
F4..- HEWLETT
~~PACKARD

Prototyping a Collaborative CAD System
by Taking Advantage of Software Reuse
and a Software Bus Framework

Mark A. Gisi, Cristiano Sacchi*
Software Technology Laboratory
HPL-93-27
April, 1993

software reuse,
software bus, CAD,
BART,
collaboration, rapid
prototyping

BART, a software bus, was designed to provide
flexibility in the development of software systems
by promoting component independence. This
framework allows components to be constructed
independent of the context in which they are to be
used, thereby allowing them to be reused in many
different situations. Our experience using BART
to prototype a system that supports group
collaboration between people residing in
geographically different places demonstrated the
feasibility of this approach. We were able to
connect a number of existing components with
little effort in a surprisingly short time. In this
paper, we discuss the role BART played in
supporting the integration of software components
and in enabling us to rapidly prototype a shared­
space collaboration system.

To be published as "A Positive Experience with Software Reuse Supported by a Software Bus
Framework" in the Proceedings of the Second International Workshop, March, 1993
*CAD Group, National Research Center, Milan, Italy
© Copyright Hewlett-Packard. Company 1993

Internal Accession Date Only





Prototyping a Collaborative CAD System
by Taking Advantage of

Software Reuse and a Software Bus Framework

Mark A. Gisi

Software Technology Laboratory
Hewlett-Packard Laboratories

Palo Alto, California, USA
gisi@hplabs.hp.com

Abstract

BART, a software bus, was designed to provide flex­
ibility in the development of software systems by pro­
moting component independence. This framework al­
lows components to be constructed independent of the
context in which they are to be used, thereby allowing
them to be reused in many different situations. Our
experience using BART to prototype a system that sup­
ports group collaboration between people residing in ge­
ographically different places demonstrated the feasibil­
ity of this approach. We were able to connect a number
of existing components with little effort in a surpris­
ingly short time. In this paper, we discuss the role
BART played in supporting the integration of software
components and in enabling us to rapidly prototype a
shared-space collaboration system.

1 Introduction

We set out to prototype a computer system that would
enable a group of people to interact in a common
space, yet be located in geographically different places.
One example of a popular model that supports collab­
orative work between distributed people is the shared
whiteboard[6, 7]. It allows people located in different
places to interact (via teleconferencing) by writing to
and reading from a shared whiteboard. This paradigm
is based on the notion of WYSIWIS (What You See Is
What I See), which requires that people see the same
semantic information about the world and share the
same view of the world.
A major limitation of the WYSIWIS paradigm is that
it does not enable multiple users to customize their
local view of the world while sharing the same seman-

Cristiano Sacchi

CAD Group
CNR-IMU

Milano, Italy
cris@cad.imu.mi.cnr.it

tic information. In order to address this limitation we
decided to develop a shared-space collaboration model
that enabled engineers not only to collaborate over a
design while located in geographically different places,
but also to modify their local view of the world. There­
fore we prototyped a simple CAD (computer-aided de­
sign) system that supported these requirements.
Initially, we did selected BART, a software bus, not
to facilitate the software construction process, but to
provide a platform for propagating semantic design in­
formation among distributed users. We were surprised
by how much of the prototype we were able to con­
struct in an unusually short time. The effectiveness of
BART'S approach to software component integration
was key to our success.

BART was designed to provide flexibility in software
systems by supporting component independence[1, 2].
This framework allows components to be constructed
independent of the context in which they are to be
used, thereby allowing them to be reused in many dif­
ferent situations. We were able to demonstrate this
flexibility by prototyping a shared-space collaboration
paradigm in which we took a number of existing com­
ponents varying in size and connected them with very
little effort. In this paper we describe this experience.

In section 2 we provide a scenario of a real-world prob­
lem that motivates the rationale behind the shared­
space collaboration paradigm. Section 3 provides an
overview of BART. Section 4 presents the design of the
system we prototyped to support a multi-user CAD
system and discusses the role played by BART. In
section 5 we describe our process and look at why
software reuse was key to our success. In section 6
we briefly discuss BART'S potential role in supporting



general-purpose and domain-specific reuse. In the fi­
nal section we summarize our experience.

2 A Shared-Space Collaboration Sce-.
nario

We begin by providing the reader with a scenario of
a real-world problem that motivates the rationale be­
hind the shared-space collaboration paradigm.

Imagine that you are an automobile designer, work­
ing in the United States, who has been up all night
trying to finish the design of a new sports car. It's
four o'clock in he morning and the design is due on
your manager's desk in five hours. You are nearly
done, except for the doors. The design specification
states that the doors must open upward, rather than
outward in the conventional manner. You have never
designed such doors and are not sure how the hinges
should connect to the body. Frustrated, you staring
into your CAD display when you remember that you
have a colleague, Pino, who has designed doors like
these before (he once worked for the Delorean Car Co.;
now he works for Fiat in Italy). Luckily, it's 11:00 A.M.
in Italy and he is at work. You call him and explain
your problem.

You are also fortunate because you are running a state­
of-the-art CAD system that enables two or more peo­
ple to view the same 3D object (e.g., a car design) in
different locations. Not only can you share the object,
but both of you can modify the car design and see
each other's modifications simultaneously. Further­
more, you can both see the same semantic information
that describes the object, but each person can choose
to view the object from a different perspective.

While talking to you over the phone, Pino brings up
your car design on his screen. The first thing he tells
you is that it is traditional to design a new sports car
in red (not blue, the color initially chosen). He changes
the color and now you are both looking at a red sports
car without doors. Pino then goes on to explain that
the best way to conceptualize adding doors that open
upward is to rotate the car body so that the doors ap­
pear to swing open in the conventional manner (out
to the side). Therefore he rotates the image of the car
90 degrees in his display, as illustrated in figure I. He
then proceeds to add doors to the design.

2

Note that Pino was able to change the color of the
car body such that it updated both views, yet he was
able to rotate the car design in his display without
affecting the car design in your display. In this sce­
nario, color is a semantic feature of the car design. If
one person changes the semantics of an object that
is viewed by n people, then all n people receive the
semantic update, yet they can display that semantic
information however they please. In this case, Pino
decided to rotate his image, but when he added the
doors, they appeared in both displays. Now you are
done!

3 An Overview of Bart

In this section we provide a very brief overview of
BART's architecture. A more detailed discussion
of the architecture and its design rationale appear
elsewhere[l, 2, 3].

Many techniques have been developed to support in­
teraction between software components. These tech­
niques can be placed into two broad categories: control
signals and data sharing. A common example of a con­
trol signal is a remote procedure call (RPC). It permits
one process (i.e., component) to make a procedure call
to another process that happens to be remote, passing
control information and data.

Although data sharing is often required between inter­
acting components, few platforms support it elegantly.
Because of this insufficient support, applications im­
plement data sharing in an ad hoc fashion. For ex­
ample, one process may be designated as a server that
maintains the data to be shared by multiple client pro­
cesses, which access the data by polling the server.
Often it is more desirable to have the server provide
notification to the clients when data changes or new
data is added. In both cases, two problems arise.
First, code complexity is increased for each compo­
nent, since the components must perform a consid­
erable amount of bookkeeping to know what data is
available and where to find it. Second, dependencies
between components are increased, thereby reducing
flexibility, because components need to know about
each other's existence. These problems also exist with
the traditional RPC approach described in the para­
graph above.

In order to overcome these limitations and provide
a greater degree of component independence, BART



Your View Pino's View

Figure 1: Your view and Pino's view of the world.

provides two different abstractions: control ports that
support control signals, and data ports that support
data sharing.

The fundamental idea that underlies these two ab­
stractions, and is vital to achieving component inde­
pendence, is that they support anonymous interaction
between components. That is, components can in­
teract with each other without needing to explicitly
identify themselves. This increases the flexibility of
components because the developer does not need to
know, a priori, the channels of communication that
might occur. Hence, components can be developed in­
dependent of the context in which they may be used.

3.1 Control Ports: Support for Control
Integration

BART control ports support control integration be­
tween software components. Their design is based on
the publish/subscribe metaphor in which a component
can broadcast (publish) a message to a predeclared
control port. All components that have expressed in­
terest in that port (subscribed) will receive a copy
of that message. Messages can be sent either syn­
chronously or asynchronously. Control ports support
control signaling because they are frequently used to
signal the occurrence of an event (i.e., provide notifi­
cation) or make a request to a common server. For
example, consider an editor that subscribes to a port
that handles requests to edit files. It is possible for
a compiler to send a request to that port so that the
editor could automatically display a file in which the
compiler had detected compilation errors. Note that

3

component independence is achieved because the iden­
tity of the editor being used is not visible to the com­
piler (e.g., it could be emacs or vi). Therefore, the
editor could be added or replaced without affecting
the interaction with other components.

The publish/subscribe metaphor, on which BART con­
trol ports are based, was proposed by Steve Reiss in his
Field programming environment described in [4]. His
initial proposal had the limitation that broadcasted
messages had little structure imposed on them (they
were passed as ASCII character strings). This limited
the connection of fine-grained components. In order to
address this problem, the designer of BART extended
this paradigm by adding type structure to these mes­
sages.

3.2 Data Ports: Support for Data Inte­
gration

BART data ports support data integration between
software components. Data ports allow components to
export data to the world. This data can then be im­
ported by other components, resulting in data sharing.
Data ports differ from control ports in that data on a
data port is persistent, i.e., they exist as long as the
exporting component chooses. Furthermore, it can be
modified by the exporter. In this case, all components
that have expressed interest in a piece of data that is
later modified will automatically receive the update.
In some sense data ports follow the publish/subscribe
metaphor also. Control ports differ in that a compo­
nent subscribing to a control port receives all messages
sent to that port starting from the time it subscribed,



but all messages sent to that control port prior to sub­
scription are lost. In the case of a data port, all data
currently existing on the port at the time a compo­
nent subscribes to the port is made available to that
component, as are any updates performed after the
component subscribes.

Consider the collaborative CAD users scenario pre­
sented in section 2. The car design is a semantic data
object that could persist on a data port. All CAD
systems (each system being a single component) sub­
scribe to that port. When a semantic change is made
to the car design (e.g., changing the color of the car
to red)i, the data port is updated and all subscribers
receive that update. Furthermore, any system that
subscribes to that data port in the middle of a design
session will automatically receive the most up-to-date
version ofthe design (e.g., Pino received the design as
it existed at 4 A.M.).

4 The Initial Design

In this section we give an overview of the design of
our collaborative CAD system prototype. We would
like to build a system that permits an arbitrary num­
ber of users to participate in a car design session. Be­
fore we present the infrastructure that supports collab­
oration, we first present the design of a simple, single­
user CAD system and describe later how we extended
it to support multiple users.

4.1 A Single-User System

A single-user CAD system was constructed from the
following components:

• ACIS geometric modeler, which is used to com­
pute 3D solid objects. This is the core geomet­
ric modeler found in Hewlett-Packard's CAD soft­
ware products.

• Hewlett-Packard's commercial graphics library,
used to display 3D solids.

• An INTERVIEWS button box. INTERVIEWS is a
C++ library used for generating user interfaces
[5].

• A simple command-line editor that enables the
user to enter design modification commands (e.g.,
delete cylinder or unite torus and cone).

4

Some of these components are illustrated in figure 2.
The single-user system behaves as follows: using the
command-line editor, a user enters commands that
modify the semantic object. Each entered command
represents a change in the semantics of the object and
must be forwarded to the geometric modeler. The geo­
metric modeler then performs this design change and
redraws it in an X window using routines from the
graphics library.

Recall that each user can also change their local view
of the object (rotate the image, zoom in or out, move
the image up, down, left, right, etc.). These changes
do not affect the semantics of the object and are en­
tered via a button box, built with the INTERVIEWS
graphics library (actually the button box was bor­
rowed from a previous application and required only
minor modifications such as button label changes).
The command-line editor and the button box were
connected to the geometric modeler using control
ports.

All the components and libraries existed prior to the
start of our experiment and, in some sense, can be
considered off-the-shelf components. They were all
written in C++ and vary considerably in size. The
geometric modeler is the largest component, at about
300,000 lines of code, and the command-line editor is
the smallest with only a couple of hundred lines of
code.

4.2 Support for Collaboration

To support group collaboration, each single-user
system is treated as a single component. An arbi­
trary number of these can then be connected using a
control port and a data port.

We chose a decentralized design in which users run
a local copy of the stand-alone single-user system at
their sites. As before, they enter requests to modify
the design through the command-editor. The differ­
ence now is that the request must be broadcast to all
users participating in the design session, so that they
can perform that operation on their local copy. This
ensures that all sites have a consistent representation
of the car design.

The decentralized design requires that only minor
changes be made to the single-user system. For one,
we need to provide access to a common control port
that will be used to broadcast all user requests. Pre-



Single User System

Button Box

Figure 2: Some of the components of a single-user CAD system.

Bart

a aometrlc ometrlc trlc

Modeler Modeler Modeler

ICommand> ICommand>

Figure 3: Broadcasting a modification request. The circle represents a control port. The dotted line represents
the sending of a request and the solid lines represent the broadcast.



viously, the command-line editor would send all mod­
ification requests directly to the geometric modeler.
Now the editor also publishes it on a common con­
trol port. The geometric modeler of each system will
listens (subscribes) to that port. When a request ar­
rives, it executes the request as before. This scenario
is illustrated in figure 3.

Another nice consequence of using the bus is that it
preserves serializability among modification requests.
That is, the operations performed on the geometric
modeler are not commutative; therefore, the order in
which they are executed is important. For example,
if two users receive (and execute) two modification
operations in reverse order, it is possible that their lo­
cal versions of the design could become inconsistent.
BART preserves serializibility because if two users are
competing to place their modification requests on the
bus, one will get the bus's attention first. Once BART

receives a request, it guarantees that the broadcast
will be made to all users prior to giving any attention
to the next request.

4.3 Joining a Design Session in Progress

The last issue that needs to be addressed is enabling
a user to join a design session already under way. Es­
sentially, what user needs to do is to obtain the most
recent version of the design (as was the case for Pino).
This is the purpose of the data port. The current car
design is published on the data port. Whenever a user
connects in the middle of a design session, he/she can
initially subscribe to that data port, get the current
version, unsubscribe, and join in the session.

5 Our Experience with Bart and the
Reuse Process

We now describe our experience using BART and
its support for the reuse process that enabled us to
rapidly prototype the above design.

We were quite surprised when we realized how much
we accomplished in so little time. In addition to hav­
ing access to BART, we were fortunate for a number
of other reasons. Not only did we know about the ex­
istence of the components that were used to construct
the system, but also they were available to us, and we
had considerable experience working with each of the

6

components and libraries. Furthermore, all the com­
ponents were written in C++, which we both knew.
Finally, we were fortunate because our skills for the
task were complementary. One of us had experience
working with geometric modeling, while the other had
experience with building distributed systems. The
only overlapping skill was our knowledge of C++

One day was spent working on the design and three
days on the implementation. When we were done, we
had a system that would allow an arbitrary number of
people working on different machines (currently con­
nected over a local area network) to send modification
requests at will. We ignored a number of important
issues such as security, reliability, and policies with re­
spect to user privileges (e.g., preventing someone from
entering a design session). The implementation con­
sisted of approximately 500,000 lines of reused code
and approximately 500 lines of customized code.

The first day of implementation was spent construct­
ing the single-user CAD system. Our approach was to
view the geometric modeler as the kernel and to add
on the necessary user interface components that would
enable a user to design 3D objects. After we connected
the INTERVIEWS button box, the command-line editor
and the X-window display, the single-user system was
complete. This system was developed without giving
any consideration to the group collaboration require­
ments.

The second and third days of implementation were
spent providing support for collaboration. Given the
new single-user component, three modifications were
required. First, all semantic change requests entered
by a user through the command-line editor had to be
broadcast (published) to all the geometric modelers.
Recall in the single-user system that a control port was
used to connect the command editor to the geomet­
ric modeler. In the collaborative system, we used one
common control port to connect all the command-line
editors to all the geometric modelers (see figure 3).
One of the nice consequences of the single-user sys­
tem design was that the command-line editor and ge­
ometric modeler shared information without identify­
ing one another. This made connecting an arbitrary
number of command-line editors and geometric mod­
elers trivial. Very little source code modification was
required because each command editor and geometric
modeler still saw the same control port. This is pre­
cisely the kind of component independence the BART

framework promotes.



The second modification required that we prevent
changes that users made to their local views from be­
ing broadcast to other users. Recall that the button
box enabled users to enter requests to modify their lo­
cal view ofthe design (e.g., zoom in and rotate). Since
it is used to control the user's local view, there is no
need to broadcast these commands. Initially, we con­
nected the button box to the geometric modeler using
a control port for convenience. We moved the but­
ton box code into the geometric modeler module and
removed the control port (which essentially required
that a remote procedure call be converted to a local
procedure call).

The third and final modification required that we
enable a designer to join in the middle of a design ses­
sion. This could be achieved by using a data port that
would enable the new user to acquire the current ver­
sion of the design. Here is where we encountered some
difficulty. In theory, the BART framework advocates
sharing of data via data ports. The problem lay not
with this model, but with the implementation. At the
time, BART only supported storing simple data types
on data ports. It did not support the sharing of large
data items. In our case, we needed to declare a data
port that could maintain an entire design image. We
provided feedback to the designer of BART who ad­
dressed this problem in a later version.

We were able to surmount this problem by simulat­
ing the data port. We accomplished this by including
an extra CAD system that executed whenever a col­
laborative design session initiated. Just like any other
single-user system, it would wait and listen to the con­
trol port for any semantic design modification requests
sent out by users. When a user request was received
by this component, it was executed on the local ver­
sion of the design. The only difference was that it also
listened for session connection requests from users try­
ing to join in and then passed the current version to
the new user. This simulated data port took only a
couple of hours to implement.

6 Supporting General Purpose and
Domain-Specific Reuse

Based on our preliminary experience with BART, we
believe this framework can support the reuse process
from two different dimensions, horizontal and verti­
cal reuse. Horizontal reuse means that an application
is built by taking existing components from different

7

domains and connecting them together using a BART­
like framework. It is horizontal because one is free to
select the components from across different domains.
We essentially performed horizontal reuse.

Vertical reuse means that one generates an application
by selecting components from within a well-defined
domain and connects them using a BART-like frame­
work. It is vertical because components are selected
from within (or up and down) a specific domain. This
is sometimes referred to as domain-specific reuse.

We believe these two perspectives are very comple­
mentary, and BART could playa vital role in pursu­
ing both. One may initially attempt to rapidly proto­
type an application by performing horizontal reuse to
demonstrate the feasibility of an idea. For example,
consider the prototype discussed in this paper.

After receiving positive feedback on the prototype,
one may choose to further develop the application by
performing vertical reuse. That is, develop compo­
nents that are more suited to the application, yet still
provide some degree of configurableness. This is some­
times referred to as a domain-specific kit[2].

If we were to pursue vertical reuse, the next logical
step might be to develop domain specific components
that would allow one to build configurable collabo­
rative CAD systems. That is, from this domain one
might build different systems that support different
groups of engineers by selecting different interfaces.
For instance, one might configure a system to sup­
port a group of civil engineers, another to support
a group of mechanical engineers, and yet another to
support a group of automobile designers. Another way
to configure a collaborative system would be to allow
for interchangeable geometric modelers, since differ­
ent modelers provide different functionality (e.g., they
may support different types of geometric curves and
surfaces).

We have had some preliminary success using Bart to
support horizontal reuse. We are currently working
within a research group that is experimenting with
BART to determine how well it supports vertical reuse.

7 Summary

BART was designed to provide flexibility in software
systems by supporting component independence. This
framework allows components to be constructed inde­
pendent of the context in which they are to be used,



thereby allowing them to be reused in many different
situations.

We were able to demonstrate the feasibility of this
approach to software construction by prototyping the
shared-space collaboration model. By connecting a
number of existing software components using this
software bus, we were able to obtain a considerably
more flexible system. Because of this flexibility, we
were able to connect an arbitrary number of single­
user systems to obtain a system that supports group
collaboration between designers residing in geograph­
ically different places.

The support provided by the BART framework for
software construction will play a greater role in the
reuse process as more and more well-developed soft­
ware components become available.

8 Acknowledgments

We would like to thank Mike Creech and Brian
Beach for providing feedback on drafts of this paper.

References

[1] Beach, B.W., "Connecting Software Components
with Declarative Glue", The 14th International
Conference on Software Engineering, May 1992.

[2] Beach, B.W., Griss, M.L., Wentzel, K.D., "Bus­
Based Kits for Reusable Software", editor Selby,
R.W., Proceedings of the 2nd Irvine Software Sym­
posium, pp. 19-28, March 1992.

[3] Beach, B.W., "Software Glue, Connect-
ing Reusable Software Components" , PhD thesis,
University of California, Santa Cruz, 1992.

[4] Reiss, S., "Connecting Tools Using Message Pass­
ing", IEEE Software 7(4):57-66, July 1990.

[5] Linton, M.A., Vlissides, J.M., Calder, P.R., "Com­
posing User Interfaces With Interviews.", IEEE
Computer, 22(2), February 1989.

[6] O'Connell, J., Edwards, N., Cole, R., "A Re­
view of Four Distributed Infrastructures", Tech­
nical Report HPL-92-86, Hewlett-Packard Labo­
ratories, Bristol, England, July 1992.

8

[7] Stefik, M., Froster, G., Bobrow, D.G., Kahn, K.,
Lanning, S., Suchman, L., "Beyond the Chalk­
board: Computer Support for Collaboration and
Problem Solving in Meetings", Communication of
the ACM, 30(1), pp. 32-47, January 1987.




