacement is a systematically lower miss rate for random replacement
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Figure 6: Miss ratio versus fill fraction and associativity for random replacement.
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3. Deterministic Histogram-Based Miss Calculation

In deterministic histogram-based miss calculation. we use a synthetically generated address
trace and a real hash function to distribute address sequences into sets. Each address is
hashed into a target set whose count is incremented. To calculate the overall miss penalty
we sum over all sets adding a miss penalty obtained using each set's exact population
count. Each set is weighted according to LRU and random weighting methods described
above. We present measurements on two hash functions: mod and square.

The mod function is a traditional hash which selects the remainder of the cache line address
modulo the number of sets in the cache. Square represents an attempt to provide a random
hash based on squaring the address and multiplying by a constant. A middle square method
for hashing has been described upon which the square hash presented here is based [17. 8.
9]. A large constant serves to intermingle bits from across the width of the product. A C
program provides a description of the square hash function in Table 1.

unsigned mt In_addr.sets. selected_set
/*
in_addr=address of cache line to be hashed
setsenumber of sets
program assumes 32-bit word size
*/
selected set=«(in addr*in addr*174773»> 21)%sets);

Table 1 Square Hash Function

A cache is modeled having 2048 lines with 32-way associativity. We define an outer matrix
dimension S representing a static FORTRAN dimension (which we informally term stride)
within which array access is performed. We operate within this static array with an M by M
subarray representing the actual data set. The operation performed is to sweep the subarray
elements in a cyclic pattern with no locality. The actual access order makes no difference as
long as all elements are traversed in a cycle.

Experiments are performed at a number of distinct fill fractions. For each fill fraction an
average is taken over a number of stride experiments. Given fixed fill fraction and stride. a
hash function is used to place all elements of the M by M array corresponding to the fill
fraction. The resulting set population histogram determines a miss ratio. Each fill fraction
averages 2048 distinct stride experiments with static outer dimension S ranging from 2000
to 4047. The use of 2048 strides integrates over a single period of a periodic miss function
which is periodic in srtride.

Figure 7 illustrates miss ratio as a function of fill fraction for a 32-way associative 2048 set
LRU replaced cache. Data is presented for the analytically calculated Poisson model and
two hash functions: square and mod. Data is collected at matrix sizes for M ranging from
100 to 260 in steps of 10 corresponding to 17 fill fractions along a horizontal axis. Three
data series corresponding to three hash functions are shown. The square hash function and
Poisson distribution are indistinguishable on this plot while mod has very different
characteristics. Note that at modest fill fraction. the average miss ratio of the placement­
insensitive cache is significantly less than that of the conventional modulo cache because.
the conventional cache is subject to periodic cache breakdowns which are summed into the
average. Figure 8 repeats the experiment of Figure 7 with random replacement.
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Figure 9 repeats the experiment of Figure 8 but plots the maximum miss ratio
corresponding to the worst case S. This shows a complete breakdown of modulo access
and a modest degradation of square access when selecting a worst case stride. The best
case miss ratio for mod placement (not plotted) would be exactly zero up to fill fraction 1.
This is far better than the best case miss ratio for square hash placement at large fill
fraction. Excellent best case performance for mod demonstrates the ability of mod
placementto exploit sequential access.
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Figure 10 illustrates miss ratio versus static array dimension S for a 61% full (M=200), 32
way associative cache. Only the mod function is shown. Square when shown on the same
plot hovers above zero. Strong periodic spikes measure full and partial cache breakdown at
specific strides. A much deeper understanding of the structure of strided cache breakdown
is presented in [18]. Full breakdown occurs at all multiples of 2048 while partial
breakdown occurs at strides which when evaluated modulo 2048 are close to fractions
2048/2, 2048/3, 2048/4, etc. Note that a sequence of such strides is measured with dashed
arrows originating at 2048. The length of each arrow measures a fraction of 2048
corresponding to a peak miss ratio in the series.
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Figure 10: Miss ratio versus array declaration S for 61% full, 32 way , 2048 set, LRU
replaced cache using mod hash function.
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Figure 11 illustrates miss ratio versus static array dimension S for a 61% full 32 way
associative cache using a square hash square function with LRU replacement. A highly
magnified axis is used to observe the pseudo-random miss ratio swept out by the square
function. The mean of this distribution is approximately centered about a mean predicted by
the Poisson miss analysis at .0059.
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Figure 11: Miss ratio versus array declaration S for 61% full, 32 way, 2048 set , LRU
replaced cache using square hash function.

Figure 12 illustrates a cumulative set population distribution obtained for the experiments of
Figures 7, 8, and 9. The analytic Poisson and the square are plotted both as simple lines
and are essentially superimposed. The mod function, plotted as a dashed line, is more
sharply peaked near the mean set population of 32*.61=19.5. This again illustrates the
ability of the modulo address distribution to exploit sequential address placement.
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Figure 12: Set population distribution for a 61% full, 32 way , 2048 set cache
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It appears in Figure 12 that the sharply peaked mod distribution, when thresholded against
a miss region starting at associativity 32, would cause far fewer misses than the broader
square and Poisson distributions. This simple set population histogram is not properly
weighted to reveal true miss costs. For LRU replacement, cost contributions to miss are
proportional to the number of members (distance from vertical axis) in any set having over
32 members.
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Figure 13: Cost contribution plot for a 61% full, 32 way, 2048 set cache.

In Figure 13, an LRU cost contribution is accumulated across 2048 strides. This cost
contribution is calculated by adding the probability a set has achieved a given population
times that population. Costs are histogrammed across 2048 experiments into bins
corresponding to population, and then plotted. Cost contributions are multiplied by zero for
set populations less than or equal to the degree of associativity. In Figure 13, we see clearly
defined cost peaks at 200, 100,66,50,40,33. These represent cost contributions incurred
when S MOD 2048 is an integral fraction 2048. Resulting populations at these strides
correspond to fractions 1, 1/2, 1/3, ... of the data matrix dimensionality M=2oo.

The steady state performance of cyclic sweep can be substantially improved through
random replacement. Consider the function mr(a,i) of Figure 5 describing the miss ratio of
a single set with associativity a processing a cyclic sweep of length i. When random
replacement is used, cost contributions in Figure 12 within the miss region (to the right of
32) are multiplied mr(a,i). The penalty for sets whose population slightly exceeds the
degree of associativity is greatly reduced by this function while the penalty for sets whose
population greatly exceeds degree of associativity is not similarly reduced. When data is
randomly placed through hashing (with sufficiently low fill fraction and high degree of
associativity), the tail of the Poisson distribution rapidly approaches zero for populations
greater than a. Here, sets within the miss region with populations which greatly exceed a
are highly improbable. Because of this, random replacement tolerates a higher fill fraction
than LRU. In Figure 4, a 32 way LRU cache exceeds 1% miss at a fill fraction of 62%.
When using random replacement (Figure 6), the same cache exceeds 1% miss at a fill
fraction of 72%.
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4. A Placement-Insensitive Cache Simulation

A cache simulation model has been written allowing the collection of cache miss results
from address traces. The modeled cache is a 2048 set 32-way associative cache. Two
simple trace generators have been designed. The first repeatedly sweeps data within an M
by M square in a matrix of static dimension S in order to facilitate calibration with the
theoretical model. The second implements a simple M by M matrix multiply. If one has
blocked a matrix algorithm, our address trace approximates an M by M matrix sub-block,
where addresses within the sub-block are repeatedly accessed. Matrices of size M ranging
from 50 to 130 are explored in steps of five, The corresponding fill fraction for each matrix
multiply experiment is considered to be the size of the M by M result matrix divided by the
total size of the cache. This reflects an approximation: the result matrix is cache resident
while input matrices make an insignificant contribution to cache requirements.

Matrix sweep experiments are traversed 50 times with no measurement before a simulated
"steady state" measurement begins on the fifty first trial. Matrix multiply experiments are
repeated exactly twice. Data collection begins with the second matrix multiply which is
considered steady state.

for(k=O;k<n;k++) l*c[i*s+J]+=a[l*s+k]*b[k*s+J]*1
for(i=O;i<n;i++)

for(j=O;j<n;j++) (
cache_access(&c[i*s+j));
cache_access(&a[i*s+k));
cache_access(&b[k*s+j]);
}ache_acceSS(&C[i*S+j]);

Table 2 Matrix Multiply Address Generator

Figure 14 compares statistically derived miss analyses against actual cache simulations. The
Poisson analysis, matrix sweep simulation and matrix multiply simulation are compared all
using LRU replacement An additional plot multiplies by four the matrix multiply miss rate
in order to provide a scaled comparison. The Poisson analysis, and the matrix sweep
simulation appear essentially superimposed. This validates that the analysis is indeed
accurate.
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Figure 14: Miss ratio for LRU replacement cache simulation
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The matrix multiply algorithm of Table 2 makes only one new reference in four to the large
c data array. Three references having much better temporal locality are references to
matrices a and b, and a repeated reference to c. When matrix multiplication miss results are
multiplied by four we assume that three out of four total references always hit the cache and
have no effect on cache miss. Under this assumption, we directly compare the 4x scaled
matrix multiply plot to cyclic sweep. This plot is close to but just above the Poisson and
matrix sweep plots. Cyclic sweep accurately predicts matrix multiply performance because,
the vast majority of misses experienced are due to newly referenced c elements in the loop
body. A smaller number of misses occur due to a and b array references causing a small
vertical error.

Figure 15 repeats the experiment of Figure 14 for random replacement. Once again the
Poisson prediction and the matrix sweep simulation experiment are closely superimposed.
Now, the 4x multiply plot parallels but is substantially above the Poisson and sweep plots.
Cache misses resulting from the steady traversal of the c array are accurately modeled by
theory. Cache accesses to the a and b arrays are much more transient in nature. These
arrays are accessed with better locality but, rows and columns are faulted into the cache as
the solution proceeds. The random replaced cache is particularly inefficient at faulting in
new data and may indiscriminately displace recent data as new elements of a and b are
imported. When compared to LRU results, the poor transient performance of a randomly
replaced cache results in substantially larger vertical error between the Poisson prediction
and the 4x matrix multiply plot.

While the steady state analysis presented within this paper represents an important cache
access phenomenon, transient effects are also important to performance as indicated by the
experiments above. When using the cache simulator, tradeoffs in selecting the replacement
policy become apparent. Random replacement provides substantial benefit over LRU in
tolerating cyclic sweep because the eviction of recent non-LRU data disrupts the worst case
behavior of LRU when processing a reference cycle. However, the randomly replaced
cache is substantially slower at incorporating data into the cache when newly addressed
data is traversed.
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Figure 15: Miss ratio for random replacement cache simulation
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S. Conclusions

Placement-insensitive caches can be designed to deliver predictable performance. Access
into placement-insensitive caches can be accurately analyzed for cyclic sweep which
traverses data having no locality. Cyclic sweep represents an important component of real
world data access. Random address streams can be synthesized using address hashing
hardware. Hashing techniques result in stable cache performance closely predicted by
theory and demonstrate the design of a class of caches which are insensitive to data
placement. The variance in cache set population resulting from random placement is
masked by providing enough surplus cache memory and high associativity to maintain a
predictably low miss ratio. With high associativity, the placement-insensitive cache
provides consistently low miss ratios even at high fill fraction. Matrix multiply algorithms
operating out of a placement-insensitive cache exhibits characteristic behavior closely
tracking theory (for LRU caches).
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