
i

Table of Contents

Introduction... 1
When Cost++ Can be Used ..2

The space of evolving hypertexts ..2
Sample applications in the space of evolving hypertexts..3
Summary of when Cost++ can be used ...5

Foundations ... 5
Hypertext Structures Built by Cost++ ..5

Major node types ...7
 Stages of Execution ...9
General Config File Format..10
Simple Examples ..11

Cost++ Structuring Section.. 13
Structure Statements ...14

Structure statement form ...14
Structure node contents ...16

Multiply Referencing Nodes...20
Cost++ Definition Section... 23

Defining New Action-descriptors...24
TheARGS action-option..26
Shell-style wildcards and theREAD-LINK-FILES option...................................27

The*GLOBAL* Action-descriptor...27
Special Action-descriptors..29

Creating and using special action-descriptors ...29
Cost++ Linking Section .. 32

Overall Linking Process ...32
Syntax and Terminology...32

Feature extractors and linkspots ..35
Src-item and dest-item details ...35

Linking Section Example ...37
Detailed Linking Example..39

 Cost++ Post-processing Section .. 42
Syntax and Terminology...43

Advanced Topics ... 45
General Features ...45

:INCLUDE statement ..45
General config file BNF ..46

Structuring Section Features...47
 :SET statement..47
Option scoping...48
Structuring Section BNF ...49

Definition Section Features ..50Internal Accession Date Only

ii

Defining new parse functions..50
Definition section BNF..52

Linking Section Features ..52
Feature extractor libraries..53
Writing new program extractors..60
Writing new function extractors..62
Linking section BNF ...65

Post-Processing Section Features ...65
Pp-function libraries ..65
Writing new pp-programs..68
Writing new pp-functions..69
Post-processing BNF...70

Using Cost++ ... 70
Installing Cost++ ..70
Executing Cost++ ...70
Compiling Cost++ ..71

Limitations and Future Work ... 72
Feature Extractor and Post-processor Improvements ...72

Linking the results of separate config files..72
Richer node distinguishing ability...72
Feature extraction based on information from other nodes.....................................72
More flexibility for determining the link role generated...73
Value link generation ..73
Link owner specification ...73

Language Consistency and Simplification ...73
Node-relator where-look consistency..73
Make workproducts more like structure nodes ...73
Simplification of field-placeholder removal ...74
Rename theROLE action-option ...74
Newline characters in strings...74

Design and Implementation Improvements..74
Extensible parse functions...74
Better syntax error handling and recovery ..74
Greater user interaction ...75

References.. 75
Index... 76

1

1 Introduction
Cost++[4][3][7] is a semi-automated tool for generating hypertext structures
(hypertexts) for the Kiosk[4][3] system. Cost++ structures workproducts to make
them easier to find and understand when used with the Kiosk browsing, querying,
and editing facilities. Workproducts are all the products of work created in
performing some task. They can include any text file (e.g., code, e-mail, paper reviews,
tests, build files). Structuring is performed by building a hypertext representation
that overlays these workproducts to help in their classification, clustering, and
cataloging. Kiosk then uses this representation to present different ways of finding
and viewing this information. Because of the close relationship between Cost++ and
Kiosk, it is important to have a fairly detailed understanding of the Kiosk system. A
quick overview of Kiosk will be given here; however, it is recommended that you read
the documentation in [3][4] before proceeding.

Kiosk is a system built to improve the finding and understanding of technical
information. At its heart, is a Unix-based, open hypertext system that contains
powerful methods to:

• search based on the content or structure of information,
• navigate through information aided by sophisticated filtering, and
• build abstract collections of information that better suit user needs.

Kiosk only works when the technical information of interest is structured and
represented in a hypertext form. For very small hypertexts, Kiosk itself can be used
to manually edit nodes and links to produce the hypertext. For larger hypertexts,
manual entry becomes impractical. For example, consider building a hypertext
structure for a library of reusable components. It would be very time-consuming and
error-prone to hand build library classification lattices, hand link all library
workproducts, and then repeat this for each release of the library. To solve this
problem, the Cost++ tool was created. To generate or modify a hypertext, Cost++ uses
the declarative language instructions within config files. These instructions specify:

• Exactly which workproducts should be linked together and where they should
be persistently saved.

• Creation of structure nodes to help classify, cluster, and catalog workproducts.
• Feature Extraction—the ability to find interesting features within workproducts

and link them to interesting features in other workproducts or structure nodes.
• New terms that allow Cost++ to be extensible for structuring and linking new

types of workproducts.
• Forward references and multiple reference to nodes.
• Control over saving user annotations and links that were created for previous

versions of workproducts.

2

The main focus of this report is on describing this language and clarifying how Cost++
can be used to generate hypertexts for applications used with Kiosk.

1.1 When Cost++ Can be Used

Effective use of Cost++ requires a clear understanding of the types of information it
can support. If you have information you believe would fit well with a hypertext
representation and you wish to use it with Kiosk, a major question for determining
its use is: “How will this information evolve?” Will you have an evolving hypertext—
one that persists over time and whose structure or content change? If so, there are
limitations with what Cost++ can perform. The rest of this section will more clearly
define the space of evolving hypertexts and consider the support and limitations
provided by Cost++ within this space.

1.1.1 The space of evolving hypertexts

The changes to an evolving hypertext can be both tool-based and user-based. A tool-
based change is one in which a tool (e.g., Cost++) is used to construct or modify an
existing hypertext. This can include automatically linking existing nodes, as well as
generating new nodes. A user-based change is one in which a user interactively
inserts, deletes, or modifies nodes or links within the hypertext. Difficulties arise
when a hypertext can evolve through both user-based and tool-based modifications.
The main problem is ensuring that the nodes and links (re)generated by tool-based
modifications do not lose or invalidate any user-based modifications. Of course, if all
changes can be made through the use of the tool, this is no longer a problem;
unfortunately, users frequently wish to add new, idiosyncratic information that is
difficult or impossible to capture mechanically.

For tool-based interaction, we can form a scale from least interactive to most
interactive. As shown on the vertical scale in Figure 1, at level 0 for tool interaction,
a hypertext is built, completely disregarding any previous hypertext that might have
existed. It may be built once, or many times, but if users begin to evolve it, there is
never any interaction using the tool. At level 1, the tool can link in new nodes to an
already existing hypertext, or unlink and remove nodes from the hypertext. At level
2, the tool can integrate new versions of already existing nodes into the hypertext.
This could include anything from simply adding a new version of the node, to
intelligent merging of new and prior versions of a node to replace it in the hypertext.
To perform level 1 and level 2 interactions automatically, some mechanism must exist
to specify when to run the tool. Currently, Cost++ can only handle level 1 tool
interaction, unless the hypertext is static in nature, in which case it can handle level
2.

For user-based interaction (the horizontal scale in Figure 1), level 0 represents
completely static hypertexts, that are created once as read-only structures that users
navigate. At level 1, users have the ability to annotate nodes; however, the predefined
nodes and links that comprise the hypertext cannot be modified. At level 2, user-

3

created nodes and links can be inserted, deleted, and modified along with
annotations. Also, the text of existing machine generated nodes can be edited. At level
3, users also have the ability to delete mechanically generated nodes and links.
Cost++ can only handle level 2 user interactions, unless the hypertext is only
generated once (level 0 tool interaction), in which case it can handle level 3.

In Figure 1, the shaded area represents the space of possible applications that can be
handled by Cost++. Now let’s look at some applications and see where they fit in this
space.

1.1.2 Sample applications in the space of evolving hypertexts
• A read-only organizational chart used for browsing purposes.

This application consists of a person and project node hypertext that is used with
the Kiosk navigation facilities to help find information on a particular person or
project. Each time the organization changes, the config file for generating this
hypertext would be edited and Cost++ re-executed to rebuild the chart.

In this situation, we would have level 0 tool interaction since the org-chart is
completely rebuilt each time Cost++ is executed—disregarding the previous
version. The user interaction level is also 0, since users don’t modify the org-
chart (see Org in Figure 1).

• On-line hypertext documentation.

For this application, a set of hypertext documents are produced. Users read them
using Kiosk where they can quickly jump to the definitions of terms they read
and to related documents. The hypertext for this documentation requires linking

Static Annotatable Modify user
nodes & links

Delete machine
nodes & links

(de)link
nodes

Link new
versions of
existing nodes

T
oo

l I
n

te
ra

ct
io

n
 L

ev
el

User Interaction Level

0 1 2 3

0

1

2

Figure 1. Space of Evolving Hypertexts

Disreguard
previous
hypertext

GM

Org

Doc,Lib

Space of applications handled
by Cost++

4

entries in the table of contents of each document to their corresponding sections
in the actual document, linking terms defined in one document to references to
these terms in other documents, and linking each term within a glossary to the
terms definition within each document. Each time the source documentation is
updated, Cost++ is executed to build a new linked version of the documentation.

If users are not allowed to annotate this documentation, we have the same
situation as with the organizational chart—namely level 0 tool and level 0 user
interaction. If users are allowed to annotate the documentation, Cost++ can only
be used to add new documentation to the hypertext (level 1 tool and level 1 user
interaction, see Doc in Figure 1). It cannot handle the case of updating the
documentation for any changes that occur to it; while, at the same time,
preserving user annotations (level 2 tool integration with level 1 user
integration). The only way we can both have user annotations and regenerate
new versions of the documentation is to have separate annotations for each
version of the documentation.

• A “group memory” (GM) of structured mail messages.

In this application, each mail message is classified and clustered according to its
free-text content and keywords. Users submit messages of interest via a program
or script that invokes Cost++ to automatically link these messages into the
existing GM. Messages of interest are found using Kiosk’s browsing and
querying facilities. Kiosk is also used to manually add new nodes and links to the
GM.

For this application, level 0 tool interaction is inadequate since users manually
add new nodes and links. Level 1 is acceptable, since the same mail messages are
not modified and resubmitted (level 2). The minimum user-based interaction
needed is level 2, since users will annotate, add, delete, and modify their own
nodes (see GM in Figure 1). They will also edit machine-generated nodes (e.g.,
add synonyms). Note that Cost++ cannot handle the preferable user level 3,
where users don’t have to concern themselves with user- versus tool-created
nodes.

• Reusable libraries of software components.

In this application, workproducts that make up a component, or module, (e.g.,
source code, header file, documentation) are clustered together by cluster nodes.
These cluster nodes are also placed into multiple classification hierarchies to
present different views of the components within the libraries. The structuring
of these libraries also includes direct workproduct linking, as in linking manual
page “see also” sections to the manual pages they reference. Users can also
annotate nodes to specify information about bug reports or concerns. When used
with Kiosk, cluster nodes and direct workproduct linking give rapid access to
related workproducts. Using Kiosk to navigate and filter over the classification

5

hierarchies allow users to find components of interest and gain a better
understanding of the structure of particular libraries.

The config file for a library is edited when new components are to be added, or
when a change is made to the classification of existing components. Cost++ is
then rerun, using this config file, to change the library’s hypertext structure,
while keeping user’s annotations intact. When a new version of a library is
released, a new hypertext structure is built—independent of the previous
versions of this library.

For these libraries, we have the same situation as the annotated on-line
hypertext documentation—level 1 tool and level 1 user interaction.

In the applications we have examined, Cost++ needs to produce different linking
behavior. For the org-chart, links from a previous run of Cost++ are completely
ignored. While for the on-line documentation and reuse libraries, Cost++ saves
previous user generated links. And for the GM, Cost++ saves all previously generated
links. A global option for Cost++ exists for controlling how to handle previous links.
For details on this option, see page 27 or, section 7.2.1 on page 47.

1.1.3 Summary of when Cost++ can be used

Based on the evolving hypertext restrictions we have seen, the following rules apply.
In order to use Cost++, the hypertexts generated must either:

• Not change between separate executions of Cost++, where Cost++ is being re-
executed to rebuild or add to these hypertexts.

• Only change through the use of Kiosk1 to edit existing nodes and links and
deletion only occurs on user built nodes and links.

The following sections discuss the hypertext structures built by Cost++, and how to
understand and create Cost++ config files within the context of several examples.

2 Foundations
This section will give an overview of the hypertext structures built by Cost++, along
with an overview of the config file execution process Cost++ uses to structure
information. If you already know how Cost++ config files work, or you just want
information on how to run Cost++, see section 8 on page 70.

2.1 Hypertext Structures Built by Cost++

Cost++ builds a hypertext representation that overlays the workproducts it
structures. This representation is used by other Kiosk tools. To use Cost++, it is
necessary to understand this representation and how it is used by Kiosk.

1. Actually, anything can be used that ensures that link offsets are kept up-to-date. For example, aUnix Perl script could be written that edits a
node and link file—keeping the link offsets consistent.

6

We will now present a rather terse summary of this representation—introducing
many terms that are used throughout this document. The end of this section includes
an example that shows the use of these terms.

The basic hypertext structures are text nodes and binary links. Groupings of these
linked nodes form lattices or webs of interconnected nodes that may form general
graph structures.

A text node (or just “node”) is a Unix text file plus any links that point into or out of
that file. Nodes contain a string that represents the contents of the file and a name
that is the full pathname of the file.

A binary link (or just “link”) connects two nodes. A links has a role that represents the
relationship between the nodes connected by it. It also has an owner that specifies
who created it.

Binary links are bi-directional in that they can be seen from either of the nodes they
connect; however, they do have a direction. This direction is determined by the source
and destination of each link. When the destination of a link points at a given node,
this link is said to be inbound into this node. When the source of a link points at a
given node, this link is said to be outbound from this node. If both the source and
destination of a link point at the same node, the link is said to be circular. To see these
directions, consider the example of two nodes connected by a link—the node node1
and the node node2. This link has a source of node1 and a destination of node2.
Thus, this link would be inbound to node node2 and outbound from node1. There is
also another link whose source and destination point at node1. This link is circular
to node1.

A Link can just connect two nodes (a global link), or connect from a point inside one
node to a point inside another node (a point-to-point link), or any combination (e.g.,
global-to-point and point-to-global). Point-to-point links are useful for linking at a
specific place in a text file, like from the definition of a class within a C++ header file,
to its parent class definition in another C++ header file. These positions are
represented as integer character offsets into the nodes connected by the link. The
offset into the source node is the source offset and the offset into the destination node
is the destination offset. A link whose source or destination is global to a node has an
offset of zero.2

Another type of link exists called a value link. Value links act as “attributes” or
“property-lists” for a node. A value link connects to just one node (source) and contains
a simple string value instead of a destination. It can be anchored to any point within
a node, but is usually just a global link. Value links are used heavily within Kiosk. An
example of a value link is one with role author and a value of Michael L. Creech .
Value links are also used to give types to nodes as discussed below.

2. This leads to a current ambiguity in Kiosk between a global link and a point-to-point link with offset 0.

7

Within Kiosk and Cost++, all nodes and links are represented as C++ objects. Outside
of Kiosk and Cost++, nodes are the text files they represent and links are stored in
“shadow” files adjoining the nodes they link to.3 This representation makes links non-
intrusive which means a text file need not be modified to add links to it. Thus, you
need not worry about modifying the nodes (files) you wish to link. Files to link can
therefore be read-only.

We will now turn to an example of this hypertext representation. Assume we wish to
make it easy for a software engineer to use Kiosk to bring up related manual page
information. More specifically, we would like to mouse click on a manual page
referenced in the “see also” section of another manual page and be able to
immediately bring up this manual page. We will use the manual pages for two
different software components within the InterViews[5] library.4 These are
Interactor.3I and Canvas.3I. These two manual pages are related in that the
Interactor.3I manual page refers to the Canvas.3I manual page in its “see also”
section. We would like to make a hypertext representation that links the reference to
Canvas.3I within Interactor.3I to the actual Canvas.3I manual page. We
would also like to add a value link to Interactor.3I that specifies that this node is
a workproduct.5

Figure 2 shows such a hypertext representation in a graphical form. The diagram
shows a web, or lattice, of two nodes and two links. One of these links is a binary link
that connects the node Interactor.3I to the Canvas.3I node. The source of this
link is Interactor.3I, thus this link is outbound from Interactor.3I. The link is
anchored at the ‘C’ inCanvas (3I) within the See Also section of the manual page.
The source offset of this position is 1347. The destination of this link is Canvas.3I
and is thus, inbound into this node. The link is anchored to the beginning of this node,
making the destination offset 0. Because the link points within Interactor.3I and
not into Canvas.3I, the link is a point-to-global link. The role of this link is
see_also and the owner of this link is Dennis Freeze.

The other link is a value link that globally connects to Interactor.3I. It has a role
of Type and a value of Workproduct. This link specifies that this node is a
workproduct node.

2.1.1 Major node types

The hypertext representation built by Cost++ consists of linked workproduct nodes
and structure nodes. The workproduct nodes are the text nodes that represent the
workproducts being structured. Structure nodes are text nodes generated by Cost++

3. These files currently have the name of the node with a dot (‘.’) in front of it, followed by the suffix “.links” (e.g.,.banana.links).
4. InterViews is a public-domain user-interface construction toolkit written in C++.
5. Kiosk uses Type value links to distinguish different types of nodes to present them in different ways. Three major node types are generated by

Cost++ and recognized by Kiosk (they are discussed below).

8

to help classify, cluster, and catalog workproducts. Structure nodes come in two
forms:

Classification Nodes—classify and catalog other nodes. When linked together,
they can display the structure of workproducts that would otherwise not be
apparent. They are also used to create different views of workproducts or
clusters. They are commonly used to build structures that allow you to
navigate from very general information to more and more specific information
until specific workproducts of interest are found. For example, we could build
a “functional” view of software workproducts based on the functions
performed by these workproducts as well as an “architectural” view based on
the purpose these workproducts serve in the architecture of a system. In the
functional view, we may have classification nodes like “Computer Software”
that represent very general concepts and information. These would then be
linked to more and more specific classification nodes like “Data Structures”
until actual workproduct nodes were reached.

Role: see-also Owner: Dennis Freeze

Src: Dest:

Node (Text File)
 Interactor.3I

Node (Text File)
 Canvas.3I

Name

Interactor - base class
 for ...

...

SEE ALSO
 Bitmap (3I), Canvas (3I)

Binary Link

Value Link

Src: Value: "Workproduct"

Role: Type Owner: Cost++

Name

Canvas - region for

graphics...

0

1347

0

Figure 2. Hypertext Representation of Two Linked Manual Pages

9

Cluster Nodes—gather related workproducts into clusters for easy access.
Within Kiosk, cluster nodes act as “switching stations” that allow very quick
access to related information. Within the software domain, cluster nodes
usually link workproducts that perform the functionality described by a
manual page or equivalent documentation. For example, in the InterViews
example above, a cluster exists for Canvas that represents all the
workproducts directly relate to the functionality described in the Canvas.3I
manual page. This cluster links together all of the Canvas header files, source
code, documentation, tests, and configuration files. These clusters usually
contain text fields that are linked to the workproducts they represent.

It may seem that there is a fine line between cluster nodes and classification nodes.
There is—anything that can be performed with cluster nodes can be performed using
classification nodes. So, it is a matter of the intended use of these nodes versus
functionality that determines when they are used.

Although workproduct, cluster, and classification nodes are the major types of nodes
created by Cost++, any type of node can be created by having Cost++ generate a given
Type value link (see NODE-TYPE on page 15).

2.2 Stages of Execution

As mentioned above, Cost++’s behavior is determined by the declarative instructions
placed in config files. Before we turn to the details of what these files contain, it is
important to have an overall picture of what Cost++ does when it executes a config
file.

When Cost++ is executed, a set of config files are read that control which
workproducts will be read in, what links and structure nodes to create, and the final
lattices of links and nodes to persistently store. This is a six stage process of:

1. Reading in the definition section, linking section, and the post-processing section
of the config file (these are all optional).

The definition section defines the meaning of actions used in the structuring
section (see below) of a config file, values of global defaults to be used, along with
which nodes will be handed to feature extractors (see below).

The linking section defines exactly when and how feature extraction should be
performed on nodes. For example, we might want to link all member function
definitions to their class declaration within C++ code. This could be
accomplished through the use of the linking section, along with some specifically
written feature extractors that determine where a class declaration and member
function definition can be found within a text file.

The post-processing section defines operations to be performed after all linking
and other operations have been performed (see below).

10

2. Reading and global linking of memory resident workproducts according to the
structuring section of the config file.

The structuring section gives the exact plan of what workproducts are to be read
in, how they should be clustered, what global links should be created, and where
these links and nodes should be saved. Many structuring section statements
consist of action calls to actions defined in the definition section. It is also the
time that localized feature extraction may take place.

3. Performing feature extraction between lattices.

Certain types of feature extraction cause the linking of nodes found in different
lattices. To perform this, all the nodes involved must be read in or created; thus,
this style of linking occurs after workproducts are read in and after structure
nodes are created.

4. Cleaning out undesired structure node contents.6

After all linking has taken place, it may be desirable to remove certain template
generated lines from structure nodes. These are usually lines that were used as
link placeholders and are removed because no links were created for them.

5. Perform post-processing operations.

Post-processing operations are used to perform certain actions on the created
lattices after they are complete. For example, we might want to build hypertext
documentation by linking “mark-up” language terms defined in documents. As a
final step, we may need to remove these mark-up language statements from the
documents.

6. Persistently saving out the lattice(s) of links and nodes created.

At this point, all the links and nodes created in the previous steps are saved into
text files. All the links for a given node are saved in the shadow file associated
with the given node. Nodes that are written out include structure nodes created
during the lattice building process, as well as workproduct nodes read in that are
to be saved to a different location (full pathname). If Cost++ is running in multi-
user mode (see section 8.2 on page 70), it may abort this step if nodes that it is
modifying are being modified by another Kiosk or Cost++ program.

2.3 General Config File Format

The format of config files is loosely structured in that only one structuring section can
exist and must be found at the end of a config file. Multiple occurrences (or no
occurrences) of the other sections can be specified in any order before the structuring
section. Note, however, that the linking section usually uses the information setup by

6. This will be merged with the post-processing operations in the future.

11

the definition section. Therefore, the definition section usually precedes the linking
section. Because Cost++ reads config files in a single pass, when the same section is
specified more than once, it will only be defined in terms of the previous sections read.
Here are some examples:

Format of a typical config file:

 <definition section>
 <linking section>
 <post-processing section>
 <structuring section>

A less typical, but legal config file format:

 <post-processing section>
 <definition section>
 <linking section>
 <definition section>
 <linking section>
 <structuring section>

An illegal config file format:

 <structuring section>
 <structuring section>

2.4 Simple Examples

Let’s now look at a few examples of config file usage in light of the hypertext
structures built. For our first example, imagine we want to build a hypertext of
people’s first names based on their language of origin. For each name, we wish to have
its meaning and links to variant and pet forms of a name. Using Kiosk, we can then
search for names based on their meaning and quickly look at variant and pet forms of
the same name. We will start with the following very simple config file fragment and
expand it throughout this document:
 (STRUCTURES
 (:CLASS ("Latin" ROLE:language)
 (:CLASS ("Miles" ROLE:variant)
 (:CLASS ("Myles"))
)))

Figure 3. Very Simple First Names Fragment

The structuring section starts with a set of parentheses where the opening paren is
followed by the word STRUCTURES. Everything in between these points is interpreted
as part of this section. In our example, we have three statements that begin with
(:CLASS...). These statements tell Cost++ to build classification nodes. The name

12

of the node to build is the string following the classification node specifier. Thus, we
have classification node Latin, Miles,and Myles. The ROLE:language specifies
the link role to use in connecting all direct child nodes of this node. Thus, (:CLASS
("Latin" ROLE:language) builds a classification node with name Latin and links
it to all its child nodes (Miles) with the link role language.

The result of this config file is a lattice with three classification nodes and two binary
links. The links have the role language and variant and are global-to-global links
(offsets are zero). This structure can be seen in Figure 4.

Figure 4. Very Simple First Names Tree

As an example from the realm of reusable software libraries, here is a fragment that
generates a Canvas cluster node for the Canvas component discussed above, along
with part of a surrounding classification:

(STRUCTURES
 (:CLASS ("Graphics-Output" ROLE:object-view)
 (:CLASS ("Medium" ROLE:object-view)
 (:CLUSTER ("Canvas" ROLE:workproducts)
 (NROFF-DOC "Canvas.3I")
 (C++-SRC-CODE "X11-canvas.c")
 (HEADER "canvas.h")
))))

Figure 5. Simple Canvas Cluster Fragment

Here we have the new form:CLUSTER which causes a cluster node to be generated. It
has the same form as :CLASS—it will generate a cluster node with the name Canvas.
This cluster node specifier has three action-calls that follow it—NROFF-DOC,C++-
SRC-CODE, andHEADER. These action calls normally read in workproduct nodes. In
this example, NROFF-DOCreads in the Nroff document Canvas.3I, C++-SRC-CODE
reads in the C++ source code file X11-canvas.c, and HEADER reads in the header file
canvas.h. All of these workproducts are linked to the Canvas cluster node by links
with role workproducts.

The result of this config file fragment is two classification nodes, one cluster node, and
three workproduct nodes. They are all globally linked by links with role object-
view and workproducts. This can be seen in Figure 6.

language
Latin Miles Myles

variant

13

3 Cost++ Structuring Section
Now that we have considered a few structuring section examples, let’s look at this
section in more detail. The structuring section gives the exact plan of what
workproducts to read in and how they should be structured. It consists of any
combination of 4 types of statements. Each of which begins with a colon (:). Two types
of statements have already been presented—the :CLUSTER and :CLASS statements
(also known as structure statements)—which build cluster and classification nodes
respectively. The two other statements are the :INCLUDE and the :SET statements.
The :INCLUDE statement reads config file information from other files. This is useful
in making config files easier to read and allowing different config files to share
information.The :SET statement is used to set options and defaults for use during the
processing of the structuring section. The use of the :INCLUDE and :SET statements
will be discussed further in section 7.2 on page 47.

Graphics-Output

Medium

Canvas

Canvas.3I X11-canvas.c canvas.h

object-view

object-view

workproductsworkproducts

workproducts

Figure 6. Simple Canvas Cluster Tree

14

Comments can be placed in config files and will be used in the following examples. A
comment begins with a ‘%’. The rest of the line following the comment is ignored.
Comments can be placed anywhere between config file statements.

3.1 Structure Statements

Structure statements build structure nodes used to link together workproducts and
other structure nodes. Let’s continue looking at some examples and define some
terminology.

3.1.1 Structure statement form

Here are some fragments from examples shown above:

 (:CLUSTER ("Canvas" ROLE:workproducts)
 (NROFF-DOC "Canvas.3I")
 (C++-SRC-CODE "X11-canvas.c")
 (HEADER "canvas.h")
)
 (:CLASS ("Latin" ROLE:language)
 (:CLASS ("Miles"))
)

The first parenthesized expression following (:CLUSTER is known as the cluster-
action-call. It consists of a cluster-name ("Canvas") followed by zero or more
structure-options. The cluster-name is the name of the cluster we are defining. It is
used to identify a given node and determine the exact file to read information from
and write information to. Structure-options specify characteristics about this node
and its relationship with other nodes. We’ll discuss these in detail shortly.

Following the cluster-action-call are one or more action-calls that define actions to
perform—usually reading in and linking workproduct nodes. In our example, this
includes:

 (NROFF-DOC "Canvas.3I")
 (C++-SRC-CODE "X11-canvas.c")
 (HEADER "canvas.h")

Each action-call begins with an action-name (e.g, NROFF-DOC) and is followed by zero
or more string arguments (e.g., "Canvas.3I"). The exact behavior of action-calls is
determined by their corresponding definitions found within the definition section of
the config file (see section 4 on page 23).

Following the action-calls are zero or more child structure statements which may be
linked to this cluster (this example has none). If a ROLE structure-option is specified,
a global link will be created between this node and each child node.

15

Classification statements have the same form, but the cluster-action-call is called the
classification-action-call which consists of an equivalent classification-name followed
by zero or more structure-options. In our example above, "Latin" is the
classification-name and ROLE:language is the structure-options. This example has
no actions-calls and one child structure statement.

3.1.1.1 Structure-options

Structure-options have the form <option-name>:<value>. Thus, in our Canvas
example, the ROLE structure-option has the formROLE:workproducts. There are
several structure options that affect the definition and linking of structure nodes. A
few of these are:

ROLE—the role to use in linking this node to child structure nodes and to
workproduct nodes read through action-calls. If the value is UNDEFINED, no
linking occurs. A role has a scope which determines which of several roles is
used to link child nodes to their descendents (see section 4.1 on page 24 and
section 7.2.2 on page 48 for details). The default value is UNDEFINED.

INBOUND—the direction of links created to child nodes. This direction is with
respect to child nodes. A value of Yes will cause links to be outbound from this
structure node and inbound to the child nodes. A value of No will cause links
to be inbound to this structure node and outbound from the child nodes. The
default is Yes.

OUT—the location to save this structure node. It consists of the full pathname
of a file or directory. When a file, this is the pathname of where to save this
node. When a directory, the location is determined by concatenating this
directory with the name of the structure node (e.g., OUT:$rge for the Canvas
node would yield $rge/Canvas). The default is the current working
directory.

NODE-TYPE—the type of the structure node being created. This corresponds to
creating a value link with role Type that has the specified value. These links
are used by Kiosk to treat nodes according to their type (e.g., presenting nodes
in a different manner). A value of UNDEFINED causes no value link to be
created. A value of *DEFAULT* will cause the value to be based on the type of
this structure node (a value of Cluster for cluster nodes and a value of
Classification for classification nodes). Any other value specified will be
used as the value of this link. The default is *DEFAULT*.

Note that the default values mentioned above are used when the given structure-
option is not specified. These default values can be changed through the use of the
definition section and the :SET command (see section 4 on page 23 and section 7.2.1
on page 47). More structure-options will be discussed below. Let’s now look at some
examples using these options:

16

If we take the Very Simple First Names Fragment, from Figure 3, we can change the
direction and meaning of the variant link.

 (STRUCTURES
 (:CLASS ("Latin" ROLE:language)
 % Reverse direction of variant link and change its link role:
 (:CLASS ("Miles" INBOUND: No ROLE:variant-of)
 (:CLASS ("Myles"))
)))

In this new fragment, we’ve changed the role of the variant link to variant-of and
we have added INBOUND: No which will cause the variant-of link created to point
in the opposite direction. Thus, this fragment generates:

The nodes created will be saved in the current working directory because we have no
OUT structure option, so the default is used. The names of these files are./Myles,
./Miles, and ./Latin.

If we wished to save these nodes in /tmp instead, and also have Kiosk treat these
nodes as cluster nodes instead of classification nodes, we could embellish this
fragment to be:

 (STRUCTURES
 % Type as cluster nodes and save out files to /tmp:
 (:CLASS ("Latin" NODE-TYPE: Cluster ROLE:language OUT:/tmp)
 (:CLASS ("Miles" INBOUND: No NODE-TYPE: Cluster
 ROLE:variant-of OUT:/tmp)
 (:CLASS ("Myles" NODE-TYPE: Cluster OUT:/tmp))
)))

Figure 7. Embellished Very Simple First Names Fragment

3.1.2 Structure node contents

Although we have seen how structure nodes are created and linked, we have not yet
considered their contents. The content of these nodes is determined by a combination

Latin Miles Myles
variant-oflanguage

17

of three structure-options—all of which are optional (thus, a structure node can be
empty). These options give structure nodes the form:

The header is a line that specifies the type and name of this structure node. The
description is a short description of this node (e.g., its purpose or meaning),
determined by reading in the contents of a description file. The template is text mixed
with a set of fields and placeholders used to store links to other nodes. It is determined
by the contents of a template file. Here are some examples:

The contents of the Canvas cluster, from Figure 5 on page 12, might have the form:

Cluster Name: Canvas

 region of graphics output

 IMPLEMENTATION LANGUAGE: C++

 DOCUMENTATION:<+>
 SYNOPSIS:<+>
 DESCRIPTION:<+>
 SEE ALSO:<+>
 SOURCE CODE:<+>
 HEADER FILE:<+>

The header of this cluster is:
 Cluster Name: Canvas

The description is:
 region of graphics output

and the rest comprises the template, of which, lines like:

Structure Node

header
description
template

18

are simple text; whereas, lines like:

 DOCUMENTATION:<+>

are a field (DOCUMENTATION:) followed by a placeholder (<+>). If links are to be
created that relate to a given field, the link will be anchored to the location of the
placeholder. In this example, if we decided to link the manual page Canvas.3I to this
Canvas cluster node, we would do so on the placeholder following the
DOCUMENTATION: field.

As another example, consider the Miles classification node:

Name: Miles

From the Latin militatus, meaning “a warrior, a soldier.” Used as
a short form of Michael in England.

This node consists of just a header (Name: Miles) followed by a description. It has
no template. The choice of when to use these different structure node pieces depends
on your application. Usually clusters have a template, and classification nodes have
a description. When prototyping structure nodes, we might only want to include a
header without a description. This allows us to quickly build structure nodes without
having to immediately fill in their contents.

3.1.2.1 TEMPLATE file details

So far, we have not shown how generalized text is separated from field-placeholders
within template files. This is done by special interpretation of the first line within the
template file. This line has the form:

 PLACEHOLDER=’<placeholder-regexp>’

<placeholder-regexp> is the symbols that distinguishes a field-placeholder from
general text within the template. It is used to determine exactly where to anchor links
as well as remove unlinked field-placeholders (see below). In our Canvas cluster
example, the template file would have a first line like:

 PLACEHOLDER=’<\+>’

Note that the placeholder is used in a regular expression pattern matching sequence
within Cost++, where ‘+’ has special meaning. The ‘\’ before the ‘+’ says to literally
search for a plus sign. For more details on the regular expressions used, see the Unix
regcmp(3x) manual page.

19

After the linking process, not all field-placeholders may have links associated with
them. For example, if the Canvas cluster above didn’t have source code available, the
SOURCE-CODE:<+> field-placeholder would not have any links. It is many times
desirable to have such lines removed from a structure node. This is done using the
REMOVE-CLASS-EMPTIES and theREMOVE-CLUSTER-EMPTIES action-options for
removing non-linked placeholders. For details, see section 4.2 on page 27.

3.1.2.2 Structure-options for building the contents of structure nodes

Causing Cost++ to generate structure nodes to have the contents you desire is
performed through the use of the following three structure-options:

HEADER—specifies whether a header should be created for this structure node.
If Yes, a header is created, if No, it is not created. The default is Yes. When
created, the header has the form Name: <classification-name> for
classification nodes and Cluster Name: <cluster-name> for cluster
nodes. <classification-name> is the name of this classification node (e.g.,
Miles) and <cluster-name> is the name of the cluster node (e.g., Canvas).

IN—the file or directory from which to read the description section of the
structure node. This option has the same form as the OUT structure-option
(see section 3.1.2.2 on page 19). When its value is UNDEFINED, no description
is read. When a directory, the full pathname of the file to read is
<directory>/<structure-node-name>. When the name of a file, this name is
used as the full pathname of the description section file. The default value is
UNDEFINED.

GENERATE-WHEN-MISSING—allows the IN structure-option to have a
specific value, but if such a description section is not found, it will generate a
new one (like IN:UNDEFINED). This is very useful for prototyping the
construction of lattices, where the description files for nodes can be slowly
written, while the remaining nodes are created to act as “stubs.”

TEMPLATE—the full pathname of the file used to create the template for this
node. If UNDEFINED, no template is created. The default isUNDEFINED.

Using these structure-options, let’s respecify the Canvas cluster to produce the
contents discussed above:

20

 (:CLUSTER ("Canvas" ROLE:workproducts
 HEADER: Yes
 IN: $rge/doc
 TEMPLATE: $rge/doc/interviews-template)
 (NROFF-DOC "Canvas.3I")
 (C++-SRC-CODE "X11-canvas.c")
 (HEADER "canvas.h")
)

We also need to specify the contents of the template and description files. The
template file $rge/doc/interviews-template would contain:

 PLACEHOLDER=’<\+>’

 IMPLEMENTATION LANGUAGE: C++

 DOCUMENTATION:<+>
 SYNOPSIS:<+>
 DESCRIPTION:<+>
 SEE ALSO:<+>
 SOURCE CODE:<+>
 HEADER FILE:<+>

The description file, determined by the IN structure option, would be
$rge/doc/Canvas, and would contain:

region of graphics ouput

To produce the contents of the Miles node discussed above, we might have:

 (:CLASS ("Miles" IN:$rgt/names))

along with a description file, $rgt/names/Miles, containing:

From the Latin militatus, meaning “a warrior, a soldier.” Used as
a short form of Michael in England.

3.2 Multiply Referencing Nodes

From time to time, the need arises to reference a node more than once. For example,
the Miles node discussed above is both an English and Latin name. If we want to

21

reflect this fact in our Very Simple First Names Fragment (see Figure 4 on page 12),
we need to add an English node that also points at the Miles node—multiply
referencing the Miles node. Such references can be backward or forward in that the
node being referenced might already be defined (backward), or will be defined in the
future (forward).

Any node can be referenced (backwards and forwards) using the form:

#"<node-path>"

<node-path> is the absolute or relative pathname of where the node being
referenced will be saved (e.g., $rd/foo.C, ./foo.C). As a simplification, backward
references to structure nodes can be performed by re-referring to the same node two
or more times.

Let’s now attempt to expand the First Names example to include an English node:

 (STRUCTURES
 (:CLASS ("Latin" ROLE:language)
 (:CLASS ("Miles" ROLE:variant)
 (:CLASS ("Myles"))
))
 (:CLASS ("English" ROLE:language)
 % A backward reference to the Miles structure node:
 (:CLASS ("Miles"))
)))

Figure 8. Simple First Names Fragment

We could equivalently replace the second reference to:

 (:CLASS ("Miles"))

with:

 #"./Miles"

22

We use “.” for the directory because the output location of the Miles node will be the
current working directory since we didn’t specify an OUT structure-option. In both
cases, our new first names family tree looks like:

Remember that structure-options are always interpreted—even when re-referring to
a node through a backward reference. It is important to realize that using the OUT
structure option, in these situations, can determine whether a structure statement is
a backward reference or not.

Consider the results of our last example when the current working directory is not
/tmp, and we replaced the second reference to:

 (:CLASS ("Miles"))

with:
 (:CLASS ("Miles" OUT:/tmp))

We would no longer have a backward reference to the Miles node, but another node
named Miles that resides on /tmp. The result of this structure would be:

language

language
Latin

English

Miles Myles
variant

Latin

English

Miles

Miles

Myles
language

language

variant

23

4 Cost++ Definition Section
The definition section is used to define the meaning of actions called within the
structuring section, to set options that affect the global execution of Cost++, to set
general defaults for the structure-options of structure nodes, and to determine which
nodes are read by feature extractors.

Let’s begin with an example. So far, when we’ve built structure nodes, we’ve had to
specify more and more structure-options. Many of these have been the same options
repeated for different nodes. For simple examples, this is ok, but for config files
containing many structure nodes, this becomes cumbersome and makes config files
hard to read. Through the use of the definition section, we can alleviate this problem.
As an example, let’s revisit the Embellished Very Simple First Names in Figure 7 on
page 16. In this example, we specified the structure-options INBOUND,NODE-TYPE,
ROLE, andOUT. Using the definition section, we could define:
(DEFINITIONS
 % Make it so classification nodes have these options as a
 % default:
 (CLASS_MAIN ROLE:language NODE-TYPE: Cluster OUT:/tmp)
)

With such a definition section, the equivalent structuring section becomes:

(STRUCTURES
 (:CLASS ("Latin")
 (:CLASS ("Miles" ROLE:variant-of INBOUND: No)
 (:CLASS ("Myles"))
)))

As you can see, we have eliminated the need to specify several of the structure-options
for each classification node. The only options left are ROLE:variant and INBOUND:
No for the Miles node.

Similar to the structuring section, the definition section is wrapped in a set of
parentheses where the opening paren must be followed by the word DEFINITIONS. In
between these points are zero or more action-descriptors . In our example, we
have one:

 (CLASS_MAIN ROLE:language NODE-TYPE: Cluster OUT:/tmp)

CLASS_MAIN is the action-name followed by one or more action-options. These action-
options include all of the structure-options we defined in section 3.1 on page 14, plus
some new options that will be described below.

All the listed action-options will be used as the default for each action-call that has a
matching action-name within the structuring section. Thus, the definition section

24

acts to set the defaults when specific structure-options are not specified in the
structuring section. CLASS_MAIN is the action-name for the classification-action-call
and CLUSTER_MAIN is the action-name for the cluster-action-call. In our case, all
classification nodes created will have the defaults listed in the action-options.

Only one action-descriptor with a particular action-name can be specified. This
includes action-descriptors specified in two or more definition sections within the
same config file.

4.1 Defining New Action-descriptors

When building hypertexts, we may need to represent each type of workproduct
differently. For example, we may wish to read in, write out, and link Pascal code
workproducts differently than C++ code workproducts. These situations are handled
by creating new action-descriptors that are used through action-calls made within
structure statements. New action-descriptors take the same action-options of
structure node action-descriptors (e.g., CLASS_MAIN andCLUSTER_MAIN), with the
addition of a new value for the ROLE option (see below).

Let’s start by more clearly defining the Canvas cluster example from Figure 5 on page
12 and from section 3.1.2.2 on page 19. In this example, we had:

 (:COMPONENT ("Canvas" ROLE:workproducts
 HEADER: Yes
 IN: $rge/doc
 TEMPLATE: $rge/doc/interviews-template)
 (NROFF-DOC "Canvas.3I")
 (C++-SRC-CODE "X11-canvas.c")
 (HEADER "canvas.h")
)

We have not defined action-descriptors that determine the behavior of the action-calls
to NROFF-DOC,C++-SRC-CODE, andHEADER; specifically, we have not said where
workproducts are read from and saved to. But first, let’s clean up this cluster’s
structure-options by using defaults found in the CLUSTER_MAIN action-descriptor,
similar to the Latin example, above. The assumption here is that all InterViews
clusters would need similar defaults. If they didn’t, we could override these defaults
using structure-options. Our example, now becomes:

25

(DEFINITIONS
 (CLUSTER_MAIN ROLE:workproducts HEADER: Yes IN: $rge/doc
 TEMPLATE: $rge/doc/interviews-template)
)
(STRUCTURES
 (:CLUSTER ("Canvas")
 (NROFF-DOC "Canvas.3I")
 (C++-SRC-CODE "X11-canvas.c")
 (HEADER "canvas.h")
))

Now let’s define where Nroff documents, C++ source code and C++ header files are
read from and saved to. This is done by adding three action-descriptors to the
definition section, giving:

(DEFINITIONS
 (CLUSTER_MAIN ROLE:workproducts HEADER: Yes IN: $rge/doc
 TEMPLATE: $rge/doc/interviews-template)
 (NROFF-DOC IN:$rlsi/nroff-doc OUT:/tmp/test ROLE:*DEFAULT*)
 (C++-SRC-CODE IN:$rlsi/src OUT:/tmp/test ROLE:*DEFAULT*)
 (HEADER IN:$rlsi/headers OUT:/tmp/test ROLE:*DEFAULT*)
)

From this definition section, the Canvas component action-call to NROFF-DOC will
read the file $rlsi/nroff-doc/Canvas.3I and save this file to
/tmp/test/Canvas.3I. Similar behavior occurs for action-calls to HEADER and
C++-SRC-CODE. The purpose of the *DEFAULT* role action-option is to ensure that all
workproducts read by our new action-descriptors will be linked using the role
workproducts. It is described in detail below.

It is common to want to have a separate role for each workproduct, so that Kiosk
filtering can be used to only view workproducts linked with specific roles. This is
easily achieved by changing the ROLE action-option for each of our new action-
descriptors, giving:

(DEFINITIONS
 (CLUSTER_MAIN ROLE:workproducts HEADER: Yes IN: $rge/doc
 TEMPLATE: $rge/doc/interviews-template)
 (NROFF-DOC IN:$rlsi/nroff-doc OUT:/tmp/test ROLE:doc)
 (C++-SRC-CODE IN:$rlsi/src OUT:/tmp/test ROLE:src)
 (HEADER IN:$rlsi/headers OUT:/tmp/test ROLE:header)
)

Figure 9. Canvas Example with all Action-descriptors Defined

26

Notice that the meaning of ROLE for workproducts is somewhat different then what
is used for structure nodes. For structure nodes, ROLE specifies the role of the link to
use for linking descendents of this node. For workproducts read, via new action-
descriptors, there are no children nodes. Instead, ROLE means the role of the link to
the direct parent of this workproduct.7 This raises the issue of the scope of a role—
which role takes precedence when both roles are specified. In our example, we have
the NROFF-DOC workproducts to be linked with the roledoc, and the CANVAS cluster
node to link to all its workproducts using the role workproducts. As you might have
guessed, new action-descriptors that specify a role take precedence over structure
node action-descriptors. Thus, in our example, the role of the link to $rlsi/nroff-
doc/Canvas.3I will be doc because the ROLE action-option ofNROFF-DOC has
precedence over the one for CLUSTER_MAIN. Note that the ramifications of this are
that if a new action-descriptor uses the default role setting, or sets its role to
UNDEFINED, no global links will be created to the workproducts read—even if its
containing structure node has a specific role. So, in our example, if we remove the
ROLE action-option inNROFF-DOC, no link will be made from theCanvas cluster node
to the workproducts read in.

If we wanted to have a link generated from a structure node to a workproduct using
the link role of the structure node action-descriptor, we must specify a ROLE of
DEFAULT for the new action-descriptors that are to read the workproducts. This
tells an action-descriptor to “default” its link role to what is specified by its parent
structure node. Thus, if we specified ROLE:*DEFAULT* for NROFF-DOC,Canvas
would link to the NROFF-DOC workproducts with roleworkproducts. Note that since
structure nodes never directly read in workproducts, the value of *DEFAULT* is not
legal for these nodes.

To find out more about role precedence and scope, see section 7.2.2 on page 48.

4.1.1 The ARGS action-option

Action-descriptors can control the number of legal arguments passed to action-calls
through the use of the ARGS action-option. In the default case, action-calls can take
an arbitrary number of arguments (a value of -1). Thus, if we had two source code
files in our Canvas example, we could read them in by changing the C++-SRC-CODE
action-call to:

 (C++-SRC-CODE "X11-canvas.c" "X11-canvas2.c")

It is common for clusters to only have one header file. We can use the ARGS action-
option to ensure that no more than one argument is given. Our HEADER action-
descriptor would change to:

7. In the future, we may change these to ROLE-TO-DECENDENT, for structure nodes, and ROLE-TO-PARENT, for workproducts.

27

 (HEADER ARGS:1 ROLE:header IN:$rlsi/headers OUT:/tmp/test)

In this case, if more than one header file workproduct were given as an argument to
a HEADER action-call, an error message would be issued.

4.1.2 Shell-style wildcards and the READ-LINK-FILES option

Unix Shell-style8 wildcard characters can also be used to read in multiple files
without explicitly specifying each one. Thus, we could read in all the source code files
for Canvas through:

 (C++-SRC-CODE "X11-canvas*.c")

When wildcards are used, ambiguities can arise as to whether actual link files should
be read in as workproducts. This is because link files are named and can be picked up
by the wildcard. In general, however, this behavior is not desirable, so the default is
for wildcard expansion to throw out link files. For the few cases when link files are to
be processed as workproducts, the action-option, READ-LINK-FILES, can be used
with the value Yes (the default is No). For example, if the action-descriptor for C++-
SRC-CODE were changed to:

 (C++-SRC-CODE ROLE:src IN:$rlsi/src
 OUT:/tmp/test READ-LINK-FILES: Yes)

And we had an action-call like:

 (C++-SRC-CODE "*")

All link files on $rlsi/src would be read in as workproducts.

4.2 The *GLOBAL* Action-descriptor

The special action-descriptor, *GLOBAL*, can be modified to set options that globally
affect the execution of Cost++. This includes the amount of debugging information
issued, how field-placeholders are managed in structure nodes, and which links
should be read in with nodes. *GLOBAL* action-options are:

DEBUG—should more information be printed for debugging post-processing
functions and feature extractors? If Yes, more information will be printed as
config files are executed, if No, standard information will be issued. Default is
No. For more details, see section 8.2 on page 70.

REMOVE-CLUSTER-EMPTIES—should unlinked field-placeholders be
removed from cluster nodes (see section 3.1.2.1 on page 18 for details)? If Yes,
after all linking has taken place, cluster nodes are searched to find field-

8. The wildcards are compatible with K-shell format.

28

placeholders that have no links within their placeholders. This search is
performed by finding lines within the cluster that match the placeholder
specified within the template file used to build each cluster. When such a
match is found, the line is removed. If this action-option’s value is No, no
removal will take place. Note that if a template was not used in the
construction of a cluster, the value of this option is irrelevant. Default value
is Yes.

REMOVE-CLASS-EMPTIES—Same as REMOVE-CLUSTER-EMPTIES, above,
but applies to classification nodes built with templates.

KEEP-LINKS—determines which links will be read in and saved with nodes.
This option is very dependent on the applications Cost++ is being used for (see
section 1.1 on page 2).

A value of NONE causes no existing links to be read in with a node. This is
useful for applications that wish to cleanly rebuild lattices when Cost++ is
run—throwing out all previously existing links (level 0 tool interaction). This
option was necessary for the read-only organizational chart application
discussed on page 3.

A value of USER-GENERATED will only cause links not generated by Cost++ to
be read in with nodes. More specifically, only links not owned by Cost++ are
read in. This value is very useful for evolving user applications. For example,
suppose we have built a reusable library of software components (see page 4)
where we periodically want to run Cost++ to add new workproducts. In this
situation, users can annotate and add links to this lattice and we can avoid
losing their changes when Cost++ is run to add a new workproduct to the
lattice. Note that this only works for links and nodes added to the structure.
User deletions of Cost++ generated links will not be saved and these links will
be regenerated the next time Cost++ executes.

A value of ALL causes all previous links to be read in with a node. This is
useful for incrementally changing an existing lattice. For example, in the GM
of structured e-mail messages (page 4), when a new mail message is
incrementally added to the GM, we could read in a classification node, along
with all of its links, and then link this new mail message to this classification
node.

Default value is USER-GENERATED.

Some examples of the *GLOBAL* action-descriptor are:

29

 (*GLOBAL* REMOVE-CLASS-EMPTIES: No KEEP-LINKS: User-Generated)
 (*GLOBAL* DEBUG: Yes REMOVE-CLUSTER-EMPTIES: Yes)

4.3 Special Action-descriptors

Several other tasks are commonly performed besides building structure nodes and
reading and linking workproducts. These tasks are performed through special action-
descriptors. Let’s first look as some of these different tasks and then see how special
action-descriptors are used to perform them.

So far, we have seen no mechanism for generating value links for structure nodes.
Value links are very useful for defining node properties and are heavily used to
determine node types and other information within Kiosk. Some examples of useful
value links we might want to create are:

• Adding value links to our Canvas cluster that specify the operating system and
machine this component can execute on, as well as the library this component
belongs to.

• Giving nodes symbolic names that are used within Kiosk instead of pathnames.
• Holding syntactic information about the beginning and ending of regions of text

within a node for use by an editor.

Another task that comes up is the need to link together existing lattices that have
been generated. For example, we might have several config files that each link
together a specific software library. We might want to then link all these libraries
together with a meta-level classification that provides quick access to each different
library. This can be performed by generating the structure nodes of the meta-level
classification and linking them to the root nodes of each of these libraries.9

4.3.1 Creating and using special action-descriptors

Cost++ distinguishes regular action-descriptors (i.e., all the ones we’ve seen so far)
from special ones according to which parse function the action-descriptor uses. This
parse function determines the exact semantics of what actions to perform and the
meanings of the string arguments that follow the action-name within an action-call.
All regular action-descriptors use the default parse function,
dir_assist_general_node_parse_func, to determine their behavior. In this
case, the string arguments are interpreted as nodes to read in based on the value of
the IN action-option. To specify special action-descriptors, a different parse function
is specified in a FUNC action-option within the sequence. Currently, two other parse
functions exist—value_link_parse_func and external_link_parse_func:

9. This is not easy to perform with the existing machinery because we need to read in and save all links associated with each root library node
except the previous link to the meta-level node we are creating (if it exists).

30

value_link_parse_func defines value links for structure nodes. It reads an
arbitrary number of <role>-<value> pairs and builds one value link for
each pair. These value links are globally linked to the structure node where
this action-call appears.

external_link_parse_func globally links a structure node to another node
external to the nodes that have been generated during this session with
Cost++. It takes an arbitrary number of <full-pathname>-<role> pairs
and generates a global link from the structure node where this action-call
appears to the node referred to in the <full-pathname>. This link is given
the role <role>.

Let’s look at some examples. First, we will define a VALUE_LINK action-descriptor
adding to our Canvas example from section 4.1 on page 24:

(DEFINITIONS
 (CLUSTER_MAIN ROLE:workproducts HEADER: Yes IN: $rge/doc
 TEMPLATE: $rge/doc/interviews-template)
 (NROFF-DOC IN:$rlsi/nroff-doc OUT:/tmp/test ROLE:doc)
 (C++-SRC-CODE IN:$rlsi/src OUT:/tmp/test ROLE:src)
 (HEADER IN:$rlsi/headers OUT:/tmp/test ROLE:header)
 % Special action-descriptors, using FUNC:
 (VALUE_LINK FUNC:value_link_parse_func)
)

We can now add the value links, we described above, to our Canvas example with:

(STRUCTURES
 (:CLUSTER ("Canvas")
 (NROFF-DOC "Canvas.3I")
 (C++-SRC-CODE "X11-canvas.c")
 (HEADER "canvas.h")
 (VALUE_LINK "OS" "HP-UX/7.0"
 "Machine" "HP9000/300"
 "Library" "InterViews2.6")
))

Figure 10. Canvas Cluster with Value Links

The Canvas cluster node would now have three value links attached to it: one with
role OS and valueHP-UX/7.0, one with role Machine and value HP9000/300 and
one with role Library with value InterViews2.6.

Now let’s build part of a meta-level classification for two libraries—InterViews and
Codelibs[6]. Assume the root node for each of these libraries is
$rlw/roots/InterViews2.6 and $rlw/roots/Codelibs, respectively. We can
now build a small classification structure using the following definition section:

31

(DEFINITIONS
 (CLASS_MAIN OUT:$rlw/func_view ROLE:func_view)
 % Special action-descriptor, using FUNC:
 (EXTERNAL_LINK FUNC:external_link_parse_func)
)

Our classification structure has the form:

(STRUCTURES
 (:CLASS ("Views")
 (:CLASS ("Functional_View")
 (EXTERNAL_LINK "$rlw/roots/Codelibs" "func_view"
 "$rlw/roots/InterViews2.6" "func_view")
)))

With this, Cost++ would generate a structure of the form seen in Figure 11.

Customized parse functions can be built to perform specialized tasks. This is
described in section 7.3.1 on page 50.

Views

Functional_View

Codelibs

func-view

func-view

InterViews2.6

func-view

...

Figure 11. Meta-classification Linking InterViews and Codelibs

32

5 Cost++ Linking Section
So far, we have only been able to globally link nodes by explicitly specifying which
nodes to link within a config file. There are, however, many cases when we would like
to perform content-based linking where features inside nodes are linked according to
their content. Some examples of content-based linking include:

• Linking the “see also” section of manual pages to the actual manual pages they
reference.

• Linking parent to child class definitions in C++ header files.
• Linking the references to terms in one document to their definitions in another

document.
• Linking keywords found in one node to nodes that have synonyms that match

these keywords.
• Linking placeholders in structure node templates (as described in section 3.1.2

on page 16) to the workproducts they refer to.

The linking section of config files specifies when and how this type of linking occurs.
Before looking at the specifics of how this is performed, we need a clearer picture of
the overall linking process.

5.1 Overall Linking Process

What follows are the three steps that lead to content-based linking. The numbers
used corresponds to the numbering used in the Stages of Execution (see section 2.2 on
page 9):

1a.Cost++ first reads the linking section of the config file to set up the linking
actions to perform during the structuring section.

2a & 3a.During the structuring section, when structure nodes are created and
workproducts are read in, information from the linking section will trigger
feature extractor functions and programs to be executed on these nodes to return
interesting possible places to link and what identifies them. This information is
stored in data objects called linkspots.

2b & 3b.According to the times specified in the linking section, Cost++ will attempt
to match up linkspots that represent source locations and destination locations,
to create internal links between various nodes. At this time, linkspots may also
be deleted.

5.2 Syntax and Terminology

Similar to the previous sections, the linking section is wrapped in a set of
parentheses, where the opening paren must be followed by the word LINK. In between
these points are zero or more node-relators. Each one specifies two places to search in
attempting to build linkspots as well as when and how to link up matching linkspots

33

found in these two places. As an example, if we wanted to link the manual page “see
also” sections to the manual pages they reference (see Figure 2 on page 8), we could
use a linking section of the form:

(LINK
 % Link SEE ALSO manpage item references to the actual manpages
 % they reference.
 (RELATE "see_also" *GLOBAL*
 (SRC_ITEM NROFF_DOC m FUNC see_also_linkspots)
 (DEST_ITEM NROFF_DOC 1 FUNC smart_node_name_linkspots
 True")
))

Figure 12. See Also Linking Section Example

This linking section contains one node-relator that begins with RELATE. It specifies
that workproducts read using the NROFF-DOC action-descriptor will be searched by
two feature extractor functions—see_also_linkspots (finds references within the
see also section of manual pages) and smart_node_name_linkspots (finds actual
manual pages). Because we may have many references to the same manual pages,
this node-relator forms a many-to-1 relationship in that many linkspots returned by
see_also_linkspots can refer to 1 linkspot returned by
smart_node_name_linkspots. Any linking based on these linkspots is performed
after all nodes from all structuring sections have been read (*GLOBAL* scope). When
links are created, they will have the role see_also.

In general terms, each node-relator has the form:

 (RELATE <link-role> <link-time>
 <src-item>
 <dest-item>)

where the specified attributes have the meaning:

link-role—the link role to use when links are created. In our example, this is
"see_also". It can be a simple string or the special symbol *VARIABLE*
that specifies that link roles are to be dynamically determined by the
identifier (see section 5.2.1 on page 35) of the matching linkspots when a link
is created.

link-time—the time when actual linking should take place.10 It specifies when
stage 2b and 3b of the linking process occur and thus determines the scope of
this node-relator. Another way of looking at link-time is, how long should

10. Note that forward referencing can currently cause linking tonot take place if the forward reference is resolved outside of the scope of a node-
relator.

34

linkspots accumulate before performing linking? For example, we might want
to link a cluster node’s template placeholders to the workproducts read in
during the creation of this cluster. After the cluster is built, we would want to
link based on all the linkspots found for that cluster, and start anew with the
next cluster read. In this case, we would use a link-time of *CLUSTER*. Legal
link-times include:

GLOBAL—generate links after entire structuring section has been
processed. This is the value we used in our example.

LATTICE—generate links after each top-level lattice within the
structuring section has been processed.

STRUCTURE—generate links after each structure node is completely
read in.

CLUSTER—generate links after each cluster node is completely read.
CLASS—generate links after each classification node is completely

read.
src-item—determines the creation of source linkspots that represent the source

of any links built from this relation. Properties specified include the feature
extractor to execute, what nodes this extractor should consider, and how the
source of links is related to the destination of links within this relation.

dest-item—determines the creation of destination linkspots that represent the
destination of any links built based on this relation. This specifies the same
information as the src-item.

With this information, let’s refine the overall linking process from page 32:

2a & 3a.During the structuring section, when structure nodes are created and
workproducts are read, feature extractors will execute over these nodes
according to the src-item and dest-item of node-relators—possibly creating
source and destination linkspots.

2b & 3b.According to the link-time of each node-relator, an attempt is made to
match source linkspots with corresponding destination linkspots. When such
matches occur, a link is created based on this source and destination linkspot
information. The role of this link is determined by link-role. Source and
destination linkspots that have no corresponding linkspot are ignored. After
linking over the scope of a node-relator, all linkspots for that node-relator are
removed.

Linking caused by a node-relator occurs independent from all other node-relators.11

Thus, if we had two duplicate node-relators, two links would be generated for each
match found.

11. However, for efficiency, linkspots are only generated once for duplicate src-items and dest-items found in different node-relators.

35

5.2.1 Feature extractors and linkspots

Feature extractors can occur as either built-in functions, programs, or scripts.
Feature extractor functions are referred to as function extractors. And feature
extractors that are scripts or programs are referred to as program extractors.

Linkspots are represented as C++ LinkSpot 12 objects that contain an integer
character position in the node where a link might be anchored, a string identifier that
allows this linkspot to be matched up with corresponding linkspots to create links,
and the Node associated with this linkspot.

All feature extractors are passed the node to extract features from and zero or more
string arguments that can be used as the feature extractor sees fit. All extractors
attempt to return a list of linkspots. Function extractors are part of the Cost++
program and, therefore, adding new ones requires a limited amount of code to be
written, along with recompiling and relinking Cost++.

Program extractors are executed by Cost++ in a separate process. The named script
or program will be called with the pathname of the file to extract features from and
zero or more optional string arguments. Linkspot information is returned from
program extractors by writing information to standard output, which is then read by
Cost++ to generate LinkSpot objects. Program extractors are useful in that Cost++
doesn’t have to be recompiled to add and debug context-based linking abilities.
However, since the extractor is run in a separate process on each node to search, it is
much less efficient. For faster linking, function extractors must be used.

When performing content-based linking, using existing feature extractors is highly
preferable to writing new ones. A description of existing feature extractors will be
given in section 7.4.1 on page 53. Details on building your own feature extractors is
given in section 7.4 on page 52.

5.2.2 Src-item and dest-item details

Let’s now return to the details of the src-item and dest-item. Each of these has the
form:

 (SRC_ITEM | DEST_ITEM <where-look> <one-or-many>
 <extractor-type> <extractor-name> [<extractor-arg>]*)

where these attributes are defined as follows:
where-look—which nodes will be handed to the feature extractor defined by

extractor-name (see below) to build linkspots. When where-look matches the
name of an action-descriptor, the feature extractor will be called on each
workproduct read in by corresponding action-calls on this action-descriptor.

12. In reality, linkspots are represented by a combination of C++LinkSpot and LinkInfo objects, but for the purposes of discussion, they
will be treated as one object. For a more realistic description, see section 7.4.3 on page 62.

36

Where-look can also be used to hand structure nodes or any workproduct to
the feature extractor. This is done through the use of the values:

CLUSTER—hand all cluster nodes built to the feature extractor.
CLASS—hand all classification nodes built to the feature extractor.
STRUCTURE—hand any structure node (cluster or classification node)

to the feature extractor.
WORKPRODUCT—hand any workproduct read in to the feature

extractor.

In the see also example, only workproducts read in using the NROFF-DOC
action-descriptor are handed to the feature extractors.

The nodes given to program extractors can be either structure or workproduct
nodes depending on the value of where-look. Since structure nodes are
created, the node is written to a temporary file so that the program or script
can read the contents of this node. The temporary file is then deleted after the
program extractor terminates.

Note that the type of nodes to hand to a feature extractor can be mutually
exclusive with the scope of the node-relator. An error message will be issued
for such cases, since the feature extractors would never be called. Such an
example is a node-relator with link-time *CLUSTER* and a src-item or dest-
item with where-look *CLASS*.

one-or-many—how linkspots generated by the feature extractor of this src-item
or dest-item relate to linkspots from the corresponding item. This is used to
determine which links to create as well as issue warning messages when
feature extractors return values that don’t correspond to the expected
relationship. A value of 1 means there will be one linkspot with a given
identifier. A value of m means there can be an arbitrary number of linkspots
with the same identifier.

In the see also example, we might have many references to one particular
manual page, thus we have a many-to-one relationship. As a result, the src-
item specifies m and the dest-item1. If the dest-item returned more than one
linkspot with the same identifier, a warning message would be issued. This
would correspond to two or more different manual pages with the same
identifier.

Many-to-many relationships are possible. In this case, a link for each source
linkspot with a given identifier is created to each corresponding destination
linkspot.

extractor-type—the type of feature extractor defined for this src-item or dest-
item. This specifies whether the feature extractor, extractor-name (see
below), is a program extractor or a function extractor. A value of FUNC

37

specifies a function extractor where the extractor must be defined as part of
the Cost++ program. A value of PROGRAM specifies a program extractor that
is a separate program or shell script to execute.

In the see also example, both the src-item and dest-item use function
extractors.

extractor-name—the name of the actual function or program extractor. When
extractor-type is PROGRAM, this field represents the pathname of a script or
program to execute.

When extractor-type is FUNC, this field is interpreted as the name of a
function to call. The nodes given to these functions are determined by the
value of where-look.

In the see also example, the src-item extractor function is
see_also_linkspots and the dest-item extractor function is
smart_node_name_linkspots.

extractor-arg—an optional string argument. Up to 16 arguments can be given
to a feature extractor and are passed as the 2nd through 17th arguments.
These are useful for helping the extractor perform different behavior based on
attributes found in the config file.

In the see also example, only the dest-item extractor,
smart_node_name_linkspots, is passed an extractor-arg, whose value is
"True".

5.3 Linking Section Example

Here is a linking section example containing four node-relators:

38

(LINK
 % Link from the definition of a term to all of its references.
 (RELATE "term_ref" *GLOBAL*
 (SRC_ITEM HELP_DOC 1 FUNC markup_linkspots
 "@TERM-DEF" "False")
 (DEST_ITEM HELP_DOC m FUNC markup_linkspots
 "@TERM-REF" "False")
)
 % Link between a class declaration in a header and the
 % top of the class’s source code file where method definitions
 % are kept.
 (RELATE "header_to_src_code" *CLUSTER*
 (SRC_ITEM HEADER 1 FUNC get_class)
 (DEST_ITEM C++_SRC_CODE 1 FUNC get_memfuncs)
)
 % Link from CLUSTER node at ‘DOCUMENTATION:<‘ to NROFF_DOCs.
 (RELATE "Manual" *CLUSTER*
 (SRC_ITEM *CLUSTER* 1 FUNC cluster_link
 "DOCUMENTATION:<")
 (DEST_ITEM NROFF_DOC m FUNC workproduct_link
 "DOCUMENTATION:<")
)
 % Link sorted keyword list entries to equivalent keywords in
 % CONTRIBUTIONS.
 (RELATE *VARIABLE* *GLOBAL*
 (SRC_ITEM KEYWORD_LIST 1
 PROGRAM $gmm/Admin/keyword-list-linkspots.ksh)
 (DEST_ITEM CONTRIBUTIONS m
 FUNC positioned_item_list_search "KEYWORDS:")
))

Figure 13. Linking Section Example

Some key points to notice are:

In the first node-relator, a one-to-many relationship is set up between workproducts
read in by HELP_DOC action-calls. The src-item and dest-item both use
markup_linkspots, which is passed two arguments besides the node being
manipulated.

In the second node-relator, the class declaration workproducts read in by HEADER
action-calls are linked to C++ source code workproducts. Notice that this is a 1-to-1
relationship—there can only be one header file and one source code file.

39

The third node-relator links the DOCUMENTATION:< field-placeholder within cluster
nodes to the actual manual page they reference. The src-item is handed cluster nodes
while the dest-item if given document workproducts.

In the fourth node-relator, each keyword in a list of sorted keywords (KEYWORD_LIST)
is linked to a CONTRIBUTIONS workproduct that contains an equivalent keyword. The
src-item uses a Unix ksh script program extractor called keyword-list-
linkspots.ksh. The link-role is *VARIABLE*, thus the role of the links created will
be the identifier of each matching linkspot.

5.4 Detailed Linking Example

Let’s put all this feature extractor information together in a detailed example by
extending the Canvas example, from section 4.1 on page 24. We will start by adding
another component called Interactor whose manual page references the Canvas
manual page (as in Figure 2 on page 8). These manual pages will be linked using the
node-relator in the see also example (see Figure 12 on page 33). For a definition
section, the one from Figure 9 on page 25 will be used. Together, this produces:

(DEFINITIONS
 (CLUSTER_MAIN ROLE:workproducts HEADER: Yes IN: $rge/doc
 TEMPLATE: $rge/doc/interviews-template)
 (NROFF-DOC IN:$rlsi/nroff-doc OUT:/tmp/test ROLE:doc)
 (C++-SRC-CODE IN:$rlsi/src OUT:/tmp/test ROLE:src)
 (HEADER IN:$rlsi/headers OUT:/tmp/test ROLE:header)
)

(LINK
 % Link SEE ALSO manpage item references to the actual manpages
 % they reference.
 (RELATE "see_also" *GLOBAL*
 (SRC_ITEM NROFF_DOC m FUNC see_also_linkspots)
 (DEST_ITEM NROFF_DOC 1 FUNC smart_node_name_linkspots
 "True")
))

40

(STRUCTURES
 (:CLUSTER ("Canvas")
 (NROFF-DOC "Canvas.3I")
 (C++-SRC-CODE "X11-canvas.c")
 (HEADER "canvas.h")
)
 (:CLUSTER ("Interactor")
 (NROFF-DOC "Interactor.3I")
 (C++-SRC-CODE "interactor.c")
 (HEADER "interactor.h")
))

Figure 14. Canvas and Interactor Clusters with See Also Linking

Also assume the contents of the Interactor.3I manual page contains:
 ...
 SEE ALSO
 Bitmap (3I), Canvas (3I)

And the Canvas.3I manual page contains:
 ...
 SEE ALSO
 Interactor (3I), Painter (3I)

When Cost++ is executed with this data, it will first read the definition and linking
sections, followed by reading the structuring section. Within the structuring section,
it first executes the instructions for building the Canvas cluster. During this time,
when the action-call to (NROFF-DOC "Canvas.3I") is executed, it creates a node
for the manual page workproduct $rlsi/nroff-doc/Canvas.3I. Because both the
src-item and dest-item of our node-relator have a where-look of NROFF-DOC, this node
will be handed to both function extractors. see_also_linkspots finds the see also
section of the manual page and returns information about the two see also references.
This takes the form of two LinkSpot objects, the first having an identifier of
Interactor, position 14,317, 13 and a node of Canvas.3I, and the second having
an identifier of Painter, position 14,334, and node Canvas3.I.
smart_node_name_linkspots is also run on this node. It returns the root name of
the manual page being scanned. In this case, it produces one LinkSpot object with
identifier Canvas, position 0, and node Canvas.3I. After this point, the other
workproducts for the Canvas cluster are read in and the Canvas cluster will be
complete.

13. We are assuming an arbitrary position for the see also section within the manual pages. In this case, the ‘I’ in Interactor (3I) is at position
14,317 within the file.

41

Next, Cost++ executes the instructions for building the Interactor cluster, and in a
similar way, it runs the function extractors over the node $rlsi/nroff-
doc/Interactor.3I. When the see_also_linkspots extractor is run, it returns
two LinkSpot objects—one with identifier Bitmap at position 1334 and one with
identifier Canvas at position 1347. smart_node_name_linkspots returns one
LinkSpot object with identifier Interactor and position 0.

At this point, we have four source linkspots and two destination linkspots for the
node-relator (see Figure 15).

After all the statements in the structuring section have been executed, Cost++ will
attempt to link the manual pages according to the linkspots generated. This occurs
after all nodes have been created because the link-time of our node-relator is
GLOBAL. Because we have a many-to-1 relationship, there can be many source
linkspots with the same identifier, but only one destination linkspot with the same
identifier. Links are created when a source linkspot identifier matches a destination
linkspot identifier. In our case we have two—linkspots with identifier Interactor
and Canvas. The source of each link is the node associated with the source linkspot
along with this linkspot’s position. Similarly, the destination of the link is the node
associated with the destination linkspot along with this linkspot’s position. This leads
to the linked structure shown in Figure 16.

After performing the linking, the six LinkSpot objects will be deleted.

If the node-relator had its link-role changed to *VARIABLE*, the role of link #1 would
be Canvas and the role of link #2 would be Interactor, instead of see_also.

Source LinkSpots Destination LinkSpots

Identifier: Interactor
Position: 14,317
Node: Canvas.3I

Identifier: Painter
Position: 14,334
Node: Canvas.3I

Identifier: Bitmap
Position: 1,334
Node: Interactor.3I

Identifier: Canvas
Position: 1,347
Node: Interactor.3I

Identifier: Canvas
Position: 0
Node: Canvas.3I

Identifier: Interactor
Position: 0
Node: Interactor.3I

Figure 15. Canvas and Interactor Linkspots for See Also

42

6 Cost++ Post-processing Section
The post-processing section defines operations performed on nodes after all linking
and other operations have been performed. Some examples of such operations
include:

• Removing markup language terms, like @LINK-REF (see section 7.4.1.2 on page
56) from documents after they’ve been linked.

• Finding all nodes that have no links and linking them to a special node.
• Removing links between nodes.
• Content-based addition of value links.

The operations to perform are defined by post-processors—functions, programs, and
scripts that are given nodes to manipulate. The nodes handed to post-processors can
range from one specific node, to all memory resident nodes.

Role: see-also

Src: Dest:

 Interactor.3I Canvas.3I

Name

Interactor - base class
 for ...

...

SEE ALSO
 Bitmap (3I), Canvas (3I)

Link #1

0

1347

0

Name

 Canvas - region for graphics
 ...

SEE ALSO
 Interactor (3I), Painter (3I)

Role: see-also

Src: Dest:

14317

Link #2

Figure 16. Canvas and Interactor Link Structure after See Also

43

6.1 Syntax and Terminology

Let’s start with the example of removing markup language terms:

(POST-PROCESS
 % FORM: remove_markup_instructions <remove-pattern>
 % <remove-pattern-delimiters>
 % <remove-all>
 (*ANY* FUNC remove_markup_instructions "@TERM-DEF" "True"
 "False")
)

Figure 17. Removing Markup Language Terms

Similar to the other sections we have investigated, the post-processing section is
wrapped in a set of parentheses where the opening paren must be followed by the
word POST-PROCESS. In between these points are zero or morepp-descriptors. In our
example, there is one:

 (*ANY* FUNC remove_markup_instructions "@TERM-DEF" "True"
 "False")

Each node-relator describes exactly which nodes should be handed to a post-
processor, along with any arguments. Very similar to feature extractors, post-
processor functions, called pp-functions, are compiled into the Cost++ program; and
post-processor programs and scripts, called pp-programs, are run in a separate
process. Each pp-descriptor has the form:

(<pp-where-look> <pp-type> <pp-name> [<pp-arg>]*)

where these characteristics are defined to be:
pp-where-look—which nodes will be handed to the post-processor. Legal

values include:
ANY—all memory resident nodes are handed to this post-processor—

this includes all nodes created or read in during the execution of
Cost++.

WORKPRODUCT—hand only workproduct nodes to the post-processor.
STRUCTURE—only structure nodes (clusters and classification nodes)

are handed to the post-processor.
CLUSTER—hand only cluster nodes to the post-processor.
CLASS—hand only classification nodes to the post-processor.
<node-pathname>—a string representing the full pathname of a node

to hand to the post-processor. If this specific node was read in during

44

the execution of Cost++, it is handed to the specified post-processor. If
not read in, no action takes place.

ANY is the value used in the markup language example, above. Thus, all
nodes will be handed to the post-processor.

pp-type—the type of post-processor to call. It specifies whether the post-
processor, pp-name (see below), is a pp-function or a pp-program. A value of
FUNC specifies a pp-function where the function must be defined as part of the
Cost++ program. A value of PROGRAM specifies a pp-program that is a
separate program or shell script to execute.

In the markup language example, the pp-type is FUNC, specifying the use of a
pp-function.

pp-name—the name of the actual pp-function or pp-program. When pp-type is
PROGRAM, this field represents the full pathname of a script or program to
execute. When pp-type is FUNC, this field is interpreted as the name of a
function to call within the Cost++ program. The nodes given to these post-
processors are determined by the value of pp-where-look.

In the markup language example, the pp-name of the pp-function is
remove_markup_instructions.

pp-arg—an optional string argument. Up to 16 can be given to a post-processor
and are passed as the 2nd through 17th arguments. These help the post-
processor perform different behavior based on attributes found in the config
file.

In the markup language example, we have three pp-args: "@TERM-DEF",
"True", and "False".

Each node is considered for handing to post-processors after all other Cost++
operations, except saving out the lattices of nodes and links (see stage 5 in section 2.2
on page 9). For each pp-descriptor whose pp-where-look matches a given node, the
post-processor defined by pp-name is called, handing it the arguments specified by the
pp-args. Post-processors are executed on this node in the order they are defined. Note
that the ordering of pp-descriptors is significant because side effects can occur—if one
post-processor removes a node the next post-processor will not see this node. Another
type of side effect can take place when several config files are simultaneously given to
Cost++, since pp-descriptors for one config file can affect nodes from a previous config
file. This occurs because all nodes read in become memory resident and pp-descriptors
with a pp-where-look of *ANY* will execute on nodes read previously.

Using the terminology just defined, let’s revisit the markup language example. In this
case, the pp-descriptor will cause the post-processing function,
remove_markup_instructions, to be called on every node where it will also be
handed the three arguments; "@TERM-DEF","True", and "False". All occurrences

45

of the markup language instruction @TERM-DEF, along with the delimiters
surrounding the instruction keyword, are removed from each node.

7 Advanced Topics
This section contains descriptions of additional features that can improve the
readability of config files as well as the speed at which they are produced. It also
includes information for advanced users who wish to further customize Cost++. Some
of these customizations require source code modification and recompilation of Cost++.
See section 8.1 on page 70 for details on source code availability and installation.

Topics are presented in terms of their corresponding config file sections. The end of
each section includes a BNF that specifies the exact syntax for that section. Recall
that in BNF notation, a ‘+’ means 1 or more occurrences of, and a ‘*’ means 0 or more
occurrences of. The following low-level symbols are used throughout these BNF
specifications:

 <string-or-symbol> ::= <string> | <symbol>
 <string> ::= <A set of characters between a pair of
 double-quotes.>
 <K-shell-wildcard-string> ::= <A string where certain symbols
 (like ‘*’) are interpreted as an
 argument processed by the Unix
 K-shell.>
 <symbol> ::= <A set of contiguous non-whitespace
 characters, not starting with a
 double-quote.>
 <func-symbol> ::= [a-z | A-Z | 0-9 | _]+
 <full_pathname> ::= a <symbol> that represents the relative
 or absolute pathname of an existing file.
 <yes-or-no> ::= Yes | No <case insensitive>

7.1 General Features

7.1.1 :INCLUDE statement

The :INCLUDE statement improves readability of config files by allowing sections of
config files to be stored as separate files. It also allows config file information to be
shared, improving config file development when several similar files exist.

The :INCLUDE statement can be placed anywhere a normal config file section can be
placed, thus, it can be found where any definition section, linking section, post-
processing section, or structuring section is found. Additionally, :INCLUDE
statements can be used to replace any structure statement within the structuring
section. For example, we could replace the following config file:

46

 (DEFINITIONS ...)
 (LINK ...)
 (POST-PROCESS ...)
 (STRUCTURES
 (:CLASS ("Latin" ROLE:language)
 (:CLASS ("Miles" ROLE:variant)
 (:CLASS ("Myles"))
))
 (:CLASS ("English" ROLE:language)
 (:CLASS ("Myles"))
))

 with:

 (:INCLUDE "~/definition-section")
 (:INCLUDE "~/link-section")
 (:INCLUDE "~/post-process-section")
 (STRUCTURES

 (:CLASS ("Latin" ROLE:language)
 (:CLASS ("Miles" ROLE:variant)
 (:INCLUDE "~/Miles-variants")
))
 (:CLASS ("English" ROLE:language)
 (:INCLUDE "~/Miles-variants")
))

along with four other config files that house the definition, linking, and post-
processing sections shown above, along with(:CLASS("Myles")) stored within the
~/Miles-variants file.

The :INCLUDE statement takes one string argument that represents the full
pathname of the file containing config file instructions. During execution, Cost++ acts
as though the:INCLUDE statement were replaced with the contents of this file. These
statements can themselves contain :INCLUDE statements, leading to their arbitrary
nesting.

7.1.2 General config file BNF

The general form of config files is:

47

<config-file> ::= [<setup-sections>] <structuring-section>
<setup-sections> ::= <setup-sections> [<definition-section>]* |
 [<linking-section>]* |
 [<pp-section>]*

Where the various section symbols (e.g., <definition-section>) are defined
below.

7.2 Structuring Section Features

7.2.1 :SET statement

The :SET statement changes action-descriptor settings from within the structuring
section. It is useful when two or more groups of structuring section statements use the
same settings. For example, we might have a group of structuring section statements
whose result is to be saved in one location and another group of statements whose
result is to be saved in a different location. An alternative example is two groups of
statements that build structure nodes, where each group uses a different template
file. This situation occurs in the Codelibs software library of components, where one
cluster of components is C++-based and is built with a C++ template file, while the
other cluster is C-based and built using a C template file, as in:

 (DEFINITIONS
 (CLUSTER_MAIN TEMPLATE: $rge/doc/C++-template)
)
 (STRUCTURES
 % Here are a bunch of Codelibs components that use the
 % C++ cluster node template.
 ...
 (:CLUSTER ("String++"))
 ...
 % Now we want build some C Codelibs components that use the
 % C template.
 (:SET CLUSTER_MAIN TEMPLATE: $rge/doc/C-template)
 ...
 (:CLUSTER ("Stringx"))
 ...
)

The String++ cluster is built using the C++-template file and the Stringx cluster
is built using the C-template file. Note that instead of using the :SET statement, we
could have added a TEMPLATE structure-option after each cluster listed. However, for
many clusters, this would have been more cumbersome and adversely affect
readability.

48

7.2.2 Option scoping

We have discussed three ways of setting options—using action-options, structure-
options, and the :SET statement. Having these three ways to set the same option
leads to the need to define their scope—when and how long the value of options are
defined for each method.

Setting the value of an action-option using the definition section or using the :SET
statement have a global scope. These values will persist until another statement
changes their value, or until the end of the config file. Structure-options persist for
the duration of the structure statement where they are found—including all child
structure statements. After this statement, the value of the option reverts back to its
previous value. Let’s now consider an example showing the scoping of all three ways
of setting the value of the ROLE action-option:

 (DEFINITIONS
 (CLASS_MAIN ROLE:language)
 (PET-FORMS ROLE:pet-form)
)
 (STRUCTURES
 (:CLASS ("Languages")
 (:SET CLASS_MAIN ROLE:latin)
 (:CLASS ("Latin")
 (:CLASS ("Marcus" ROLE:variant)
 (:CLASS ("Marc")
 (PET-FORMS "Marcel"))
)
 (:CLASS ("Miles")
 (:CLASS ("Myles"))
)))
 (:CLASS ("Masculine_Names")
 (:CLASS ("Michael"))
))

Figure 18. Config File ROLE Scoping for First Names

This leads to the linked structure seen in Figure 19. Note that the role switches from
language to latin after the :SET command. However, the explicit use of the ROLE
structure-option for Marcus causes the link to Marc to have role variant. Once the
Marcus structure statement is complete, the role flips back to its previous value—
latin for the remainder of the config file fragment. Notice that even though the
Marcel workproduct node is read under the Marcus node, its role is pet-form
instead of variant. This is because the ROLE action-option from thePET-FORMS
action-descriptor takes precedence and applies only to this workproduct (see section
4.1 on page 24).

49

7.2.3 Structuring Section BNF

The exact syntax of the structuring section is defined by the following BNF:

Languages

Latin

MilesMarcus

Marc Myles

Masculine_Names

Michael

latinlanguage

latin

variant latin

latin

Figure 19. Scoping the ROLE action-option for First Names

Marcel

pet-form

50

 <structuring-section> ::= (STRUCTURES [<structure-statement>]*])
 <structure-statement> ::= <cluster-statement> |
 <classification-statement>
 <cluster-statement> ::= (:CLUSTER <cluster-action-call>
 [<action-call>]*
 [<structure-statement>]*)
 <classification-statement> ::=
 (:CLASS <classification-action-call>
 [<action-call]*
 [<structure-statement>]*)
 <cluster-action-call> ::= ([CLUSTER_MAIN] <cluster-name>
 [<structure-option>]*)
 <classification-action-call> ::= ([CLASS_MAIN]
 <classification-name>
 [<structure-option>]*)
 <action-call> ::= (<action-name> [<arg>]*)
 <structure-option> ::= <structure-opt-root> | <struct-opt-role>
 <structure-opt-root> ::= IN:<string-or-symbol> |
 OUT:<string-or-symbol> |
 HEADER:<yes-or-no> |
 TEMPLATE:<string-or-symbol> |
 INBOUND:<yes-or-no> |
 GENERATE-WHEN-MISSING: <yes-or-no> |
 <struct-opt-node-type>
 <struct-opt-role> ::= ROLE:<struct-opt-role-value>
 <struct-opt-role-value> ::= <string-or-symbol> | UNDEFINED
 <struct-opt-node-type> ::= NODE-TYPE:<struct-opt-n-t-value>
 <struct-opt-n-t-value> ::= <string-or-symbol> | UNDEFINED |
 DEFAULT
 <cluster-name> ::= <string>
 <classification-name> ::= <string>
 <action-name> ::= <symbol>
 <arg> ::= <K-shell-wildcard-string>

7.3 Definition Section Features

7.3.1 Defining new parse functions

Sometimes it is necessary to extend Cost++ by building customized parse functions
that interpret action-calls within the structuring section in a special way. Adding a
new parse function requires modifying the Cost++ program. What follows is a brief
description of how to add new parsing functions. For details, see the source code.

51

As Cost++ reads the definition section, it builds a C++ Action_descriptor object
that stores all the information for each action-descriptor read. These are stored, along
with all other state information, in a C++ C_state object. All parse functions are
member functions of this C_state object. Thus,
dir_assist_general_node_parse_func is really
C_state::dir_assist_general_node_parse_func. These parse functions are
found in $rgs/C_state.C.

When reading the structuring section and seeing an action-call, the action-name of
the action-call is used to retrieve the parse function from its corresponding
Action_descriptor object. This parse function is handed this
Action_descriptor object and the structure node being created. The action-
arguments of the action-call are read and parsed by the parse function using member
functions defined for the C_state object. As an example, let’s revisit part of the
Canvas example from Figure 10 on page 30:

(DEFINITIONS
 (CLUSTER_MAIN ROLE:workproducts HEADER: Yes IN: $rge/doc
 TEMPLATE: $rge/doc/interviews-template)
 (VALUE_LINK FUNC:value_link_parse_func)
)
(STRUCTURES
 (:CLUSTER ("Canvas")
 (VALUE_LINK "OS" "HP-UX/7.0")
)
)

When the action-call to the VALUE_LINK action-descriptor takes place, the parse
function C_state::value_link_parse_func will be invoked. It will be passed the
Action_descriptor for VALUE_LINK and the cluster node for Canvas. This parse
function is then responsible for reading and interpreting the action-arguments, in
this case, "OS" and "HP-UX/7.0". Parse functions have the form:

 void C_state::<func-name> (Action_descriptor *descriptor ,
 Node *structure_node ,
 FILTER_FUNC *filter_func)

<func_name> is the name of the parse function being defined. filter_func is a
pointer to a function that determines which links are read when new nodes are read
in. See source code for details. To build a new parse function, you must:

1. Write a new parse function in $rgs/C_state.C and declare it in
$rgs/C_state.h.

2. Register this function with Cost++ by adding an entry in the member function
C_state::_build_C_state, of the form:

52

 parse_func_database->register_exec_func ("<func-name>",
 C_state::<func-name>)

This will allow Cost++ to identify an action-descriptor with a FUNC action-option
that matches your new parse function.

3. Add an action_descriptor to a config file with the FUNC action-option having the
value that is the name of the new parse function.

4. Add action-calls within the structuring section that refer to your new action-
descriptor.

For more details, see C_state.C.

7.3.2 Definition section BNF

<definition-section> ::= (DEFINITIONS [<action-descriptor>]*)
<action-descriptor> ::= (<action-name> [<action-option>]*)
<action-descriptor> ::= (*GLOBAL* [<global-option>]*)
<action-name> ::= CLASS_MAIN | CLUSTER_MAIN | <symbol>
<action-option> ::= <structure-opt-root> |
 <action-opt-role> |
 ARGS:<num-args> |
 FUNC:<func-symbol> |
 READ-LINK-FILES:<yes-or-no>
<global-option> ::= DEBUG:<yes-or-no> |
 REMOVE-CLUSTER-EMPTIES:<yes-or-no> |
 REMOVE-CLASS-EMPTIES:<yes-or-no> |
 KEEP-LINKS:<links-to-keep>
<action-opt-role> ::= ROLE: <action-opt-r-value>
<action-opt-r-value> ::= <string-or-symbol> | UNDEFINED |
 DEFAULT
<links-to-keep> ::= NONE | USER-GENERATED | ALL
<num-args> ::= -1 | [0-9]+

7.4 Linking Section Features

This section will help you determine when and how to write new extractors for
performing content-based linking. The first subsection describes the feature
extractors that are available. You should become familiar with this section whenever
you are seeking to do content-based linking, since it is much more efficient to use
existing extractors than to write your own. When the functionality you need doesn’t
exist in any of the extractor libraries, you will have to create a new extractor. The
second and third subsections give high-level descriptions of when and how to write
program and function extractors.

53

7.4.1 Feature extractor libraries

Currently, only libraries of function extractors are available—no libraries of extractor
programs have been built. Existing function extractors have been separated into
conditionally compilable libraries, where the default version of Cost++ comes with all
libraries. The following description of function extractors has been separated into
these different libraries. A brief description of each library is given, followed by
details about the function extractors available. Each function description starts with
the name of the extractor, followed by any required arguments. Each description is
then followed by a ⇒ symbol and the word General, Medium, Specific, or Very
Specific; to inform you of the generality of this extractor.

7.4.1.1 Function extractors found in $rgs/general_feature_extractors.C

These functions are all general extractors used by many different applications.

FUNC positioned_item_list_search <search-pattern>[<dependency>]
 [<link-to>] ⇒General

This extractor is very useful for setting up links to comma-separated items that
follow defined fields within nodes. For example, we might link a mail message
with given keywords to other nodes these keywords refer to.

DETAILS

This extractor finds the first occurrence of <search-pattern> that begins at
the beginning of a line. The entries following it are then analyzed as a set of
comma separated items that may be found on one or more following lines. The
end of comma-separated items is determined by a blank line (only whitespace).
It is legal to have only one item, and the last item of the set does not require a
trailing comma. Linkspots are returned for each item found, where the position
returned is the start of the item. The identifier returned is the lower-cased
content of the item—disregarding leading and trailing whitespace. This
extractor also maps underscores in items to spaces.

If no occurrence of <search-pattern> is found, no linkspots are returned.

Sometimes linking a node is dependent on whether it does or does not contain
another field. For example, we might have a bug report node that contains a BUG
FIXED BY field. When this field is empty, the bug has not been fixed, and we
would like to link its keywords with an outstanding-bugs link role. When the
field is complete, the bug has been fixed, and we would like to link its keywords
with a fixed-bugs link role. To perform this, we must be able to tell whether
the BUG FIXED BY field has been filled in or not. The <dependency> option
exists to handle this situation. It has the form:

"EXCEPT" <field-pattern> | "WITH" <field-pattern>

54

<field-pattern> is a string that represents the name of a field, similar to
<search-pattern>. The "EXCEPT" form only allows linkspots to be returned
when <field-pattern> does not exist, or represents a blank field. The "WITH"
form performs the opposite—it will only allow linkspots to be returned when
<field-pattern> exists and is followed by one or more items.

If you need to link at a different location within the node then at the beginning
of each item, you may want to use the <link-to> option. For example, we might
have a set of book bibliography nodes that contain a Title field and a Reviews
field. We would like to link book review nodes to their corresponding
bibliography nodes when their Title fields match. However, the position we
would like to link to in the bibliography node is the Reviews field. <link-to>
has the form: "LINK-TO" <link-to-pattern>. It causes the location
following the first occurrence of <link-to-pattern> to be the position
returned for each linkspot. If <link-to-pattern> is not found within the node,
a warning message is issued, and no linkspots returned.

EXAMPLES

 We might have a mail message containing the fragment:
...
KEYWORDS: Jumping Fish, Moosefish
...

If positioned_item_list_search "KEYWORDS:", were handed this mail
message, it would generate linkspots with identifier jumping fish and
moosefish with positions located at the J in Jumping Fish and the M in
Moosefish, respectively. The same result would be achieved with:

KEYWORDS: Jumping_Fish, Moosefish

As another example, we might have a bug report containing the fragment:
...
KEYWORDS: Jumping Fish, Moosefish
BUG FIXED BY: Mike
...

If positioned_item_list_search "KEYWORDS:" "EXCEPT" "BUG FIXED
BY:", were handed the above bug report, it would return no linkspots. Whereas,
positioned_item_list_search "KEYWORDS:" "WITH" "BUG FIXED BY"
would return the linkspots specified in the first example.

FUNC smart_node_name_linkspots [<dumb-mode>][<raw-mode>]
 [<link-to>]⇒General

This extractor is useful for globally referencing other nodes, such as linking the
see also section of manual pages to the actual manual pages they reference.

55

DETAILS

A linkspot is returned that has position 0 and an identifier that is the root name
of this node. This root name consists of the filename of the file (with no path
information) with suffix information stripped off. Thus, a node like
$rlwi/doc/Interactor.3I would have an identifier of Interactor.

When <dumb-mode> is not specified or is False, the linkspot identifier returned
will be down-cased and underscores will be replaced with spaces. If <dumb-
mode> isTrue, no special processing of the root name is performed to determine
the identifier. This mode can be useful for similarly named nodes that differ in
case.

When <raw-mode> is not specified, the linkspot identifier will not contain the
dot (‘.’) or suffix information. When RAW is specified for <raw-mode>, the linkspot
identifier will contain the suffix information and the dot. This is useful when
suffix information is important, like for nodes that are the names of authors.

<link-to> is used to specify a different linkspot position. See,
positioned_item_list_search, for details.

EXAMPLES

For the following examples, calls to this extractor with the given arguments,
when handed nodes with the given pathname, will return a linkspot with the
specified identifier:

 FUNC smart_node_name_linkspots
➞ $rlwi/hubs/Stringx.3x ➞ stringx

 FUNC smart_node_name_linkspots "False"
➞ $rlwi/hubs/Andreas_Paepcke ➞ andreas paepcke

 FUNC smart_node_name_linkspots "False" "RAW"
➞ $rlwi/hubs/Stringx.3x ➞ stringx.3x

 FUNC smart_node_name_linkspots "True"
➞ $rlwi/hubs/Stringx.3x ➞ Stringx

 FUNC smart_node_name_linkspots "True"
➞ $rlwi/hubs/Andreas_Paepcke ➞ Andreas_Paepcke

 FUNC smart_node_name_linkspots "True" "RAW"
➞ $rlwi/authors/Cox_B. ➞ Cox B.

FUNC cluster_link <id>⇒General

Used to link from field-placeholders within cluster nodes to workproducts. This
extractor is usually used in conjunction with workproduct_link.

 DETAILS

56

A cluster node is searched for the field-placeholder <id> in a cluster node and a
linkspot is returned with identifier <id>, and a position that is the first position
following the field-placeholder within the cluster.

EXAMPLE

If a cluster node that contains a field-placeholder of the form:

 DOCUMENTATION:<+>

is handed to this extractor through a call of the form:

 FUNC cluster_link "DOCUMENTATION:<"

This extractor would return a linkspot with identifier DOCUMENTATION:< and
position that is the location of the + sign within the field-placeholder of the
cluster.

FUNC workproduct_link <id>⇒General

This is used to globally link workproduct nodes from cluster node field-
placeholders. It is often used in conjunction with the cluster_link extractor.

DETAILS

This extractor simply returns a linkspot with position 0, identifier <id>, and a
node that is the node handed to this extractor.

EXAMPLE

A call to this extractor of the form:

 FUNC workproduct_link "DOCUMENTATION:<"

when handed the node ~/workproduct1, will return a LinkSpot with
identifier DOCUMENTATION:<, position0, and node ~/workproduct1.

7.4.1.2 Function extractors found in $rgs/doc_feature_extractors.C

Extractors in this library are used for building hypertext documentation—cross-
document linking of terms, table of content files, etc.

FUNC markup_linkspots <markup-pattern> <remove-keyword>⇒Medium

This extractor is used to link keywords wrapped within markup language
commands. Thus, it can help with linking references to terms in a document to
their definitions in another document. It is usually used in conjunction with the
remove_markup_instructions post-processing function (see section 7.5.1.2
on page 67).

57

DETAILS

All markup commands have the form:
<markup-pattern>‘<keyword>’

Linkspots are returned for each markup language command matching
<markup-pattern> found within a node. The identifier used for each linkspot
is the quoted keyword following <markup-pattern>. If < remove-keyword> is
False, the position of each linkspot is the position of the first character of the
keyword within the node. If <remove-keyword> is True, the position will be the
first character of the markup instruction—with the assumption the markup
instruction and keyword will be removed (see section 7.5.1.2 on page 67)—
making the effective position the next character following the markup command.

EXAMPLES

Given the text:

 ...use @LINK-REF‘Component Browser’ to find...

The following calls to markup_linkspots lead to the linkspot shown after the
➞ symbol.

FUNC markup_linkspots "@LINK-REF" "False" ➞ linkspot with identifier
Component Browser and position at the C in Component Browser

FUNC markup_linkspots "@LINK-REF" "True" ➞ linkspot with identifier
Component Browser and position at the @ in@LINK-REF.

FUNC help_file_linkspots⇒Specific

Generates linkspots for the Kiosk help file section, subsection, subsubsection,
and detail entries. It is used to link to the corresponding table of contents
sections.

DETAILS

Entries have the form:
[num.num.num.num] <text>

as in:
[1.1] Introduction

See source file documentation for more details.

FUNC toc_linkspots⇒Specific

Generates linkspots for the Kiosk table of contents files that contain a set of
section, subsection, subsubsection, and detail entries. It is used to link to the
corresponding sections within help files.

58

DETAILS

Entries have the form:
[num.num.num.num] <text>

as in:
[1.1] Introduction

See source file documentation for more details.

FUNC author_item_search <search-pattern>⇒Specific

This extractor is used to link author references to author nodes. It generates
linkspots for author reference nodes that have author names in last name first
format; it can be used to link to author nodes by using it in conjunction with the
smart_node_name_linkspots (with the raw_mode option) extractor.

DETAILS

This extractor analyzes the author items after <search-pattern> and parses
them as author names of the form:

<last_name>,<first_and_other_initials>[, | \n]

A second comma, or the newline, act as a separator between author names.
Authors may be on more than one line. A blank line is needed to separate the
items of a <search-pattern> . Linkspots are returned with identifiers that are
the author’s names—excluding the comma separating last and first names—
with a position that is the first character of the last name.

EXAMPLE

Given a node with contents:
...
AUTHOR: Griss, M., Cox, B.
...

If this node were handed to; FUNC author_item_search "AUTHOR:", it
would return two linkspots with identifiers, "Griss M." and "Cox B.", and
with positions at the G inGriss and the C in Cox.

7.4.1.3 Function extractors found in $rgs/software_feature_extractors.C

Extractors found in this library link features in software, such as linking parent to
child class definitions in C++ code. For more detailed descriptions of behavior, see the
source code.

FUNC get_class⇒Specific

59

Returns linkspots that are the names of classes in class declarations within C++
header files. Each linkspot has a position that is the first character of the class
name within the declaration and identifier that is the class name.

FUNC get_parent_classes⇒Specific

This returns linkspots that are the names of parent classes referenced through
inheritance in class declarations within C++ header files. Each linkspot has a
position that is the first character of a parent class name within the declaration
and identifier that is the class name. This extractor is used in conjunction with
the get_class extractor.

FUNC get_friend⇒Specific

This extractor is similar to get_class. It returns linkspots to all C++ friend
declarations found within C++ header files.

FUNC get_memfuncs⇒Specific

This extractor is used to specify that a C++ source code file has a member
function within it. Returns a linkspot with position 0 and identifier that is the
class name of this member function.

FUNC cluster_to_config_linkspots⇒Very Specific

This extractor is used to link a cluster node’s FILES field-placeholder to the
FILES part of source code configuration files. It returns a linkspot with position
at the placeholder and an identifier of Config_files. This extractor is used in
conjunction with config_to_cluster_linkspots.

FUNC config_to_cluster_linkspots⇒Very Specific

This is used to link a cluster node’s FILES field-placeholder to the FILES part of
source code configuration files. It is used in conjunction with
cluster_to_config_linkspots. It returns a linkspot with position at the
FILES part of the configuration file with an identifier of Config_files.

FUNC cluster_to_manpage_linkspots⇒Very Specific

This extractor is used to link the different sections of the manual pages that
describe software libraries to their corresponding field-placeholders within
cluster nodes (see the example in section 3.1.2.2 on page 19). This extractor
returns up to six linkspots that specify the position of the subsections of the
DOCUMENTATION field-placeholder within software cluster nodes. Included are
the locations of the SYNOPSIS,DESCRIPTION,EXAMPLES,SEE ALSO,AUTHOR,
and NOTES field-placeholders. This extractor is used in conjunction with
manpage_to_cluster_linkspots.

FUNC manpage_to_cluster_linkspots⇒Very Specific

60

This is similar to cluster_to_manpage_linkspots but returns linkspots to
the actual start of each of the six listed subsections within the manual pages.

FUNC see_also_linkspots⇒Specific

Returns linkspots to see also references within a manual page, with identifiers
that are the name of the reference and position that is the location of the first
character of the reference name within the manual page. It works similar to the
positioned_item_list_search extractor, with <search-pattern> equal
to SEE ALSO. More of a discussion of this extractor can be found in section 5.4 on
page 39.

7.4.1.4 Function extractors found in $rgs/GMM_feature_extractors.C

These extractors are very specific to the Group Memory Manager (GMM) application
and to the Kiosk feedback mechanism. There is not enough space here to describe
these extractors. See source code for details.

7.4.1.5 Function extractors found in $rgs/SMI_feature_extractors.C

Extractors in this library are very specific to the network management application.
There is not enough space here to describe these extractors. See source code for
details.

7.4.2 Writing new program extractors

This section describes how to write new program extractors when the functionality
you need is not found in the extractor libraries. Such extractors are written when good
performance is not critical, since they require no recompilation of the Cost++
program.

Cost++ executes a program extractor, by calling it in the form:

 <extractor-name> <node-path-name> [<extractor-arg>]*

<extractor-name> is the script or program to execute. It is passed the full
pathname of the node to analyze (<node-path-name>), along with up to 16 optional
string arguments (<extractor-arg>). <extractor-name> passes linkspot
information back to Cost++ by writing this information to standard output, where
Cost++ reads it until the extractor terminates. Program extractors can return an
arbitrary amount of linkspot information. The only restrictions on them are that they
return identifier-position pairs, where first, an identifier (string) must be output on a
separate line, followed by an integer position on a separate line. Once each pair is
read, Cost++ will generate the appropriate LinkSpot object for the given node.

As an example, let’s revisit the use of the program extractor keyword-list-
linkspots.ksh discussed in Figure 13 on page 38. Assume we have the following
definition, linking, and structuring sections:

61

(DEFINTIONS
 (KEYWORD_LIST IN:$gmm/lists OUT:$gmm/lists)
)
(LINK
 % Link sorted keyword list entries to equivalent keywords in
 % CONTRIBUTIONS.
 (RELATE *VARIABLE* *GLOBAL*
 (SRC_ITEM KEYWORD_LIST 1
 PROGRAM $gmm/Admin/keyword-list-linkspots.ksh)
 (DEST_ITEM CONTRIBUTIONS m
 FUNC positioned_item_list_search "KEYWORDS:")
))
(STRUCTURES
 (:CLASS ("FOO")
 (KEYWORD_LIST "the_list")
))

along with the following contents for file $gmm/Admin/keyword-list-
linkspots.ksh:

 #!/bin/ksh
 #
 # Form: keyword-list-linkspots.ksh <keyword-list>
 #
 # This script is invoked through a Cost++ node-relator to return
 # linkspots at the beginning of each word in a sorted list of
 # words passed in the first argument. The identifiers returned
 # consist of each line (lower-cased) with a position at the
 # beginning of each line.

 exec < $1 # Open the keyword list for reading
 integer link_loc=0
 while read -r line # Read in each line of $1 into ‘line’.
 do
 typeset -l line # Lower-case line
 print "$line\n$link_loc" # print line and first char position.
 link_loc=$link_loc+${#line}+1 # Add length of line to get
 # position.
 done

During stages 2a and 3a of the linking process (section 5.1 on page 32), Cost++ will
call this program extractor as:

62

 $gmm/Admin/keyword-list-linkspots.ksh "$gmm/lists/the_list"

For each line found within $gmm/lists/the_list, this extractor will print the
lower-cased version of this line as a linkspot identifier and print the beginning of this
line as a linkspot position. This information is then read by Cost++ to build the actual
LinkSpot objects. If the contents of $gmm/lists/the_list were:

 Browsers
 CollectionPresenter
 ComponentPresenter
 Core Dump
 Cost++
 Dennis F. Freeze
 Dumped Core
 FileBrowser

The script would print:

 browsers
 0

for the first line and:

 collectionpresenter
 8

for the second line. Cost++ would then build appropriate linkspots from this
information.

7.4.3 Writing new function extractors

This section describes how to write new function extractors when the functionality
you need is not found in the extractor libraries. Such extractors are written when good
performance is essential.

Similar to how a program extractor is called, a function extractor is passed a pointer
to the node to analyze, followed by up to 16 optional string arguments. This gives
function extractor calls the form:

LinkInfoList* <extractor-name> (Node *the-node ,const char* arg,
 ...);

the-node is a pointer to the C++ Node object that houses the node to search for
linkspots. arg, and any remaining arguments, are optional strings that the extractor
can use.

63

Function extractors gather and return linkspots in LinkInfoList objects, which are
arrays of LinkInfo objects. As mentioned in section 5.1 on page 32, the LinkSpot
objects we’ve discussed are really simplifications of their true underlying data
representation. LinkInfos contain an identifier and an array of objects (true
LinkSpots) that contain all the positions and nodes where linkspots have been
found. In creating new function extractors, you need not worry about directly creating
LinkSpot and LinkInfo objects. A set of higher-level functions in
$rgs/internal_link_sup.C are used by most function extractors for this task.

Following is a high-level description of the steps in writing a new function extractor:

1. Ensure you have everything necessary to compile Cost++ (see section 8.3 on page
71 for details).

2. Write the body of your extractor, adding to an existing library of extractors, or
creating a new library. Instructions for creating a new library are found at the
top of all extractor library sources (e.g.,
$rgs/general_feature_extractors.C). Many operations an extractor
performs (e.g., searching) are implemented through calls to the Node member
functions of the_node. For a list of these functions, see $rshs/Node.C and
$rshs/Node.h. Adding links to a LinkInfoList is done using the function
add_linkspot_to_list in $rgs/internal_link_sup.C. When you wish to
read more arguments passed to the function, the varargs facility must be used.
See examples in the library sources and see the Unix manual page on varargs.

3. Register the new function extractor in the initialization routine for the library in
which it belongs. For example, for $rgs/general_feature_extractors.C,
this is the function initialize_for_general_feature_extracting. You
will need to add a line of the form:

 sitable->register_exec_func ("<extractor-name>" ,
 <extractor-name>)

where <extractor-name> is the name of the new extractor. This will allow
Cost++ to correctly identify a node-relator with an extractor-name that is the
name of your new extractor.

4. After writing a new function extractor and registering it, recompile Cost++ (run
nmake in directory $rgs).

5. Add the linking section node-relators to the config files where this function
extractor will be used.

As an example of writing a new function extractor, consider the workproduct_link
extractor from section 7.4.1.1 on page 53. This extractor takes one argument, id, and
simply returns a linkspot with identifier id and position 0. The code for this function,
found in $rgs/sofware_feature_extractors.C, looks like:

64

 LinkInfoList* workproduct_link (Node *workproduct_node ,
 const char* id, ...)

 // This is used to globally link to workproduct nodes from a
 // cluster node template position. Simply return a global
 // link (position 0) with id. Example: ‘id’ =
 // "HEADER:<" We would then return location 0 within
 // ‘workproduct_node’ along with the keyword “HEADER:<".

 {
 if (DEBUG)
 {
 cout <<
 " **DBG--Executing feature extractor‘workproduct_link’";
 cout << "on node ‘" << workproduct_node->file_name () <<
 "‘.\n" << flush;
 };
 LinkInfoList *return_lil = new LinkInfoList;
 add_linkspot_to_list (return_lil, workproduct_node, 0,
 strdup (id));
 return (return_lil);
 };

The if (DEBUG) section is used to print debugging information when the -d option
is used in running Cost++ (see section 8.2 on page 70). A new LinkInfoList is
created by the line containing new LinkInfoList. Linkspots are added to a
LinkInfoList using add_linkspot_to_list, which takes an existing
LinkInfoList, a Node, position, and identifier.

The interface description for this extractor is found in $rgs/software-feature-
extractors.h, and looks like:

 LinkInfoList* workproduct_link (Node *workproduct_node ,
 const char *opt_attribute, ...);

The extractor is registered in the function
initialize_for_software_feature_extracting, found in
$rgs/software_feature_extractors.C. This is done with the line:

 sitable->register_exec_func ("workproduct_link" ,
 workproduct_link);

The use of this extractor in a node-relator can be seen in section 5.3 on page 37.

65

7.4.4 Linking section BNF

<linking-section> ::= (LINK [<node-relator>]*)
<node-relator> ::= (RELATE <link-role> <link-time>
 <src-item>
 <dest-item>)
<link-role> ::= <string> | *VARIABLE*
<link-time> ::= *GLOBAL* | *LATTICE* | *STRUCTURE* |
 CLUSTER | *CLASS*
<src-item> ::= (SRC_ITEM <where-look> <one-or-many>
 <extractor-type>
 <extractor-name>
 [<extractor-arg>]*)
<dest-item> ::= (DEST_ITEM <where-look> <one-or-many>
 <extractor-type>
 <extractor-name>
 [<extractor-arg>]*)
<where-look> ::= *STRUCTURE* | *CLUSTER* | *CLASS* |
 WORKPRODUCT | <action-name>
<one-or-many> ::= 1 | m
<extractor-type> ::= PROGRAM | FUNC
<extractor-name> ::= <func-symbol> | <full-pathname>
<extractor-arg> ::= <string>

7.5 Post-Processing Section Features

This section will help you determine when and how to write new post-processors. The
first subsection describes the post-processors that are available. When the
functionality you need doesn’t exist in any of the post-processor libraries, you will
have to create a new post-processing program or function. Creating such pp-programs
and pp-functions is very similar to creating function and program extractors for
linking (see section 7.4 on page 52). The main difference is that post-processors are
less complicated—they have no return value. The final two subsections give a high-
level description of how to write such pp-programs and pp-functions in terms of the
salient differences between writing feature extractors and post-processors.

7.5.1 Pp-function libraries

Pp-functions follow the same form as feature function extractors in that they exist in
separate, conditionally compilable libraries. Their discussion will also follow the same
format as function extractors (see section 7.4.1 on page 53).

7.5.1.1 Pp-functions found in $rgs/general_pps.C

These functions are all general post-processing functions used by many different
applications.

66

FUNC add_value_links_based_on_search <role> <search-field-name>
 [<beginning-of-line>] ⇒General

This pp-function adds value links to a node based on the node’s contents.14

DETAILS

If the regular expression <search-field-name> is found within the node, a
value link is created with role <role>, position 0, and value that is the contents
of the rest of the line following the match to <search-field-name>. Leading
blanks will be stripped from the value along with the ending newline. If
<beginning-of-line> 15 is True, < search-field-name> will only match at
the beginning of a line.16 If <beginning-of-line> is False or is missing, the
pattern <search-field-name> can occur anywhere in the node.

EXAMPLE

In Kiosk, the symbolic name of a node corresponds to the value of a value link
with role DisplayName. This is very useful for nodes that have non-descriptive
file names. For example, Unix mh mail messages correspond to numbered files.
To see more descriptive information about a mail message, we could have Cost++
generate symbolic names for mail messages that are the content of the subject
field of each mail message with the pp-descriptor:

 (*WORKPRODUCTS* FUNC add_value_links_base_on_search
 "DisplayName" " *Subject:"
 "True")

FUNC remove_link <node-to-delete-links-to> [<role>]
 [<owner>]⇒General

Remove a binary link that connect this node to <node-to-delete-links-
to>.

DETAILS

<node-to-delete-links-to> is the full pathname of the node. If <role> is
given, the link must have the given role. If <owner> is given, the link must have
the given owner.

EXAMPLE

14. In the future, adding value links in this way will be performed by the linking section.
15. The newline character cannot currently be passed into a Cost++ string, thus this extra parameter is needed.
16. Note that the way this is currently implemented, a match cannot occur on the first line of the node.

67

If we wanted to remove a link between node ~/tuna and node ~/fish that has
the role fishy, we could add the pp-descriptor:

 ("~/tuna" FUNC remove_link "~/fish" "fishy")

FUNC remove_node⇒General

Remove this node from memory.

7.5.1.2 Pp-functions found in $rgs/doc_pps.C

This library contains post-processors specific to hypertext documentation markup
language removal.

FUNC remove_markup_instructions <markup-pattern>
 <delete-delimiters>
 <delete-all>⇒Medium

This removes markup language instructions from nodes as discussed earlier in
this section. For details on markup language instructions, see section 7.4.1.2 on
page 56.

DETAILS

Given markup instructions that have the form:

<markup-pattern>‘<key-phrase>’

This pp-function finds all markup instructions that match <markup-pattern>
and deletes them. If <delete-delimiter> is True, the single quote delimiters
surrounding the <key-phrase> are also removed. If <delete-all> is True,
the delimiters and <key-phrase>s are removed.

EXAMPLES

The pp-descriptor:

 (*WORKPRODUCT* remove_markup_instructions "@LINK-REF" "True"
 "False")

would remove all occurrences of @LINK-REF within all workproducts read by
Cost++. It would also remove the delimiters surrounding the markup language
keywords. Thus:

 ...use @LINK-REF‘Component Browser’ to find...

would change to:

68

 ...use Component Browser to find...

FUNC add_help_menu_value_links <node> <role>⇒Very Specific

This function is useful for building hypertext on-line documentation help and is used
in generating the on-line documentation for Kiosk. It generates value links for specific
section headings found within a document. These value links are then used by Kiosk
to “jump” to these sections when a user wants help.

DETAILS

This function searches a node for all document section headings of the form:

\n[<n1>[.<n2>[.<n3>[.<n4>]]]] *<menu-item> menu for <menu-for>\n

For each such heading found, it will make a value link with role <role>, a value of
<menu-for>:<menu-item>, and an offset that is of the beginning of this section
heading.

For example, if node1 contains:

 ...
 [4.2] Links menu for Node Presenters
 ...

Calling FUNC add_help_menu_value_links node1 "Help_Menu", would
produce a value link with role "Help_Menu" and value "Node Presenters:Links
Menu" with an offset that is at the beginning of this section. Kiosk can then use this
value link to jump to this section when a user wants help concerning the Links menu
of a Kiosk node presenter.

7.5.1.3 Pp-functions found in $rgs/GMM_pps.C

The pp-functions of this section are very specific to the Group Memory Manager
application and to the Kiosk feedback mechanism. There is not enough space here to
describe these functions. See source code for details.

7.5.2 Writing new pp-programs

The invocation of pp-programs follows the same form as calls to program extractors,
namely:

 <pp-name> <node-path-name> [<pp-arg>]*

Cost++ runs the program or script in <pp-name>, but doesn’t read any information
printed by the pp-program.

69

7.5.3 Writing new pp-functions

Pp-functions have the form:

 void <pp-name> (Node *the-node, const char *arg, ...);

Follow these steps in writing a new pp-function:

1. Ensure you have everything necessary to compile Cost++ (see section 8.3 on
page 71 for details).

2. Write the body of your function, adding to an existing library of post-processors,
or creating a new library. Instructions for creating a new library are found at the
top of all post-processor library sources (e.g., $rgs/general_pps.C). Common
operations used in extractors include the various member functions available on
the Node object passed into your extractor. See function extractor notes for
details (section 7.4.3 on page 62).

3. Register the new pp-function in the initialization routine for the library in which
it belongs. For $rgs/general_pps.C, this is the function
initialize_for_general_pp. You will need to add a line of the form:

 pptable->register_PP_func ("<pp-name>" , <pp-name>)

This will allow Cost++ to correctly identify a pp-descriptor with a pp-name that
is the name of your new pp-function.

4. After writing the new pp-function and registering it, recompile Cost++ (run
nmake in directory $rgs).

5. Add the post-processing section pp-descriptors to the config files where this pp-
function will be used.

70

7.5.4 Post-processing BNF

<pp-section> ::= (POST-PROCESS [<pp-descriptor>]*)
<pp-descriptor> ::= (<pp-where-look> <pp-type> <pp-name>
 [<pp-arg>]*)
<pp-where-look> ::= *ANY* | *STRUCTURE* | *CLUSTER* | *CLASS* |
 <full-pathname>
<pp-name> ::= <func-symbol> | <full-pathname>
<pp-type> ::= PROGRAM | FUNC
<pp-arg ::= <string>

8 Using Cost++

8.1 Installing Cost++

In order to install Cost++, you must have access to the HP ninstall facility and have
obtained permission to install Cost++ by sending e-mail to
kiosk@hplkiosk.hpl.hp.com. Once complete, you can install Cost++ by following the
instructions listed after performing:

 ninstall -dh hplkiosk.hpl.hp.com kiosk-dev

After installing, make sure you setup the correct environment variables according to
the instructions.

8.2 Executing Cost++

The executable for Cost++ is located on $rb. To execute Cost++, enter:

 $rb/Cost++ [-d][-m] [<config-filename>]*

<config-filename> is the pathname of each config file to be read by Cost++. If none
are specified, the file $rgd/import.cost is used. As Cost++ is executing, it attempts
to give you feedback about the different stages of its execution. This includes what
section of the config file is being read, names of structure nodes created, internal links
created, and when the lattices built are saved out. For even more information, run
Cost++ with the debug option (-d). This is very useful when you are debugging
feature extractors and post processing functions.

The -m option tells Cost++ to run in multi-user mode. Its purpose is to avoid multi-
user contention problems (i.e., two or more users modifying the same node at the same
time). When in this mode, Cost++ attempts to communicate with other Kiosk and
Cost++ programs that are also running in multi-user mode. This communication is
performed through the Bart software bus[1][2]. If Bart is not running, Cost++ will
immediately terminate with a message to this effect. Otherwise, Cost++ will post all
nodes that it modifies over Bart. This results in all other multi-user Kiosk and Cost++

71

programs being informed of nodes this Cost++ is modifying. Furthermore, just before
Cost++ attempts to save out all the lattices it has built (stage 6), it will check if any
of the nodes it has modified are also being modified by other Kiosk or Cost++
programs. If any such nodes are found, Cost++ will terminate with a message to this
effect.

Examples:

 $rb/Cost++
 $rb/Cost++ $rge/simple1/simple1.cost
 $rb/Cost++ -m /tmp/banana.cost
 $rb/Cost++ -d /tmp/foo1.cost /tmp/foo2.cost

8.3 Compiling Cost++

Cost++ has been successfully compiled under HP-UX 7.03 and HP-UX 8.00 on the 300
series machines and under HP-UX 8.07 on the 700 series machines. There is no
guarantee that Cost++ will compile under other operating systems or on other
machines. The following guidelines should help you in recompiling Cost++:

1. Cost++ uses several different software libraries and packages which you will
need to install before compiling. This includes:
1. C++ version 3.0—you will need a C++ licence before you can install. Code is

available, via update, from hplego.cup.hp.com.
2. Codelibs—available via ninstall from hp-gjd.sde.hp.com as the package

codelibs. Always install Codelibs after you install C++.
3. lsdmem—use anonymous ftp to hplsdln. Change directory to

pub/liblsdmem, and read the README (“get README -”) file. Pickup the
package appropriate for your system. Then unpack it according to the
(simple) instructions in the README.

4. nmake—available via ninstall from hp-gjd.sde.hp.com as the package
nmake.

You need not worry about where to install C++, Codelibs, lsdmem, and nmake—
they all have hard-wired places where they are installed.

2. Install the Cost++ sources through:

 ninstall -vh hplkiosk.hpl.hp.com kiosk-dev.Cost++.src

Also make sure you have setup the necessary environment variables for
compiling, according to $ra/needed_env_vars.

3. Modify the $rgs/Makefileops file to include or exclude the machine and
libraries you wish to have in your version of Cost++.

72

4. Change directory to $rgs, and type nmake. The new version of Cost++ will be
placed on $rgs and on $rb.

9 Limitations and Future Work
An important part of learning a system is understanding its limitations. In this
section, Cost++ limitations will be considered through examining potential
enhancements to Cost++. These enhancements are placed into three categories that
are discussed below—feature extractor and post-processor improvements, language
consistency and simplification, and design and implementation improvements.

9.1 Feature Extractor and Post-processor Improvements

This section considers some potential improvements to feature extractors and post-
processors.

9.1.1 Linking the results of separate config files

Although we have successfully performed global linking between separately
generated structures using the external_link_parse_func, there is no current
way to link across the lattices generated by different config files. Such linking is
needed for situations like “see also” manual page references from workproducts of one
config file to a manual page generated within another config file. For example, the
InterViews library might be generated by the config file IV.config and the Codelibs
library generated using the config file Codelibs.config. Within each of these
libraries, all manual pages defined and referenced are linked. However, the cross-
library definitions and references will not be linked, as in a manual page reference
from an InterViews component to a Codelibs component. In this case, Cost++ needs
the manual page reference and definition information for each library for use when
other libraries are generated.

9.1.2 Richer node distinguishing ability

Extractors can only distinguish nodes for examination based on their class or through
being read by a specific action-descriptor. This is too limiting for certain applications.
For example, we might have similarly named nodes stored in different locations, as
in a Mark_Gisi classification node under a Bugs_Filed_By node and a Mark_Gisi
node under a Bugs_Fixed_By node. It is currently difficult to have a different feature
extractor that handles each of these different Mark_Gisi nodes.

Another related ability needed is to allow feature extractors to run over all nodes.
This could be accomplished by extending feature extractor’s where-look to include the
ANY option, like post-processors.

9.1.3 Feature extraction based on information from other nodes

Feature extractors and post-processors cannot easily create links based on
information that spans nodes. Their simplicity, in that they work on each node in

73

isolation, presents a problem when linking requires information about other nodes.
For example, we cannot currently sort a set of e-mail messages according to their
submission dates and link them in ascending order. No data structures or support
currently exist for storing information about previous nodes considered by feature
extractors and post-processors.

9.1.4 More flexibility for determining the link role generated

At present, the link roles specified in node-relators are a hardcoded name (in the
configuration file), or the name of the keyword found by a feature extractor. There are
cases where we would like to compute the link role in an independent manner. For
example, we might want to link an e-mail message with topic Meeting to a Meetings
classification node and have the link role be the contents of the From: field of the mail
message (e.g., Michael L. Creech).

9.1.5 Value link generation

Feature extractors should be able to build value links. Currently, post-processors
must be used to perform this linking.

9.1.6 Link owner specification

Currently, all links generated by Cost++ have an owner of Cost++. It is sometimes
desirable to generate links with a different owner so that these links will not go away
when a config file uses a KEEP-LINKS of USER-GENERATED. This could be done by
adding an optional OWNER field to node-relators.

9.2 Language Consistency and Simplification

Enhancements discussed here concern changing overly complicated and inconsistent
structures in the Cost++ language.

9.2.1 Node-relator where-look consistency

At present, a node-relator where-look can be the name of an action-descriptor or one
of a set of special symbols (e.g., *CLUSTER*, *CLASS*, *WORKPRODUCT*). To minimize
the number of these special symbols, the use of *CLUSTER* and *CLASS* should be
replaced with CLUSTER_MAIN andCLASS_MAIN, respectively.

9.2.2 Make workproducts more like structure nodes

The use of workproducts could be simplified and generalized by making them work
more like structure nodes. In this case, three major extensions to workproducts are
needed:

• Allow workproducts to have child nodes.

It would sometimes be useful to have workproducts that have other
workproducts or structure nodes as children.

• Allow workproducts to be read in at the top level.

74

At present, workproducts cannot be read in at the top level—they must be read
in underneath a structure node. For example, if we want to read a set of
workproducts that will be linked together by feature extractors, but we do not
need any structure nodes, we have to read the workproducts under a “bogus”
structure node and then remove this node using a pp-function.

• Add action-options to workproducts.

There are times when we need to change the value of equivalent action-options
for workproducts. For example, read a specific workproduct from a different
location then the standard location, as in: (NROFF-DOC ("foo.3I") IN:$rd).

9.2.3 Simplification of field-placeholder removal

Unused field-placeholders are currently removed through the *GLOBAL* action-
options; REMOVE-CLUSTER-EMPTIES andREMOVE-CLASS-EMPTIES. To reduce the
number of special action-options, these can be easily performed by post-processing
operations.

9.2.4 Rename the ROLE action-option

As we have discussed in section 4.1 on page 24, there is an ambiguity in the use of the
ROLE action-option for workproducts versus structure nodes. For clarification, we
might change ROLE intoROLE-TO-DECENDENT for structure nodes, andROLE-TO-
PARENT for workproducts.

9.2.5 Newline characters in strings

Various feature extractors and post-processors take strings that represent regular
expressions for searching purposes. The newline character cannot currently be passed
into a Cost++ string, causing “kludge” extra parameters to be added to pass newline
information to these functions.

9.3 Design and Implementation Improvements

This section considers features that require improvements to the way Cost++ is
designed and implemented.

9.3.1 Extensible parse functions

The current parse functions are difficult to extend. They should be restructured so
that they follow the same form as feature extractors—libraries of separately
compilable parse functions can be created along with script-based parse functions.

9.3.2 Better syntax error handling and recovery

Error reporting and recovery for syntax errors is very weak within the current
Cost++. The existing recursive decent parser should be replaced with a Unix YACC-
based parser with better error handling.

75

9.3.3 Greater user interaction

Cost++ currently works as a batch processing tool. There is a strong desire to make
some of its features interactively available from Kiosk. For example, users might wish
to command feature extractors to link over lists of specified nodes in an interactive
manner. This requires restructuring Cost++ so that feature extraction is
programmatically callable and physically separable from the rest of Cost++.

10 References
1.Brian W. Beach. Software Glue: Connecting Reusable Software Components. PhD

Thesis, University of California, Santa Cruz. 1992.
2.Brian W. Beach. Connecting Software Components with Declarative Glue. In

Proceedings of 14th International Conference on Software Engineering, pages 120-
137, Melbourne, Australia, May 1992.

3.Michael L. Creech, Dennis F. Freeze and Martin L. Griss. Kiosk: A Hypertext-based
Software Reuse Tool. Internal HP Laboratories Technical Report SSL-TM-91-03,
March 1991.

4.Michael L. Creech, Dennis F. Freeze and Martin L. Griss. Using Hypertext in
Selecting Reusable Software Components. Hypertext ‘91, pages 25-38, December
1991.

5.Mark A. Linton, John M. Vlissides, and Paul R. Calder. Composing users interfaces
with InterViews. IEEE Computer, pages 8-22, February 1989.

6.Parag Patel. Codelibs - About a C++ Code Re-use Library. In Proceedings of the 3rd
International TOOLS Conference, page 79, 1990.

7.Christine L. Tsien. Automated Link Creation in a Hypertext-based Software Reuse
Library. HP Laboratories Technical Report HPL-91-131, September 1991.

76

I-77

11 Index

% 13
ANY 43, 72
CLASS 34, 36, 43
CLUSTER 34, 36, 43
DEFAULT 26
GLOBAL 27, 34

DEBUG 27
KEEP-LINKS 28, 73
REMOVE-CLASS-EMPTIES 28, 74
REMOVE-CLUSTER-EMPTIES 27, 74

LATTICE 34
STRUCTURE 34, 36, 43
VARIABLE 33, 39, 41
WORKPRODUCT 36, 43
:CLASS 13
:CLUSTER 13
:INCLUDE 13, 45
:SET 13, 47
@LINK-REF 42
_build_C_state 51

A

action 23
action calls 10
Action_descriptor C++ object 51
action-arguments 51
action-call 12, 14, 50

action-name 14, 29
wildcard 27

action-descriptor 23
GLOBAL 27
action-option 23
dir_assist_general_node_parse_func 29
external_link_parse_func 29
parse function 29
special 29
structure node 24
value_link_parse_func 29

action-name 14, 29
action-option 23

ARGS 26
DEBUG 27
FUNC

dir_assist_general_node_parse_func 29
external_link_parse_func 29
value_link_parse_func 29

KEEP-LINKS 28
READ-LINK-FILES 27
REMOVE-CLASS-EMPTIES 28
REMOVE-CLUSTER-EMPTIES 27

add_help_menu_value_links 68
add_linkspot_to_list 63
add_value_links_based_on_search 66
ALL 28
applications

“group memory” of structured mail mes-
sages 4

On-line hypertext documentation 3
Read-only organizational chart 3
Reusable libraries of software components

4
ARGS 26
author_item_search 58

B

Bart 70
bi-directional 6
binary links 6
BNF 45

C

C++
version 3.0 71

C++ object 7
Action_descriptor 51
C_state 51
LinkInfo 63
LinkInfoList 63
LinkSpot 35
Node 62
true LinkSpot 63

C_state C++ object 51
C_state.C 51
Canvas example 7, 9, 12, 14, 17, 18, 19, 24, 30,

39, 51
circular 6
CLASS_MAIN 23, 73
classification nodes 8
classification-action-call 14
classification-name 14

I-78

cluster nodes 9
cluster_link 55
CLUSTER_MAIN 24, 73
cluster_to_config_linkspots 59
cluster_to_manpage_linkspots 59
cluster-action-call 14
cluster-name 14
Codelibs 30, 47, 71, 72
comments 13
config files 1
config_to_cluster_linkspots 59
config-filename 70
content-based linking 32
current working directory 15

D

data files
format 10
readability 45
shared 45

DEBUG 27
definition section 9
delete-all 67
delete-delimiter 67
dependency 53
description file 17
destination 6
destination linkspots 34
destination offset 6
dest-item 34
dir_assist_general_node_parse_func 29, 51
DisplayName 66
dumb-mode 55

E

evolving hypertext 2
restrictions 5
tool-based 2
user-based 2

example
Final Link Section 38
Interactor 39
Removing Markup Language Terms 43
see also linking 33

external_link_parse_func 29, 72
full-pathname 30
role 30

extractor-arg 37, 60
extractor-name 37, 60
extractor-type 36

F

feature extraction 1, 10
feature extractor 9, 32

function 35
author_item_search 58
cluster_link 55
cluster_to_config_linkspots 59
cluster_to_manpage_linkspots 59
config_to_cluster_linkspots 59
get_class 58
get_friend 59
get_memfuncs 59
get_parent_classes 59
help_file_linkspots 57
identifier-position pairs 60
LinkInfoList 63
manpage_to_cluster_linkspots 59
markup_linkspots 56
positioned_item_list_search 53
see_also_linkspots 33, 40, 60
smart_node_name_linkspots 33, 40, 54
toc_linkspots 57
workproduct_link 56

optional string arguments 35
performance 35
program 35

keyword-list-linkspots.ksh 39, 60
temporary file 36

field-pattern 54
field-placeholder pairs 18, 19, 27
filter_func 51
function extractor 35

G

general_feature_extractors.C 63
initialize_for_general_feature_extracting

63
general_pps.C 69

initialize_for_general_pp 69
generated nodes 7
GENERATE-WHEN-MISSING 19
get_class 58
get_friend 59

I-79

get_memfuncs 59
get_parent_classes 59
global 6
global-to-point 6
GMM (Group Memory Manager) 60, 68

H

HEADER 19
help_file_linkspots 57
hypertext

evolving 2

I

id 56, 63
identifier 35
identifier-position 60
import.cost 70
IN 19
INBOUND 15
inbound 6
initialize_for_general_feature_extracting 63
initialize_for_general_pp 69
initialize_for_software_feature_extracting 64
Interactor 39
internal_link_sup.C 63

add_linkspot_to_list 63
InterViews 7, 9, 24, 30, 72

K

KEEP-LINKS 28, 73
key-phrase 67
keyword-list-linkspots.ksh 39, 60
Kiosk 1, 25, 66, 68
ksh 39

L

lattices 6
LinkInfo C++ object 63
LinkInfoList C++ object 63
linking 32

content-based 32
destination linkspots 34
dest-item 34
feature extraction 1, 10
function extractor 35
link-role 33
linkspot 32

C++ object 35
identifier 35
Node 35
position 35

link-time 33
node-relator 32

extractor-arg 37
extractor-name 37
extractor-type 36
link-role

VARIABLE 33, 39, 41
one-or-many 36
where-look 35

process 32
detailed 34

program extractor 35
scope 33
see also example 33
source linkspots 34
src-item 34

linking section 9
link-role 33
links 6

bi-directional 6
binary 6
circular 6
destination 6
destination offset 6
global 6
global-to-point 6
inbound 6
non-intrusive 7
outbound 6
owner 6, 28
point-to-global 6
point-to-point 6
role 6
source 6
source offset 6
value link 6

linkspot 32
C++ object 35
identifier 35
Node 35
position 35

LinkSpot C++ Object 40, 60

I-80

LinkSpot C++ object 35
true 63

link-time 33
CLASS 34
CLUSTER 34
GLOBAL 34
LATTICE 34
STRUCTURE 34

link-to 54, 55
lsdmem 71

M

Makefileops 71
manpage_to_cluster_linkspots 59
markup_linkspots 56
markup-pattern 57, 67
mh 66
multiply referencing nodes 20
multi-user mode 10, 70

N

needed_env_vars 71
ninstall 70
nmake 63, 69, 71, 72
Node 35
Node C++ object 62
Node.C 63
Node.h 63
node-path-name 60
node-pathname 43
node-relator 32

destination linkspots 34
dest-item 34
extractor-arg 37
extractor-name 37
extractor-type 36
link-role 33

VARIABLE 33, 39, 41
link-time 33
one-or-many 36
scope 33
source linkspots 34
src-item 34
where-look 35

CLASS 36
CLUSTER 36
STRUCTURE 36

WORKPRODUCT 36
nodes 6

classification 8
cluster 9
generated 7
structure 7
text 6
workproduct 7

node-to-delete-links-to 66
NODE-TYPE 15
NONE 28
non-intrusive 7

O

one-or-many 36
option-name 15
OUT 15
outbound 6
OWNER 73
owner 6, 28, 66, 73

P

parse function 29
building new 50
form 51

pathname
absolute 21
full 6, 10, 15, 19, 30, 44
node-path 21
relative 21

Perl 5
placeholder-regexp 18
placeholders 10
point-to-global 6
point-to-point 6
position 35
positioned_item_list_search 53
post-processing 10

post-processor 42
pp-descriptor 43

pp-arg 44
pp-name 44
pp-type 44
pp-where-look 43

pp-function 43
pp-program 43

post-processing section 9

I-81

post-processor 42
add_help_menu_value_links 68
add_value_links_based_on_search 66
remove_link 66
remove_markup_instructions 67
remove_node 67

pp-arg 44
pp-descriptor 43

ANY 43
CLASS 43
CLUSTER 43
STRUCTURE 43
WORKPRODUCT 43
node-pathname 43
pp-arg 44
pp-name 44
pp-type 44
pp-where-look 43

pp-function 43
pp-name 44
pp-program 43
pp-type 44
pp-where-look 43
program extractor 35

R

RAW 55
raw-mode 55
READ-LINK-FILES 27
reference

backward 21
forward 21, 33

regcmp 18
remove_link 66
remove_markup_instructions 67
remove_node 67
REMOVE-CLASS-EMPTIES 28, 74
REMOVE-CLUSTER-EMPTIES 27, 74
remove-keyword 57
re-referring 21
ROLE 15, 74

DEFAULT 26
role 6, 66

precedence 26
scope 15, 26

ROLE-TO- PARENT 74

ROLE-TO-DECENDENT 26, 74
ROLE-TO-PARENT 26

S

scope 15, 26, 33, 48
global 48
structure statement 48

search-field-name 66
search-pattern 53, 58
section

definition 9, 23
link

feature extractor 32
linking 9

feature extractor 9
post-processing 9
structuring 10

see also 7, 72
See Also Linking Section Example 33
see_also_linkspots 33, 40, 60
side effects

post-processor 44
smart_node_name_linkspots 33, 40, 54
software bus

Bart 70
software_feature_extractors.C 63

initialize_for_software_feature_extracting
64

software-feature-extractors.h 64
source 6
source linkspots 34
source offset 6
special action-descriptor 29
src-item 34
statements 13

:CLASS 13
:CLUSTER 13
:INCLUDE 13, 45
:SET 13, 47
structure 13

structure node contents
description 17
description file 17
header 17
template 17

field-placeholder pairs 19, 27

I-82

fields 17
placeholders 17

template file 17
structure nodes 7

building with different templates 47
saving in different locations 47

structure statement
structure-option 14

structure-option 14
GENERATE-WHEN-MISSING 19
HEADER 19
IN 19
INBOUND 15
NODE-TYPE 15
option-name 15
OUT 15
ROLE 15

DEFAULT 26
scope 15
TEMPLATE 19
value 15

structuring section 10
statements 13

stubs 19
switching stations 9

T

task
adding symbolic names to nodes 66
building structure nodes with different tem-

plates 47
cleanly rebuilding lattices 28
compiling Cost++ 63, 69
cross-linking existing lattices 29
debugging feature extractors and post-pro-

cessing funcitons 70
elliminating too many structure-options 23
generating value links 29
giving different roles to linked workprod-

ucts 25
improving data file readability 45
incrementally changing lattices 28
linking author references to author nodes

58
linking see also section manual page refer-

ences 39

performing content-based linking 32
prototyping the construction of lattices 19
removing markup language terms 43
removing unlinked field-placeholder pairs

19, 27
saving nodes in different locations 47
saving user annotations 28
separating general text from placeholders

18
sharing data files 45
treating different nodes differently 24
writing new function extractors 62
writing new pp-functions 69
writing new pp-programs 68
writing new program extractors 60

TEMPLATE 19
template 17

field-placeholder pairs 19
fields 17
placeholders 17

template file 17
text nodes 6
toc_linkspots 57
tool-based 2
Type 9

U

Unix 1
ksh 39
mh 66
regcmp 18
shell-style wildcard characters 27
text file 6
varargs 63
YACC 74

user-based 2
USER-GENERATED 28, 73

V

value 15
value link 6, 9
value_link_parse_func 29

role 30
value 30

varargs 63

I-83

W

webs 6
where-look 35
wildcard 27
workproduct nodes 7
workproduct_link 56, 63
workproducts 1

Y

YACC 74

