[caciaro

Economics of Software Reuse Revisited

Ruth Malan*, Kevin Wentzel

Software Technology Laboratory

HPL-93-31
April, 1993

software reuse, cost-
benefit analysis,
decision support

Internal Accession Date Only

The field of software reuse is attracting increasing
attention from academics and practitioners who
recognize the economies to be gained from
reducing duplication of software development
effort. However, development for reuse requires
additional costs that are difficult to justify under
a single-project management view. Since reuse
benefits accrue over time and across a number of
projects, project management decision making
must shift to a multi-project, long-term view and
this changes management information
requirements. In particular, given scarce
resources management needs to be able to assess
whether software reuse will have the kind of
return that warrants the up-front investment in
reusability. This paper evaluates and extends the
pioneering contributions of other authors in the
area of cost-benefit analysis for software reuse. In
addition to incorporating timing and risk inherent
in future reuse opportunities, the analysis
includes reuse costs and benefits that were not
accounted for in previous models.

*Stanford University, Stanford, California
To be published in the Proceedings of the 3rd Irvine Software Symposium, University of California,

Irvine, California

© Copyright Hewlett-Packard Company 1993

1. Introduction

Software has played a vital role in improving productivity in almost every business activity, from
control and automation of manufacturing operations to improved communications and office
automation. Demand for software will continue to escalate as it is incorporated in more and more
household and business appliances, and medical and measuring instruments become even more
sophisticated. At the same time, the demand for software-intensive systems, like application
programs, is expected to increase, while the maintenance and evolution of existing systems will
continue to absorb a large share of development resources.

The problem is that this demand for software is growing faster than the ability to supply it. So far
no single software development productivity enhancing process or technology has proved to be the
"silver bullet" (Brooks, 1987) that will put an end to the software crisis. Nevertheless, there is
mounting pressure to change software development from an individualistic craft to a production
process that exploits reusable and interchangeable software parts (Cox, 1990), avoiding
duplication of development effort.

Despite the tantalizing promise of productivity gains through systematic software reuse, it has not
yet been adopted on a large scale. Practice has shown that many of the reuse inhibitors lie in the
realm influenced by management and the decisions they make (Griss et al., 1993). Decisions
based on old information systems do not consider the multi-project, long-term benefits of reuse
and inhibit reuse through misallocation of resources. When projects are evaluated individually,
project managers do not have any incentive, and more likely have a disincentive, to incur increased
costs and project delays through making components reusable. They need to know how their
choices impact other projects and the organization as a whole.

This paper develops a framework for assessing the costs and benefits of reuse to facilitate informed
choices about reuse options. A survey of the literature revealed a number of deficiencies in the
current models, and motivated the development of an enhanced model. This model is presented in
a series of stages, where each stage expands the factors considered. Thus, an initial model based
on development phase costs is expanded to include maintenance phase costs. Finally, other reuse-
related benefits and costs are also incorporated in the model. This approach facilitates comparison
with the previous models. More importantly, it provides successively tighter lower bounds on the
full opportunity cost of not adopting systematic reuse. The cost saved in the development phase
provides a very conservative estimate of reuse benefits. Consideration of life-cycle cost saved
together with the increased profits from some of the business opportunities opened up by reuse,
provides a more comprehensive estimate of the gains from exploiting reuse.

2. Literature Review

A number of seminal papers have contributed useful insights into the costs and benefits of reuse.
Bollinger and Pfleeger (1990) emphasize that understanding the benefits of reuse requires a long-
term multi-project perspective. They support the notion of a baseline project that facilitates cost
estimation by concentrating on the expected differences from the baseline rather than the entire
project cost. Barnes and Bollinger (1991) reformulate Bollinger and Pfleeger's reuse benefit
model and use it to motivate one of the most comprehensive discussions of reuse cost drivers in the
current literature. Mayobre (1991) presents a model for estimating the return on investment for
reuse components. Gaffney and Cruickshank's (1992) return on investment (ROI) model is a
useful analytical tool, but it relies on a number of simplifying assumptions.

There are a number of deficiencies in the current models. In general, the models do not take into
account reuse-specific setup and overhead costs. Only Lim (1992) considers the timing and
uncertainty of the future reuse instances. The models of Harris (1992) and Lim (1992) extend the
state-of-the-art in economics of reuse models in the direction of incorporating quality and time-to-
market, respectively. Still, the benefits of improved quality and lower maintenance phase costs, as
well as other, less tangible, benefits of reuse were not fully and explicitly considered in the
antecedent analyses. As a result, many of the long term benefits of improved productivity and
enhanced business opportunities were overlooked.

3. Cost-Benefit Analysis Framework

Since reuse involves multiple products evolving through their respective life-cycles, an assessment
of the economic impact of a systematic reuse program must incorporate cost and revenue
projections that extend beyond that of a single development project. The basic approach that we
advocate consists of systematically identifying the factors that contribute to changes in costs and
revenues as a consequence of reuse. Estimates of the resulting changes in the profit position are
then incorporated into the cost-benefit assessment. This paper outlines the major reuse-related cost
factors associated with the development and maintenance phases, and incorporates them into a
long-term, multi-product net benefit model. Strategic business advantages are also identified, and
the model is expanded to incorporate revenue enhancements that result from reuse.

3.1 Development Costs

3.1.1 Setup and Overhead Costs

New systems will be needed to support a full-fledged systematic reuse program. For instance, a
library classification system and a library registration, retrieval, and update mechanism may be
critical to some reuse programs and may need to be developed or purchased. Other setup costs
would include designing the organization and software development process to support systematic
reuse. Since these are generally non-trivial activities, the level of investment in these support
systems should be evaluated in conjunction with the expected benefits over the anticipated life of
the systeml.

The ongoing costs of expanding and maintaining the library system, a management support
structure to ensure systematic reuse, and training programs, should be assessed as indirect
overhead. Additional reuse-specific activities include domain and reusability analyses to identify
the components that will most effectively support the consumers” development projects. If the
related costs are not reflected in the analysis of the net benefits for the reuse program, the
investment decision is biased in favor of reuse.

Sunk costs of unsuccessful library searches and other failed reuse attempts are also part of the
labor overhead. While generally incurred by the consumer, these costs are attributable to the
producer’s level of investment. Therefore, if these costs are significant, they should be included in
the producer-consumer network-wide costs so that they can be reflected in investment decisions
and in the determination of the appropriate library stocking level and library support services.

3.1.2 Producer Costs

The reusability of software components depends on a number of factors such as the degree of
generality, complexity, and fit to expected use, as well as the quality of the component, and the
extent and utility of documentation and accompanying test suites. Further, the component has to
be available, and hence must be certified and entered in a library, or broadcast by some other
means. Therefore, component producers face additional costs over and above the usual
development-cycle costs, and these are estimated to be anywhere from 30% to 200% (Balda and

1 If the producer-consumer network is in a very unstable environment, the risk of not recouping the investment may be too high to justify the
up-front outlay.

We adopt the convention of refetring to development groups that reuse components to create their products as consumers, and those that
create or re-engineer components as producers. A component is any packaged set of work products that is made available for more than one
use, and architectures, interface specifications, requirements specifications, high and low level designs, code modules, documentation, and test
data are all considered to be potentially reusable work products.

Gustafson, 1990) higher than the cost of producing a component not intended for reuse. When a
component is re-engineered, the producer still has to expend effort in understanding the existing
component, modifying it to include the desired reusability features, and ensuring that it is of high
quality.

3.1.3 Consumer Costs

In order to use an existing component, the consumer must first select the component. Selection
entails articulation of the component requirements in a suitable form, search and retrieval of the
component, understanding of what the component does, and verification that it does indeed fit the
purpose. The component may need to be specialized to fit the consumer's current needs. This
involves adaptation (with corequisite program understanding and subsequent testing). Lastly, the
component must be integrated into the system under development, and tested.

The consumer still has to develop the code that is unique to the project, but saves by not having to
re-invent and re-implement the reused work products — as long as the selection, specialization and
integration efforts are less than the consumer would have to expend to create the required
functionality. In general there is a tradeoff between the producer investment in reusability, and the
consumers' cost to incorporate the component. For instance, the producer's cost to design and
implement black box3 components may be higher than that for white box3 components, but
consumers save by not having to understand, modify and test the component in order to reuse it.

3.1.4 Development Phase Model
Model 1: Basic Development Phase Model

For any software development organization, independent of its orientation with respect to reuse,
the development costs are the overhead and labor costs incurred in the various stages of the
development cycle. Component producers face additional costs to make component(s) reusable.
Consumers of reusable components incur costs of selecting, adapting and integrating the
component(s), but save by not having to develop the component(s) anew in each product. The net
benefit from reuse is not simply the difference between the total consumer's saving and the
producer's cost. Reuse-specific overhead and setup costs, such as the cost of installing and

3 In black box reuse, the component is used as-is. On the other hand, in white box reuse the component is modiﬁg:d to obtain the desi{ed
variant, with the consequence that upgrades to the component also have to be modified if they are to be incorporated in the product, reducing
the potential maintenance phase saving.

managing the library, and conducting a domain analysis, should also be subtracted from the
consumer savings to give a more accurate representation of the net development cost saving, S.
The basic model for S is:

s=[i (CN-CCR)]-[CPHA]

i=1

where

n = number of products sharing the reusable components

Cn = cost to develop product i without reuse

Cx = cost of creating product i with reuse

CN- Ccri = expected consumer cost saved for product i

Crr = expected cost that the producer incurs in producing the reusable components
A = reuse-specific overhead and setup costs incurred by the family of products

Model 2: Taking the Time Value of Money into Account

When the reuse instances are expected to occur over a longer time horizon, the timing of the cash
flows should be taken into account. This is done by incorporating a standard present value
analysis into the model. The nomenclature is extended further so that:

i = interest rate per period

M = number of periods in the time-horizon under consideration

m, = expected number of periods taken to produce the reusable component

sx = expected period at which a consumer starts to create product k

fi = expected period at which a consumer finishes creating product & with reuse

o = expected period at which a consumer finishes creating product k& without reuse
A; = expected reuse-specific overhead cost in period j

CNy = expected Consumer cost to create product k in period j without reuse

CeRyy= expected Consumer cost to use the Reusable component in product & in period j
Cpr, = expected cost to produce component incurred in period j

mp

= Cpr
Cpr = 2 ;1 = discounted expected Producer's cost to create the Reusable component(s)
j=1(1-1i

fe

—= Cer,.
Cer, = 2 ’; = discounted Consumer cost to use the Reusable component(s) in product &
j=se (1-1

= discounted total cost of producing product k& with No reusability

M
A= 2] - = discounted overhead and setup costs

The discounted net benefit (or net present value) is:

5[Cx-T) | Gno .

i=1

Model 3: Taking Uncertainty in Reuse Instances into Account

The degree of uncertainty about the evolution of a product family tends to increase as the time
horizon is stretched. Thus, anticipated reuse opportunities arising from products or upgrades
planned for, say, the fifth year of the planning horizon are likely to be much more uncertain than
those in the current one-year business plan. To incorporate the uncertainty as to whether the
component will indeed be reused, the probability of each reuse instance should be estimated, and
the expected consumer savings computed. The model then becomes:

S= [‘Zl:,l (Em- Ecn) pi] - [EPR +Z]

where pj = probability that reuse instance i will be actualized.

Other aspects of uncertainty may also have a significant impact on the expected net saving. For
example, the consumer cost saved depends on whether the consumer takes advantage of black box
reuse opportunities (when they exist) or modifies the component. In that case, the probability that
a consumer will opt for black box or for white box reuse would need to be assessed in order to
estimate the expected consumer cost saving. Considerable uncertainty also surrounds the producer
cost and consumer savings estimates. Techniques such as the Delphi method could be used to
establish credible probabilities and expected values. Sensitivity analyses should also be conducted
to determine the impact of varying input parameters like the expected costs.

3.2 Life-cycle Costs

A decade ago, Wegner (1983) pointed out that:
"The view of maintainability as a form of reusability is novel and important. It captures the idea of
reusability in time within a dynamically evolving system. Evolutionary dynamic systems require
reusability in time of unchanging parts of the system while other parts of the system evolve.”
More recently, researchers have considered the impact of reusability on maintenance but have not
explicitly considered maintenance costs in any of the cost-benefit models. This deficiency was
noted by Lim (1992), but he did not present an explicit formulation of maintenance cost savings.

By centrally maintaining the reuse components, managing their evolution, and propagating
upgrades to new products as well as updated versions of older products, the organization can
exploit further opportunities to reduce duplication of effort. Moreover, centralized enhancements
to black box components enable a whole platform of derivative products to be produced more
quickly and at lower cost.

The maintenance and management of evolving components increases the cost to the
producer/maintenance group. Consumers benefit from not having to duplicate corrective and
evolutionary maintenance activities, though they do have to incur some cost to incorporate
upgraded component(s) into their products. The net cost saving, S, is the net cost saved in the
development cycle, plus the net cost saved for each product upgrade. Thus,

T

J— — — — —— r ——— —
[CNi- CCRJ + (CNUU' CCRu) -|Cer+ Y Cpry+A
i=1 ji=1 i=1

S=

M =

where Cy; - Ccg, is, as before, the discounted expected consumer cost saved in the development of

product i, and Cpg is the discounted expected producer's development phase cost. For each of the
r upgrades:

Cnu,- Ccru,; = cost to produce upgrade j to product i without reuse less the consumers cost
to integrate the upgraded component(s) into product i
= consumer saving on product i upgrade j
Cery = discounted expected producer's cost to create upgrade j

The discounted aggregated life-cycle consumer costs saved is

sa=Y, l[Cu-Cer)+ Y (Cnuy,- Coru) 1)
i=1 j=1

and the discounted life-cycle producer and overhead cost is

T
Cp=Cpr + Z Cpryt+ A)
=1

In addition to avoiding duplication of engineering effort, reuse of high quality components reduces
the life-cycle cost of quality. Balda and Gustafson (1990) warn that the "cost of software failure
can be enormous, and even greater when a failing component is in several products.” Reuse does
not magically improve the quality of components. However, the extra cost of designing and
building a more robust component, and thoroughly testing it, can be amortized over the reuse
instances (Malan, 1993b). Moreover, if a component defect is uncovered during test or use of one
of the consumers' products, the repair can be propagated to upgrades of all of the products that use
the component, and all future uses of the component also benefit. As a result, the number of
defects in a reusable component generally decreases the more the component is reused (Gaffney
and Durek, 1989, and Biggerstaff, 1991).

Malan (1993b) shows that reuse of high quality work products reduces the expected time to
complete development, and enhances the predictability of the process, by reducing the amount of
rework and retest. As a result, reuse reduces internal failure and appraisal costs. Therefore, reuse
may be viewed as an up-front investment in defect prevention that reduces the total cost of quality
in a series of consumer development projects.

3.3 Other Reuse Benefits

Thus far, the potential savings in development and maintenance costs from reusing common
components in a number of product variants and across product lines, have been considered.
While these savings may be sufficient to justify the investment in systematic reuse, a number of
managers at Hewlett-Packard (HP), and elsewhere, have initiated reuse programs for strategic
business reasons (Wentzel, 1992). Indeed, gains from higher productivity may translate into
earlier time-to-market, higher quality, and expanded business opportunities, enhancing profits not
just by reducing costs, but also by increasing revenues. Many of these effects are hard to quantify,
but if reuse is expected to significantly enhance the company's position then it would be wrong to
ignore them. As Kaplan (1986) notes:

"Although intangible benefits may be difficult to quantify, there is no reason to value them at zero

in a capital expenditure analysis. Zero is, after all, no less arbitrary than any other number.

Conservative accountants who assign zero values to many intangible benefits prefer being

precisely wrong to being vaguely right.”

3.3.1 Accelerated Time to Market

The ability to get the right product to market quickly without sacrificing quality is becoming the
hallmark of competitive advantage in a growing number of industries (Wheelwright and Clark,
1992). Rapid product development is of strategic value because it allows an agile response to
competitors' actions (Stalk, 1988), and a timely response to shifts in demand or changes in
technology. Increasingly short product life cycles are also adding to the pressure to shorten the
time it takes to get from a new product idea to market introduction (Rosenau, 1990). In many
industries the price that can be obtained for the product diminishes with time (Ulrich et al., 1991)
as competitive products enter the market. On the other hand, being among the first to introduce an
innovative product in many cases enables the company to capture some of the more sluggish
competitors' market share. Furthermore, earlier introduction brings the revenue stream forward,
and receipt of earlier cash flows contributes additional interest revenue (Ulrich et al., 1991).

As a result of these competitive advantages of shortened time to market, one of the common
reasons for considering reuse is its potential to reduce development time (Wentzel, 1992). Itis
particularly attractive if development time can be accelerated without increasing development costs.
However, the ability to reduce time to market and development costs is a fairly rare feature since
acceleration of a project will normally increase development costs (Graves, 1989). Not only do the
diseconomies of scale associated with software development team size (immortalized in Brook's
"Mythical Man-Month", 1975) mean that project acceleration costs tend to grow non-linearly, but
software frequently remains on the critical path for product development. In the case of software
reuse, however, the effort reduction in consumer projects may be applied to reduce development
time, as long as the reused software is on the critical path for the product development, or the
resources freed by reuse can be applied to critical path activities. Moreover, it is quite possible
that, over the span of the reuse program, development costs will indeed decrease because the up-
front reuse costs are spread across a number of reuse instances.

3.3.2 Alternative Use of Freed Scarce Resources

The resources that are freed up when redundancy in development and maintenance is eliminated
may be used to improve the product (by adding features or enhancing the quality), shorten
development time of the current project or be reallocated to concurrent projects. In both of the
latter cases, the scarce software engineering resources become available earlier than they would if
reuse was not employed. Thus, the benefit of reuse can extend beyond the current reuse project to
concurrent or subsequent projects.

3.3.3 New Product Opportunities

Because product development is more nimble and less costly with reuse, developers can consider
attacking niche markets with greater product variety, and extending their market by providing
custom solutions that may not have been practical without reuse (Wentzel, 1992). Indeed, the
Japanese "software factories" arose because there were insufficient software engineering resources
in Japan to supply the demand for customized systems (Cusumano, 1991). In the context of
modularity of physical products, Ulrich and Tung (1991) make a point that is very germane to
software components: in a make-to-order environment, the order lead time for customized systems
can be reduced by having standard components on hand, so that only the customized parts of the
system have to be developed once the order comes in. Thus, not only can customization be
achieved more cost-effectively, but in a more timely manner as well.

Unless the components provide unreplicable competitive advantage over competitors, the
components or even libraries (or kits) could themselves be sold as products, extending the number
of reuse instances beyond the bounds of an internal producer-consumer network.

3.3.4 Product Line Consistency

A number of very large organizations, like HP, are faced with the problem of having to divide
themselves up into operating divisions. In the process, members of product families are
sometimes produced in different divisions. With this in mind, it is perhaps not surprising to find
that one of the reasons for considering reuse in HP was reported as:

"Standardize the product line — A collection of divisions developing products which fit in the

same product line heard it's customers asking for standardized interfaces” (Wentzel, 1992).
Standardized user interfaces give a product family an edge over competitors’ products when the
end users’ switching costs are high. For instance, if the end users have had to invest in learning
how to use one member of the product family, they may prefer to use a product from the same
family so that they are not required to learn a new interface. Standardized device interfaces may
also factor into a customer's purchase decision, because it allows them to hook up the same
devices that they use for the other members of the product family. If standardized interfaces are
not in place, then reuse provides these benefits. On the other hand, if the products already have
standardized interfaces, then this may be a good opportunity to employ reuse to centralize
maintenance of the common interface.

10

3.3.5 Specialization and Centralization of Expertise

Software reuse can be applied to achieve enhanced productivity through division of labor and
specialization. With more up-front planning in the domain analysis phase, components can be
specified in a such a way as to make component production independent of consumption.
Producers can then develop greater expertise and experience in their more focused portfolio of
components, making development and maintenance of related components more efficient.

Differences between people account for the largest variation in software quality (Boehm and
Papaccio, 1988), and productivity differences between software engineers also vary widely
(Boehm, 1987). In view of these differences, Boehm (1987) remarks that "one of the biggest
leverage actions you have at your disposal is to get the best people working for your project or
organization.” Software reuse introduces the beguiling possibility of simultaneously using the best
people on multiple projects. Thus, by reusing their work products, their high productivity and
high quality output benefits a range of products rather than just one project at a time. Furthermore,
recognizing that outstanding problem solving ability in specialized areas is scarce, organizations
can leverage their experts through reuse to benefit multiple projects simultaneously.

Thus, specialization or centralization of expertise can have two effects. First, features not formerly
feasible for projects that lacked the expertise become viable. Second, enhancing productivity
through specialization, or capitalizing on the most productive, talented workers, will further reduce
development time.

3.3.6 Additional Opportunities

Reuse might give rise to other opportunities to increase profits. For instance, one HP division,
under regulatory pressure to certify its embedded software, is considering reusing previously
certified components in order to reduce its cost of compliance (Wentzel, 1992). This would be an
additional cost saving beyond the development and labor cost saving, and should be included in an
assessment of the reuse benefits in that environment. Such case-specific opportunities should not
be overlooked.

3.4 Other Costs

Although software reuse has great potential to enhance a software development organization’s
competitive position, it would be a mistake to approach reuse with unguarded optimism. For

11

instance, while downstream product development is accelerated by well-managed reuse, the first
product to be released with reused components could be delayed by component production. The
penalty for this delay should be included in the evaluation, and alternative options, like retrofitting
the component for reuse, should be considered if the penalty is too high.

It should also be recognized that the amount of commonality among products is a decision variable
that may entail tradeoffs between fine-tuning components to meet the specialized needs of the target
product niche, and achieving economies of scope through standardization of components. Of
course, the consumer could modify the component so that its performance and features meet the
customer's requirements exactly — but this will be at the expense of maintenance savings through
black box reuse.

3.5 Estimating Increased Profits from Reuse

In contrast to the development and maintenance costs which are generally estimated by applying a
labor rate to project management's estimates of effort reduction, many of the benefits discussed are
manifest in product sales. Consequently the marketing department should be involved in
estimating expected increases in profits that arise from exploiting reuse.

It should be noted that when estimating the benefits from these various categories, it is important
not to double count benefits (or costs). Thus, for instance, if the resources freed by earlier
completion are to be used to create new products, then the opportunity cost should not be estimated
for both new product and freed resource categories.

The nomenclature is extended, so that

VIIo = discounted aggregated incremental profit from new opportunities afforded by reuse
The incremental profit from additional business opportunities, the life-cycle consumer costs saved,

(equation 1), and the life-cycle producer costs and overhead (equation 2), are the primary
components of the net benefit model. Putting them together, the net benefit, B, from reuse is:

B=SA+VEA-EP

4. Illustrative Example

Although the following example is hypothetical, the assumptions are consistent with real project
data. Based on measured data obtained from many software development projects at Hewlett-

12

Packard, Harris (1992) estimated that with a 50% reuse level and a 5x quality improvement in the
reused component over new code, producer effort was increased by 108% and consumer effort
reduced by 40% during the development phase. During the maintenance phase Harris estimated
that producer effort was increased by 25%, and consumer effort reduced by 42%. These effort
factors (assuming a 50% reuse level) are used together with the following assumptions to estimate
reuse benefits.

Hourly rate for software engineers (including basic salary ~ $75

and administration overhead)

Project team size 20
Development cycle time without reuse (months) 12
Annual inflation in labor rate 5%

The simplifying assumption that all of the products are comprised of the same amount of new and
reused code is made to better demonstrate a number of points. The model results are shown in the
table below. Considering first the results from the basic model (Model 1) it is clear that increasing
the number of reuse opportunities increases the total net benefit. The break-even point is reached
by the third reuse.

In Model 2, annual cash flows are discounted back to the present to reflect the fact that a dollar
earned in future periods is worth less than a dollar invested today. Although the net saving is still
positive by the third reuse, the discounted cash flow results show that models that do not take the
time value of money into account give unduly optimistic estimates of net benefit when the reuse
instances are spread out over time.

Model 3 incorporates uncertainty as to whether future reuse instances will actually take place.
Since the third reuse is considered highly likely, though not certain, the expected (discounted)
value of the consumer savings is less than in the previous deterministic model, and now the break-
even point is only reached after the third reuse. In Model 4, the savings from one upgrade to each
product are incorporated. The break-even point is reached after the first two products and their
upgrades, but the total savings over five reuses plus upgrades is increased by 27%. This indicates
that incorporating (corrective and evolutionary) maintenance savings into the model better reflects
the reuse opportunity.

13

Model 1: Basic Development Phase Costs
Producer | Product1 | Product2 | Product3 | Product4 | Product5

Cost
Year of Release 0 1 1 2 2 3
Without Reuse 300,000 630,000 630,000 661,500 661,500 694,575
With Reuse 624,000 378,000 378,000 396,900 396,900 416,745
Reuse-specific Overhead 35,000 25,000 25,000

Consumer Saving

Cumulative Net Saving -624,000 -407,000

252,000 252,000 264,600

-155,000 84,600

264,600

349,200

277,830

602,030

Model 2: Taking the Time Value of Money Into Account

Consumer Saving after
Discounting (i = 7.5%

N

234,419 234,419 228,967 228,967 223,642

. . - mmw
g”"?“'a“"e Discounted Net -624,000| -422,140| -187,721 19,613| 248,580 452,008
avmg

Model 3: Taking Uncertainty in Reuse Instances into Account

Probability of Reuse 1 1 0.90 0.75 0.50

Consumer Saving with

| Discounting & Uncertaint 234,419

234,419 206,070 171,725 111,821

Cumulative Discounted -624,000| -422,140| -187,721 3284| 168,441| 260,138
Expected Net Saving

Model 4: Including a Future Upgrade

Year of Release 1 2 2 3 3 4
Probability of Reuse 1 1 0.685 0.38 0.25
Upgrade without Reuse 75,000 157,500 157,500 165,375 165,375 173,644
Upgrade with Reuse 93,750 91,350 91,350 95,918 95,918 100,713
Reuse-specific Overhead 10,000 10,000 10,000

Additional Consumer Saving

Cumulative Discounted

! -717,750| -467,301 61 4 75,641 38,766 231,737 329,599
Expected Net Saving

4 The interest rate may be the prevailing bank rate, reflecting the interest that the investment would eam if it was deposited instead of
invested in reuse, or the company's hurdle rate, reflecting what the investment would eam in some altemative use within the company.

Conditional on Product 3 being produced, the probability of its upgrade being produced is assessed as 0.75. Thus, the probability of
groducing the upgrade is 0.9%0.75 = 0.68. Similarly, the conditional probability of upgrades to products 4 and 5 being produced is 0.5.

This is the cumulative saving for the first product plus its upgrade. Overhead for the year is assumed to be incurred regardless of whether
the next reuse instance is actualized (i.e. a semi-fixed cost, such as salaries).

14

Estimating the Opportunity Cost of Shortened Time to Market

In the hypothetical scenario, the consumer effort is reduced by 40% as a result of reuse and it is
assumed that this corresponds to reducing the development cycle by an equivalent amount, so that
the product reaches the market in seven months rather than twelve. Working with marketing's
profit forecasts, an estimate of the increased revenue can be obtained by simply shifting the
product's entire revenue stream forward to the introduction date that reuse is expected to make
possible. The estimate of additional revenue is the interest on the earlier cash flows after any
cannibalization effects are taken into account. A somewhat less conservative approach assumes
that the earlier cash flows are over and above those that marketing had forecast. Then, after any
cannibalization effects are accounted for, not only is there increased profits from extra sales, but
also from interest on earlier sales as well.

It is further assumed that the release dates for products 1 and 2 are not delayed by component
production, and that product 3 does not compete with any of the company's existing products, the
sales forecast for the next year is 24,000 units and the selling price is $1,000. Now, if sales
increase by 5,000, and the profit margin is 15%, then profit increases by $750,000 plus interest.
This example demonstrates that the profit impact of earlier time to market might dominate the cost
savings from reuse. Therefore, if the competitive environment dictates that time to market is an
important determinant of life-cycle profits, then the contribution that reuse makes to profits by
hastening product release should be incorporated in the assessment of reuse benefits. This
example shows how important it is to include additional profits from any business opportunities
that reuse gives rise to, even when they are not easy to quantify.

5. Conclusion and Directions for Future Research

Systematic software reuse differs from traditional software development in important ways that
impact the choices and opportunities that business decision makers face. As a result, management
faces new information needs. Like manufacturing facilities, systematic reuse entails a significant
up-front investment and the return is only received over an extended period of time. However,
unlike plant and equipment, "knowledge assets” like reusable software components are not
reflected on business balance sheets. Because they are not valued, it is more difficult to justify the
investment in them. An analysis framework that appropriately reflects the factors relevant to reuse
has been developed to support the reuse investment decision. The cost-benefit models are easily
extended to reflect return on investment or to determine the break-even number of reuse instances,
or modified to support component-level investment decisions (Malan, 1993a). The decision
criteria that the framework supports ranges from the return on reuse investments, to the impact of

15

various resource allocation alternatives. As a tool for determining the value of components, it also
provides a basis for a mechanism to redistribute some of the reuse benefits to producers so that
they have the incentive to produce components whose expected return justifies the investment.

It should be noted that this model requires cost and benefit estimates as input parameters, and the
complex issue of how best to estimate these costs and benefits is beyond the scope of this paper’.
Nevertheless, the model is intended for practical application, and therefore cost estimation is of
vital importance. Pfleeger and Bollinger (1990) survey a number of software cost estimation
models, and point out the deficiencies of many of these models with respect to reuse programs.
Balda and Gustafson (1990) develop a cost estimation model specifically for reuse. Scacchi
(1991) analyzes a number of studies of software productivity, and identifies variables that
influence productivity. Since productivity drivers may be viewed as the inverse of cost drivers,
this approach is very relevant to cost estimation for reuse. Current research is focused on
identifying metrics suitable for reuse cost estimation, reusability assessment, and project control.

Implications for activity based costing techniques for software development in a systematic reuse
environment also need to be investigated. By identifying the various activities in a reuse program,
better estimates of the effort, and hence costs, can be obtained, and the relevant tradeoffs can be
made explicit. Producer cost drivers include choice of technology (programming language and
other tools, for instance), reuse mode (create afresh or re-engineer) and degree of generality of the
components. Consumer cost drivers include the technology chosen by the producer, and the
modularity or independence, functionality, correctness, and complexity of the components. While
Barnes and Bollinger (1991) present a useful discussion of a number of factors that influence reuse
costs, much remains to be done in this area.

Acknowledgments

This study was made possible by the generous support of Hewlett-Packard. In particular, we
would like to thank Corey Billington and Martin Griss for arranging funding for this project.
Without their enthusiastic support for academic-industry cooperation and field research this project
would not have been possible. Also, the shared insights and thoughtful comments of the members
of HP's Software Reuse Department and Corporate Software Initiative are gratefully
acknowledged.

7 In the case of code level reuse, a simple approach is to apply a unit cost to some estimate of code size to obtain the cost estimates (as
Gaffney and Cruickshank (1992) do in their reuse economics models). However, we prefer to defer placing such restrictions on the model so
that the environment in which the model is used can dictate any simplifying assumptions that are appropriate.

16

References

Balda, D,. M. and D. A. Gustafson, "Cost Estimation Models for the Reuse and Prototype
Software Development Life-Cycles”, ACM Sigsoft Software Engineering Notes, 15 (3), pp. 42-
50, 1990.

Banker, R. D. and C. F. Kemerer, "Scale Economies in New Software Development”, [EEE
Transactions on Software Engineering, 15 (10), pp. 1199-1205, October 1989.

Barnes, B. H. and T. B. Bollinger, "Making Reuse Cost-Effective", IEEE Software, 8(1), pp. 13-
24, January, 1991.

Biggerstaff, T. J., "An Assessment and Analysis of Software Reuse", STP-MT-119-91, 1991.
Boehm, B. W. "Improving Software Productivity", IEEE Computer, pp. 43-57, September 1987.

Boehm, B. W. and Papaccio, P. N., "Understanding and Controlling Software Costs", I[EEE
Transactions on Software Engineering, 14(10), pp. 1462-1477, October 1988.

Bollinger, T. B. and S. L. Pfleeger, "Economics of Software Reuse: Issues and Alternatives",
Information and Software Technology, 32(10), pp.643-652, December 1990.

Brooks, F. P., The Mythical Man Month, Addison-Wesley, Reading, MA, 1975.

Brooks, F. P., "No Silver Bullet: Essence and Accidents in Software Engineering", COMPUTER,
April 1987.

Cox, B. J., "There Is a Silver Bullet", BYTE, October 1990.

Cusumano, M. A., Japan's Software Factories: A Challenge to U.S. Management, Oxford Univ.
Press, 1991.

Gaffney, J. E. Jr. and R. D. Cruickshank, "A General Economics Model of Software Reuse",
Proceedings of the 14th International Conference on Software Engineering, pp. 327-337, May
1992.

Gaffney, J. E. Jr. and Durek, T. A. "Software Reuse — Key to Enhanced Productivity: Some
Quantitative Models", Information and Software Technology, 31(5), pp. 258-267, June 1989.

17

Graves, S. B., "The Time-Cost Tradeoff in Research and Development: A Review", Engineering
Costs and Production Economics, 16, pp. 1-9, Elsevier Science Publishers, 1989.

Griss, M. L., Favaro, J., and P. Walton, "Managerial and Organizational Issues - Starting and
Running a Software Reuse Program", Software, Shaefer, March 1993.

Harris, K., "Using an Economic Model to Tune Reuse Strategies", Proceedings of the 5th Annual
Workshop on Software Reuse, 1992.

Kaplan, R. S., "Must CIM be Justified by Faith Alone?", Harvard Business Review, pp. 87 - 93,
March-April, 1986.

Lim, W. C,, "A Cost Justification Model for Software Reuse", Proceedings of the 5th Annual
Workshop on Software Reuse, 1992.

Malan, R. A,, "Software Reuse: A Business Perspective", Hewlett-Packard Technical Report,
February 1993a.

Malan, R. A., "Evaluating the Impact of Software Reuse on the Cost of Quality", Hewlett-Packard
Technical Report, March 1993b.

Mayobre, G., "Using Code Reusability Analysis to Identify Reusable Components from the

Software Related to an Application Domain", Proceedings of the 4th Annual Workshop on
Software Reuse, pp. 1-14, November 1991.

Rosenau, M. D., Faster New Product Development, American Management Association, New
York, 1990.

Scacchi, W., "Understanding Software Productivity: Towards a Knowledge-Based Approach”,
International Journal of Software Engineering and Knowledge Engineering, Vol. 1, No. 3, 1991.

Stalk, G. Jr., "Time — The Next Source of Competitive Advantage", Harvard Business Review,
pp. 41-51, July-August, 1988.

Ulrich, K. T., D. Sartorius, S. Pearson and M. Jakiela, "Including the Value of Time in Design-
for-Manufacturing Decision Making", MIT Internal Paper WP #3243-91-MSA, 1991.

18

Ulrich, K. T., and K. Tung, "Fundamentals of Product Modularity", Proceedings of the 199 1
ASME Winter Annual Meeting Symposium on Issues in Design/Manufacturing Integration,
Atlanta, 1991.

Wegner, P., "Varieties of Reusability", Workshop on Reusability in Programming, ITT
Programming, Newport, RI, pp. 30-44, September 1983.

Wentzel, K. D., "Software Reuse — It's a Business", Proceedings of the Sth Annual Workshop
on Software Reuse, 1992.

Wheelwright, S. C. and K. B. Clark, Revolutionizing Product Development, The Free Press,
New York, 1992.

19

