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Most advances in monitoring have been
associated with the development of new clinical
measurements, or improvements in the processing
of existing ones to enhance their information
content or validity. It is also possible to enhance
monitoring systems in quite a different way, by
automating the interpretation of signals. Rather
than simply displaying measurements for clini
cians to interpret, monitoring devices can assist
clinicians in the task of interpretation itself. Such
advances are made possible through developments
in the fields of signal processing, pattern recogni
tion and artificial intelligence (AI). This paper
presents an introduction for clinicians to the basic
problems that need to be solved, and reviews the
major technologies available at present.
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1 Introduction
Most advances in monitoring have been associated with the development of new
clinical measurements, or improvements in the processing of existing ones. It is
also possible to enhance monitoring systems in quite a different way, by
automating the interpretation of signals [11]. Rather than simply displaying
measurements for clinicians to interpret, monitoring devices can assist clinicians
in the task of interpretation itself. Such advances are made possible through
developments in the fields of signal processing, pattern recognition and artificial
intelligence (AI).

1.1 The need for automated interpretation
The motivations for automating signal interpretation are numerous. The most
pressing arise from the difficulties clinicians face when they continuously monitor
patient data, and are not unique to medicine. They are also an issue for example,
in the design of systems used by airline pilots and nuclear power plant operators.
These human factors include the problems of data overload, varying expertise, and
human error [50].
It comes as no surprise that clinicians may have difficulty in interpreting
information presented to them on current monitoring systems [49]. Not only may
the amount of information available be greater than can be assimilated, but the
clinical environment provides distractions with other tasks, reducing the effort
that can be devoted to signal interpretation. Worse still, current monitors flood
clinicians with false alarms, providing further unnecessary distraction [29].

It is also clear that the level of expertise that individuals bring to a task like the
interpretation of signals varies enormously, and it is not always possible for such
deficits to be remedied by consultation with more skilled colleagues. This
frequently leads to errors in diagnosis and selection of treatment. Indeed the
majority of complications associated with anaesthesia result from inadequate
training or insufficient experience of the anaesthetist [12][46].

There are several ways in which computer based systems can assist in addressing
such difficulties. One is to automate the process ofdata validation. At present it is
up to the clinician to ascertain whether a measurement accurately reflects a
patient's status, or is in error. While in many situations, signal error is clear from
the clinical context, it can also manifest itself as subtle changes in the shape of a
waveform. Without quite specialised expertise, clinicians may misinterpret
measured data as being clinically significant, when it in fact reflects an error in the
measurement system. For example, changes in the height of a pressure transducer
can significantly alter the measurements it produces.

The interpretations produced by a computer can be much more complex than an
assessment of signal validity. It is also possible to design systems capable of
diagnosing clinical conditions, to assist with identifying rare or complex cases [36].
Much of the research in medical artificial intelligence over the last two decades has
been devoted to this area, and impressive diagnostic performances have been
demonstrated in many specialised medical domains [5].
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1.2 System Requirements
Before automated interpretation can begin to provide clinical benefit, there are
several requirements that must be met. To ensure that monitored parameters are
interpreted in clinical context, one may need access to clinical data other than the
monitored signals themselves. This data may include the medical record, current
medications, and values from other devices like the settings from an anaesthetic
machine. Thus the first step in providing significant signal interpretation is to
collate as many sources of clinical information as possible and present them in a
uniformly accessible manner. Centralised anaesthetic record systems and
anaesthetic workstations seek to do just this [19][31].

Along with the technical aspects of interpreting signals, there is an equally
important human aspect to system design. It is essential that any system
developed actually fulfils a relevant clinical role. The long lag in the introduction
of computerised decision support into medicine is more probably due to failure on
this point than because of technological limitations [43]. Systems must be
developed to fit in with the work practices of clinicians [14], and to support decision
making processes that are clinically relevant [11]. There is little advantage in
developing a complex system that mimics interpretative skills already possessed
by all clinicians. Rather, it should attempt to provide support for cognitive
functions that clinicians perform poorly. Thus the development of intelligent
systems is as dependent on developing an understanding of the cognitive patterns
of the clinicians who will work with them as it is on advances in technology.

1.3 Stages of Development
Pragmatic considerations suggest that there will be a staged introduction of
software capable of intelligent interpretation. Initial systems will be relatively
simple, and require minimal interaction with the clinician, and minimal or no
interaction with the patient record system. Most of these are likely to be embedded,
residing within clinical devices. Such programmes exist within patient monitoring
devices, filtering out artefacts and suppressing false alarms, or in laboratories
where they interpret biochemical assays and produce reports that are sent to
clinicians [26].

The next level of interpretive system will require explicit interaction with
clinicians, offering some form of active decision support. Such systems will come
into their own as integrated electronic patient record systems appear and the
medical profession becomes accustomed to computer assistance. They will assist in
the selection of tests and diagnosis, as well as the selection of optimal therapies.
Interaction will be necessary because, although such systems are capable of
drawing conclusions from patient data, they will not be privy to the complete
clinical picture - the clinician must supply vital clinical context and therapeutic
goals unavailable to the system.
The third stage of system introduction could consist of autonomous intelligent
systems, capable of independent activity. These are at present experimental, but
could eventually form the heart of closed-loop systems. For example, drug delivery
systems could automatically measure a drug's level and administer doses based
upon that measurement [1][35]. The development of closed loop systems is at
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present hampered as much by legal and ethical issues as it is by technological
considerations.

2 Levels of interpretation
Signal interpretation can vary from a low level assessment ofvalidity to a complex
assessment ofclinical significance. The levels ofinterpretation that a signal passes
through are illustrated in Figure 1. A signal is first examined for evidence of
artefact and the validated signal is then presented to the next layer in the
interpretive hierachy. Where r, single channel signal contains sufficient
information for a diagnosis, this is made. In some circumstances however, several
alternative explanations might be possible, and a single channel does not contain
enough information to disambiguate them. In such circumstances, an interpretive
system can look for cross signal correlations. In Figure 1., a flat portion of ECG
trace is not diagnosed as an 'asystole' because examination of the corresponding
arterial waveform reveals pulsatile behaviour consistent with normal cardiac
function. A higher level of interpretation is also possible, taking into account
relevant contextual patient information where this is available. This level is
concerned with making decisions based upon signal interpretations, and may
include recommendations for further investigations or therapeutic actions. The
tasks of artefact detection, single and cross-channel interpretation and decision
support will be examined in more detail below.

2.1 Artefact Detection
The first task in signal interpretation is to decide whether the values that are
measured are physiologically valid. In other words, is the signal genuine or is it
artefactual? An artefact is defined as a component of the measured signal that is
unwanted. It may be caused by noise on the signal, or by distortions introduced
through the measurement apparatus. Indeed, an artefact may be due to another
physiological process that is not of interest in the current context - like a
respiratory swing on an ECG trace. Thus one man's artefact is another's signal [39].

Artefact detection is important for several reasons. Firstly, an artefact may be
misinterpreted as a genuine signal and lead to an erroneous therapeutic
intervention. Next, invalid but abnormal values that are not filtered can cause
alarm systems to register false alarms. Finally, artefact rejection improves the
clarity of a signal when it is presented to a clinician for interpretation.

There are many sources of artefact in the clinical environment. False heart rate
values can be generated by diathermy noise during surgery and by patient
movement, and false high arterial blood pressure alarms are generated by flushing
and sampling ofarterial lines (Figure 2.). These forms of artefact have contributed
significantly to the generation of false alarms on monitoring equipment. Koski et
al. [29] found that only 10% of 1307 alarm events generated on cardiac
postoperative patients were significant. Of these, 27% were due to artefacts e.g.
sampling of arterial blood. The net effect of the distraction caused by these high
false alarm rates has been that alarms have often been turned offintraoperatively,
despite the concomitant increase in risk to the patient.
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Figure 2. Examples of Artefact on the Arterial Blood Pressure Channel

While an artifact is best handled at its source through improvements in the design
of the transducer system, or in low level signal processing, it is not always possible
or practical to do so. The next best step is to filter out artefactual components of a
signal or register their detection prior to using the signal for clinical interpretation.
Many techniques have been developed to assist in this process [39] and include
kalman filtering [44], rule-based expert systems [17], blackboard systems [2], and
neural networks [41]. It is in the nature of artefact that it cannot always be
eliminated on the basis of a single signal, and cross-channel correlations may be
needed, making artefact detection a feature at all levels of signal interpretation.

2.2 Single Channel Interpretation
Having established that a signal is probably artefact free, the next stage in its
interpretation is to decide whether it defines a clinically significant condition. This
may be done simply be comparing the value to a predefined patient or population
normal range, but in most cases such simple thresholding is of limited value.
Firstly, clinically appropriate ranges cannot always be defined because the notion
of the acceptable range for a patient is highly context specific [6]. One can in fact
calculate statistically valid patient specific normal ranges [21][22] but these rely
on a period of stability which may not be attainable in a dynamic clinical context.
Further, the notion of an acceptable range is often tied up with expectations
defined by the patient's expected outcome and current therapeutic interventions.
Finally, even if one can decide upon an acceptable range for a specific parameter,
the amount of information that a single out of range warning can convey is usually
limited - even wildly abnormal values may have several possible interpretations.
These limitations of simple threshold based alarm techniques have spurred on the
development of more complex techniques capable of delivering 'smart alarms' [19].

Much more information can be obtained from the analysis of a single channel ifis
a time varying and continuous waveform, like arterial pressure. Specific pressure
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information from waveform shape
characteristics. The systolic ejection
area beneath the arterial pressure
waveform gives an Indirect measure of
stroke volume. It Is demarcated by the
beginning of systole and the dicrotic
notch caused by the closure of the
aortic valve.
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Figure 3. (b) The shape of arterial
pressure waves varies with the
dynamic response of the catheter
transducer system. Analysis of the
waveform frequency components
following a fast flush can assist in
detecting damping of the system, and
hence assist in optimising pressure
measurements (Gardner, 1981).

artefacts like sampling and flushing of the catheter line can be detected by their
unique shape (Figure 2.). Estimates of clinically useful measures like stroke
volume can be derived by analysing the area under the curve of the wave. It is even
possible to analyse the frequency components of the pressure waveform to obtain
information about the fidelity of the measurement system itself (Figure 3.).

Alterations in the behaviour of a repetitive signal can also carry information.
Changes in the ECG are a good example. Features such as the height of the QRS
peak help to label individual components within beat complexes. The presence or
absence of features like P waves, and the duration and regularity of intervals
between waves and complexes can carry diagnostic information about cardiac
rhythm. However, it is not always possible to unambiguously label events in an
ECG strip, and sometimes one needs to use additional contextual information to
assist in the labelling process (e.g. [20]).

2.3 Cross-channel Interpretation
Often conditions can only be identified by exarmmng the signals on several
different channels. Such cross channel information is useful at several levels,
starting with artefact detection and signal validation through to clinical diagnosis.

6



HR /

CVP

"ASP \

HR /

CVP
\

ASP

".- t

Hypotension secondary to
hypovolaemla

Hypotension secondary to
vasodilation
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Cross-correlation for signal validation can be made with a number of sources,
depending on the signal being measured. The alternatives include correlating a
signal with:

1. Same Signal, different interpretation method. If for example, an error is
suspected when heart rate is derived by a simple peak detection algorithm,
one could attempt to validate the value by comparing it to one derived using
a different method on the same data.

2. Different physical source, but same signal. Comparing different ECG leads is
a common technique for validating changes seen on one lead. Patterns across
leads also have diagnostic importance.

3. Different signal. A flat ECG trace indicating asystole can be checked against
the arterial pressure waveform or the plethysmograph, both of which should
demonstrate pulsatile waves if the heart were contracting normally, and
would loose their pulsatile characteristics if asystole was present (Figure 2.).

Cross channel information can also be used to identify conditions not detectable
with single signal channels alone. Many clinical conditions can be distinguished by
the time ordering of events in their natural history [7]. For example, the cause of a
hypotensive episode may be deducible from the order in which changes occurred
across heart rate, blood pressure and CVP (Figure 4.). In the presence of a
vasodilator, the arterial blood pressure drop would precede the reflex tachycardia
and CVP fall. In the presence of hypovolaemia, the first parameter to shift would
be the heart rate followed by CVP and blood pressure.
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2.4 Making Clinical Decisions
Once a computer system is able to diagnose complex disease patterns from
measured signals and data stored in electronic patient records, it is in a position to
assist clinicians in making therapeutic decisions. As noted earlier, intelligent
interpretive systems will appear both as embedded systems hidden within
instruments, and as explicit entities which can interact with a clinician.

The way in which an intelligent system is used affects its design [8]. Systems that
need to interact with humans may need to justify their decisions in a way that an
embedded system does not. Equally, a system that acts as an advisor to a human
is placed in a less critical position than one that acts independently to manage a
patient's therapy. While embedded interpretive systems are already starting to
appear, those that require explicit interaction have yet to make a significant
impact.

2.4.1 Decision Support Systems
The classic model of computer based decision support requires a clinician to input
details of a patient's clinical state, with the machine then suggesting one or more
possible diagnoses. The MYCIN system [3] is the archetype of this model, providing
assistance with the selection of antibiotic therapy. Other examples include
programs which assist in diagnosing abdominal pain [13] and chest pain [18]. In
practice however, this model does not fit well with the realities of the clinical
workplace. Clinicians are often unable to spend the time required to use such
systems, and if they do, the types of problems that they would like assistance with
are somewhat different [11]. As a consequence, systems which offer different
models of decision support have been developed.

To support the decision making that is characteristic of anaesthetists in the
operating room, work is currently underway to develop intelligent patient monitors
[7] and anaesthetic workstations (e.g. [31]). Intelligent monitors will not only
suppress spurious alarms generated by signal artefact, but will use cross-channel
signal correlations to generate high level diagnostic alarms. They have a role in
assisting with clinical vigilance of slowly evolving conditions, and of conditions
which have been missed because of distraction. When integrated with the
anaesthetic machine itself, the monitor system will also warn of faults within the
gas delivery system, and possibly suggest corrective actions. Research is also
underway exploring ways of integrating a predictive component into these
systems. With such systems, a clinician could test changes to therapy before
initiating them by simulating their effect on a mathematical model of the
patient[40].
Other modes of decision support include therapy planning systems, which develop
a treatment protocol based on a patient's clinical status [25], and therapy
critiquing systems which examine treatment plans generated by clinicians, and
attempt to suggest improvements [32].

2.4.2 Autonomous Therapeutic Devices
In contrast to decision support systems, autonomous systems can operate
independently of human interaction on complex tasks. Such systems are at the
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present moment purely vehicles for research. Perhaps the most studied application
area is ventilator management. Programs have been designed to automatically
adjust ventilator settings in response to measurements of a patient's respiratory
status. Early research into systems that could wean patients from ventilators [15]
has lead to more ambitious projects that seek to take control of most of the tasks
associated with ventilator management (e.g. [24]). While such projects may in the
long term provide new classes of therapeutic devices, it is clear that their successful
introduction will require continued advances in sensor design (e.g. implantable
glucose sensors for insulin delivery systems), and in the technologies for signal
interpretation.

3 Methods of Interpretation
Intelligent signal interpretation can be divided into two tasks. Firstly, distinct
events within a signal are identified using pattern recognition methods e.g.
detecting individual peaks in an ECG signal. Secondly a meaningful label is
assigned to the detected events using pattern interpretation methods e.g. picking a
QRS complex from a T wave, and interpreting its clinical significance. There have
been significant advances with techniques for performing both these tasks, and
new methodologies have emerged, several specifically from research in AI. Some of
the more significant methods are reviewed below.

3.1 Pattern Recognition
Pattern recognition techniques are those that extract significant events from a
signal. For example, they detect edges and curves in pictures, or letters, letter
groups and words from speech. Pattern detection techniques vary in the way they
model events within signals. For example they may be based on statistical models,
in which the frequency of certain patterns is used in the recognition process. There
are many classic recognition techniques that have clinical application - like
blackboard systems [33] (initially developed for speech recognition) and markov
models - but these will not be reviewed here. Neural Networks are another
technique useful in pattern recognition, and they have become of increasing
interest both to the medical and the AI community in recent years.

3.1.1 Neural Networks
Neural networks are based upon a simple computational model of the neuron [28].
Networks are composed of layers of neurons (or nodes) with interconnections
between the nodes in each layer (Figure 5.(a». The strength of the connections
between nodes is modelled as a weight on that connection. A node in the network
fires when the sum of its inputs exceeds a predetermined threshold (Figure 5(b».

When a net is presented with a pattern on its input nodes, it will output a
recognition pattern determined by the weights on the connections between layers.
These weights are obtained by a period of training, in which a net is presented with
examples of the signal patterns it is intended to recognise, and the weights in the
net are slowly adjusted until it achieves the desired output. A neural network thus
encodes within its weights a discriminating function that is optimised to
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Figure 5. (a) A two layer neural
network. Input nodes on the left
receive a pattern to be classified, and
output nodes on the right are
triggered to produce a classification.
The sum of the signals received at an
output node determine whether It will
fire or not.

Figure 5(b) Structure of a typical
node In a neural network. Inputs to
the node (a, .. an) are assigned
weights (W1 •• wn)and these weighted
Inputs are summed. Sometimes a
threshold e Is specified. When the

sum exceeds the node threshold e,
an output is produced. The function f
determines the shape of the node
output.

distinguish the different classes present within its training set. In theory, any such
discriminant function can be approximated by a network [45].

Neural networks have been used to recognise ECG patterns [37], identify artefacts
in arterial blood pressure signals [41], image recognition (e.g, ultrasound [34]) and
in the development of clinical diagnostic systems [23].

Despite initial claims of uniqueness for the computational properties of neural
nets, it is becoming clear that they have clear and important relationships with a
number of more traditional discrimination methods including markov models [1],
bayesian networks, and decision trees.
The properties of neural networks make them useful both for pattern recognition,
and signal interpretation. The net not only recognises a pattern, but is able to
associate it with a predetermined diagnostic class. While the interpretive facility
of nets has found numerous application, it is limited by its inability to explain its
conclusions. The reasoning by which a net selects a class is hidden within the
distributed weights, and is unintelligible as an explanation. Nets are thus limited
to interpreting patterns where no explanation or justification for selecting a
conclusion is necessary. Since the need to justify a clinical diagnosis is recognised
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as an important part of the process of decision support, this limits the application
of nets in such tasks.

3.2 Interpreting Patterns
Once patterns have been identified within a signal, they need to be interpreted. It
is with this task that techniques from AI have made major contributions over the
last two decades, especially through the introduction of expert systems.

3.3 Rule-based Expert Systems
An expert system is a program that captures elements of human expertise, usually
in the form of situation recognition rules, and performs tasks that rely on specialist
knowledge. Examples include programmes that can diagnose the cause of
abdominal or chest pain based on clinical observations fed to the programme.
Expert systems perform best in straightforward tasks, which have a predefined
and relatively narrow scope, and perform poorly with more general tasks that rely
on general or commonsense knowledge [9].
An expert system consists of a knowledge base which contains the rules necessary
for the completion of its task, a working memory in which data and conclusions can
be stored, and an inference engine which matches rules to data to derive its
conclusions.

Examples of rules which might be used to detect asystole and filter out false
asystole alarms in the presence of a normal arterial waveform might be:

Rule ASYl:
Ifheart rate =0
then conclude asystole

Rule ASY2:
If asystole
and (ABP is pulsatile and in the normal range)
then retract asystole

In the presence ofa zero heart rate, the expert system would first match rule ASYI
and conclude that asystole was present. However, ifit next succeeded in matching
all the conditions in rule ASY2 - that it had previously detected an asystole but
could also detect a normal arterial waveform, then it would fire this second rule,
which would effectively filter out the previous asystole alarm. If rule ASY2 could
not be fired because the arterial pressure was abnormal, then the initial conclusion
that asystole was present would remain.
Rules tend to become much more complicated than the simple examples presented
here, and the process of manual knowledge acquisition from human experts can
become a drawn out affair. To counter this problem, much work has gone into
developing techniques to automate the acquisition of knowledge in the form of
rules or decision trees from databases of cases (e.g, [38]).
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Rule based systems are more suited to cross-channel interpretation of signals than
lower level signal processing. Clinically deployed expert systems perform a variety
of tasks from the interpretation of ECGs [20] to analysis of laboratory results such
as thyroid hormone assays [26]. Experimental expert systems have been developed
with more ambitious goals in mind, including systems that can interpret
respiratory parameters and automatically adjust ventilator settings during the
process ofweaning a patient off a ventilator [15].

3.3.1 Model-based Systems
One of the important contributions of AI has been a growing understanding of the
ways in which knowledge can be represented and manipulated. Rule-based
representations of knowledge, as we have seen, are only appropriate for narrowly
defined problems like diagnosing chest pain. Humans deal with a broader class of
problems by invoking other types of knowledge than the rules-of-thumb that are
typically stored in an expert system. Especially with difficult or rare problems,
humans may attempt to reason from first principles, using models of
pathophysiology or biochemistry to explain a set of clinical manifestations. For
example, when several diseases are present at one time, it may only be possible to
unravel the constellation of symptoms and signs by recourse to disease models.
This contrasts with the simple structure of rules which record commonly seen
patterns of disease, and which can only deal with interactions by explicitly
enumerating them. The vast number of such interactions makes such an
enumeration impractical [7].

Model-based systems (sometimes called second-generation expert systems) are
designed to utilise disease models in the hope that they will be able to cover a
broader set of clinical problems than possible with rules [47]. These models may
exist as mathematical descriptions of physiological relationships, as
compartmental system models, or indeed as statistical models. As is often the case
in medicine, formal models of disease phenomena are often not available or poorly
formalised. In such cases, there is evidence that clinicians carry around looser
models, expressible in non-numeric or qualitative terms [30]. Such qualitative
representations of medical knowledge have been formalised, and can be used to
capture useful portions of medical knowledge [9]. These representations find their
uses in diagnosis (e.g, [27]), and patient monitoring (e.g. [7][48]).

Model-based systems are perceived as being better at explanation than "shallower"
rule-based systems, and better at dealing with novel or complex problems. They are
also however, more computationally expensive to run - it takes longer to reason a
problem out from first principles than it does to simply recognise it from previous
experience. Thus there is a move amongst researchers to build systems which
combine the two sorts of system, having on the one hand the facility to invoke deep
pathophysiological models should they be needed, but also being able to rely on
efficient rules whenever they are applicable.

4 Limitations to Interpretation
While signal interpretation systems can perform at clinically acceptable levels, as
with humans there are inherent difficulties in the reasoning process. These
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limitations need to be made explicit, and should be borne in mind by clinicians who
use automated interpretation systems.

4.1 Data
Interpretive systems do not have eyes or ears, but are limited to accessing data
provided to them electronically. While this constitutes a potentially enormous
amount of data to work with, it does mean that critical pieces of contextual
information may be unavailable. Thus interpretations need to be judged partly on
the data available to the system when making its decision. This highlights the
importance of designing an explanatory facility into expert systems, so that
clinicians can understand the reasoning behind a particular recommendation by
tracing the pieces of data that were used in its formulation.

As we have seen, the task of validating data is one of the first tasks that an
interpretive system undertakes. While there are many clues available to suggest
whether a datum represents a real measurement or is an error, this is not always
decideable based solely on the electronic evidence. There may be no way for a
machine to decide that a transducer is incorrectly positioned, or that blood
specimens have been mixed up. Clinicians will always need to be wary of the
quality of the data upon which interpretations have been made.

4.2 Knowledge
Knowledge is often incomplete, and this is an everyday reality in the practice of
medicine. Clinicians deal with physiological systems they only incompletely
understand, and have evolved techniques for dealing with this uncertainty. While
a clinician is able to acknowledge that he is performing at the edge of his expertise,
and adjust his methods of handling a problem accordingly, it is much harder to
incorporate such a facility in a computer system. Computers at present treat all
knowledge equally. While they are able to weight up probabilities that a set of
findings represent a particular condition, they do not take into account they
likelihood that some pieces of knowledge are less reliable than others.

Further, most present day systems are forced to utilise a static knowledge base.
While there are many techniques which can be used to update knowledge bases, it
will not be the case that a system necessarily incorporates the latest knowledge on
a subject. Further, the technical problems associated with the process of knowledge
acquisition mean that there are always potential mistakes in the system. Just as a
normal computer program can contain "bugs", so a knowledge base can contain
errors, since it is simply another form of program. Wherever possible, the
explanation offered by a system should be examined, to ensure that the logical flow
of argument reflects current clinical understanding.

5 Conclusion
It is already the case that much monitoring technology is poorly understood by the
clinicians who use it, and that clinicians are often unaware of how to use or
interpret their output correctly. As more intelligence is added to the devices that
populate the clinical workplace, there is an even greater need to understand their
advantages and limitations. There is no doubt that advances in AI will gradually
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change many of the ways clinicians handle day to day problems and that they will
greatly improve many aspects of the clinical process. Of necessity, the high level at
which these systems will perform, assisting both in diagnosis and therapy means
that they have a direct impact on patient care. Itwill often only be the clinician who
will be in a position to assess the conclusions of these systems. Rather than
accepting these as a given however, the onus remains on those who use them to do
so correctly. While it will not always be necessary to understand the details of the
technologies used, and indeed these will continue to evolve, it is necessary to
understand their nature and in particular the types of mistake that they are prone
to make.
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