
LH* | Linear Hashing for Distributed Files

Witold Litwin� Marie-Anne Neimat

Hewlett-Packard Labs

1501 Page Mill Road

Palo Alto, CA 94304

email: lastname@hplabs.hp.com

Donovan A. Schneider

Abstract

LH* generalizes Linear Hashing to parallel or distributed

RAM and disk �les. An LH* �le can be created from

objects provided by any number of distributed and au-

tonomous clients. It can grow gracefully, one bucket at

a time, to virtually any number of servers. The number

of messages per insertion is one in general, and three in

the worst case. The number of messages per retrieval

is two in general, and four in the worst case. The load

factor can be about constant, 65{95%, depending on the

�le parameters. The �le can also support parallel oper-

ations. An LH* �le can be much faster than a single

site disk �le, and/or can hold a much larger number of

objects. It can be more e�cient than any �le with a

centralized directory, or a static parallel or distributed

hash �le.

1 Introduction

More and more applications are mission critical and re-

quire fast analysis of unpredictably large amounts of in-

coming data. The traditional architecture is to deal with

data through a single processor and its main (RAM)

memory with disk as secondary storage. Recent archi-

tectures attempt to bene�t from distributed or parallel

processing, using multiprocessor machines and/or from

distributed processing on a number of sites.

The rationale is that whatever capabilities a single

processor or site could have, a pool of sites can provide

�Paris 9, visiting HP-Labs and UC-Berkeley

0

more resources. An enabling factor is the existence of

high speed links. 10 Mb/sec (Megabits per second) Eth-

ernet links are common, 100 Mb/sec FDDI or TCNS

are in mass production, and 100 Mb-1Gb/sec links are

coming, e.g., Ultranet and HIPPI. Similar speed cannot

be achieved using magnetic or optical disks. It becomes

more e�cient to use a RAM of another processor than

to use a local disk. Furthermore, many organizations

have hundreds, or even thousands of interconnected sites

(processors), with dozens of megabytes (MB) of RAM

per site, and even more of disk space. This allows for dis-

tributed RAM �les reaching dozens of gigabytes (GB).

Such RAM �les in conjunction with parallel processing

should allow a DBMS to perform operations not feasible

in practice within the classical database architecture.

However, distributed processing should be applied

wisely. A frequent problem is that, while the use of too

many sites may deteriorate performance, the best num-

ber of sites to use is either unknown in advance or can

evolve during processing. We are interested in methods

for gracefully adjusting the number of sites or proces-

sors involved. We propose a solution for the following

context.

There are several client sites (clients) sharing a �le F .
The clients insert objects given OIDs (primary keys),

search for objects (usually given OIDs), or delete ob-

jects. The nature of objects is unimportant here. F

is stored on server sites (servers). Clients and servers

are whole machines that are nodes of a network, or pro-

cessors with local RAMs within a multiprocessor ma-

chine. A client can also be a server. A client does not

know about other clients. Each server provides a stor-

age space for objects of F , called a bucket. A server

can send objects to other servers. The number of ob-

jects incoming for storage is unpredictable, and can be

much larger than what a bucket can accommodate. The

number of interconnected servers can be large, e.g., 10{

10,000. The pool can o�er many gigabytes of RAM,

perhaps terabytes, and even more of disk space. The

problem is to �nd data structures that e�ciently use

Internal Accession Date Only

the servers. We are interested in structures that meet

the following constraints:

1. A �le expands to new servers gracefully, and only

when servers already used are e�ciently loaded.

2. There is no master site that object address compu-

tations must go through, e.g., to access a centralized

directory.

3. The �le access and maintenance primitives, e.g.,

search, insertion, split, etc., never require atomic

updates to multiple clients.

Constraint (2) is useful for many reasons. In par-

ticular, the resulting data structure is potentially more

e�cient in terms of messages needed to manipulate it,

and more reliable. The size of a centralized directory

could be a problem for creating a very large distributed

�le. Constraint (3) is vital in a distributed environment

as multiple, autonomous clients may never even be si-

multaneously available. We call a structure that meets

these constraints a Scalable Distributed Data Structure
(SDDS). It is a new challenge to design an SDDS, as

constraint (2) precludes classical data structures modi-

�ed in a trivial way. For instance, an extendible hash �le

with the directory on one site and data on other sites, is

not an SDDS structure.

To make an SDDS e�cient, one should minimize the

messages exchanged through the net, while maximizing

the load factor. We propose an SDDS called LH*. LH*

is a generalization of Linear Hashing (LH) [Lit80]. LH,

and its numerous variants, e.g. [Sal88, Sam89], were de-

signed for a single site. LH* can accommodate any num-

ber of clients and servers, and allows the �le to extend

to any number of sites with the following properties:

� like LH, the �le can grow to practically any size,

with the load factor about constant, between 65{

95% depending on �le parameters [Lit80],

� an insertion usually requires one message, three in

the worst case,

� a retrieval of an object given its OID usually re-

quires two messages, four in the worst case,

� a parallel operation on a �le of M buckets costs

at most 2M + 1 messages, and between 1 and

O(log2M) rounds of messages.

This performance cannot be achieved by a distributed

data structure using a centralized directory or a master

site.

One variant of LH,Distributed Linear Hashing (DLH),
is designed speci�cally for a tightly coupled multiproces-

sor site with shared memory [SPW90]. In DLH, the �le

is in RAM, and the �le parameters are cached in the

local memories of processors. The caches are refreshed

selectively when addressing errors occur and through si-

multaneous updates to all the memories, at some points

during �le evolution. DLH �les are shown impressively

e�cient for high rates of insertions compared to LH.

However, the need for the simultaneous updates pre-

cludes a DLH �le from being an SDDS, and so does

not allow it to scale beyond a small number of sites.

LH* is especially useful for very large �les and/or �les

where the distribution of objects over several sites is ad-

vantageous for exploiting parallelism. A bucket of an

LH* �le can also be a whole centralized �le, e.g., a disk

LH �le. It therefore becomes possible to create e�-

cient scalable �les that grow to sizes orders of magnitude

larger than any single site �le could.

Section 2 discusses Linear Hashing and Section 3 de-

scribes LH*. Section 4 presents a simulation model of

LH*. Section 5 concludes the article.

2 Linear Hashing

LH is a hashing method for extensible disk or RAM �les

that grow or shrink dynamically with no deterioration

in space utilization or access time. The �les are orga-

nized into buckets (pages) on a disk [Lit80], or in RAM

[Lar88]. Basically, an LH �le is a collection of buck-

ets, addressable through a directoryless pair of hashing

functions hi and hi+1; i = 0; 1; 2::: The function hi
hashes (primary) keys on N � 2i addresses; N being the

initial number of buckets, N � 1. An example of such

functions are the popular division modulo x functions,

especially: hi : C ! C mod N � 2i

Under insertions, the �le gracefully expands, through

the splitting of one bucket at a time into two buckets.

The function hi is linearly replaced with hi+1 when ex-

isting bucket capacities are exceeded. A special value n,

called pointer, is used to determine which function, hi or

hi+1, should apply to an OID. The value of n grows one

by one with the �le expansion (more precisely it grows

from 0 to N , then from 0 to 2N , etc.). It indicates the

next bucket to split and it is always the leftmost bucket

with hi. Figure 1 illustrates this process using hi above,

for N = 1 and a bucket capacity of 4.

A split is due to the replacement of hi with hi+1, and

is done one bucket at a time. Typically, each split moves

half of the objects in bucket n to a new address that is

always n+N �2i. At some point, hi+1 replaces hi for all

current buckets. In this case, hi+2 is created, i i+ 1,

and the whole process continues for the new value of

i. It can continue in practice inde�nitely. The result

shown through performance analysis is an almost con-

stant access and memory load performance, regardless

(a) original �le w/153 causing a collision at bucket 0.

(b) after split of bucket 0 and inserts of 251 and 215.

(d) insert of 7 caused split of bucket 1; keys 360 and 18 inserted.
(c) insert of 145 causes collision and split of bucket 0; 6 and 12 inserted.

(a)

n=0

153

216
321
32
10

h0 h11h

n=0

216
32
10

153
215
321

(b)

251

(c)

32

216
12

251
153

215
321

10
6

145

h1h2 2h

n=1

(d)

215
251
7

6
10
18

321
145
153

12
216

360
32

h2 2h h2 2h

n=0

Figure 1: Linear Hashing.

of the number of insertions. This property is unique to

LH schemes. The access performance stays close to one

disk access per successful search and the load factor can

reach 95%.

The LH algorithm for hashing a key C, i.e., computing

the bucket address a to use for C, where a = 0; 1; 2; :::; is

as follows:

a hi(C); (A1)

if a < n then a hi+1(C);

The index i or i+ 1 �nally used for a bucket is called

the bucket level. The value i + 1 is called the �le level.
An LH �le can also shrink gracefully with deletions

through bucket merging, which is the inverse of split-

ting [Lit80].

3 LH*

3.1 File expansion

We describe the basic LH* scheme, on which many vari-

ants are possible. Each bucket is assumed at a di�erent

server (see �gure 2). Each bucket retains its bucket level

(9 or 10 in �g. 2) in its header. Buckets are in RAM,

although they could be on disk. Buckets (and servers)

are numbered 0; 1; :::, where the number is the bucket
address. These logical addresses are mapped to server

addresses as discussed in Section 3.4.

An LH* �le expands as an LH �le. Each key should

be at the address determined by (A1). Initially, the �le

consists of bucket 0 only, the pointer value is n = 0, and

h0 applies. Thus, the addressing using (A1) uses the

values n = 0 and i = 0. When bucket 0 overows, it

splits, bucket 1 is created, and h1 is used. The address-

ing through (A1) now uses the values n = 0 and i = 1.

6

X X X X X X X

H
H

H H

!!!!!

�
�

��

a a a a a
c

c c
�

�

...

9 1010101010

srvr 591srvr 583srvr 512srvr 80srvr 1

............

n=80

i'=9
n'=31

i'=2
n'=0

i'=6
n'=5

client mclient 2client 1

srvr 0

Figure 2: Principle of LH*.

At the next collision, bucket 0 splits again, the pointer

moves to bucket 1, and h2 starts to be used, as shown

previously. Addressing using (A1) now uses n = 1 and

i = 1, etc. In Figure 2, the �le has evolved such that

i = 9 and n = 80. The last split of bucket 0 created

bucket 512 and further splits expanded the LH* �le to

592 servers.

3.2 Addressing

3.2.1 Overview

Objects of a LH* �le are manipulated by clients. A

client usually inserts an object identi�ed with its key, or

searches for a key. A client can also perform deletions or

parallel searches. There can be any number of clients,

as shown in Figure 2.

LH is based on the traditional assumption that all

address computations use the correct values of i and

n. Under SDDS constraints, this assumption cannot be

satis�ed when there are multiple clients. A master site

is needed, or n and i values need to be replicated. The

latter choice implies that every client should receive a

message with a new value of n after each split. Neither

option is attractive.

LH* principles are di�erent in that they do not require

all clients to have a consistent view of i and n. The �rst

principle is that every address calculation starts with

a step called client address calculation. In this step,

the client applies (A1) to its local parameters, n0 and

i0, which are the client's view of n and i, but are not

necessarily equal to the actual n and i of the �le. The

initial values are always n0 = 0 and i0 = 0; they are

updated only after the client performs a manipulation.

Thus, each client has its own image of the �le that can
di�er from the �le, and from images of other clients. The

actual (global) n and i values are typically unknown to

a client, they evolve through the action of all the clients.

Even if n0 equaled n the last time a client performed

a manipulation, it could happen that splits occurred in

the meantime and n > n0 or i > i0.

Figure 2 illustrates this principle. Each client has val-

ues of n0 and i0 it used for its previous access. The image

of client 1 is de�ned through i0 = 6 and n0 = 5. For this

client, the �le has only 69 buckets. Client 2 perceives the

�le as even smaller, with only 4 buckets. Finally, client

m sees a �le with 542 buckets. None of these perceptions

is accurate, as the actual �le grew to 592 buckets.

A client inserting or retrieving a key C may calculate

an address that is di�erent from the actual one, i.e.,

one that would result from using n and i. In Figure 2,

each client calculates a di�erent address for C = 583.

Applying (A1) with its n0 and i0, client 1 �nds a = 7.

Client 2 computes a = 3, and client m calculates a = 71.

None of these addresses is the actual one, i.e., 583. The

whole situation could not happen in a LH �le.

A client may then make an addressing error, i.e., it
may send a key to an incorrect bucket. Hence, the sec-

ond principle of LH* is that every server performs its

own server address calculation. The server receiving a

key, �rst veri�es whether its bucket should be the recip-

ient. If not, the server calculates the new address and

forwards the key there. The recipient of the forwarded

key checks again, and perhaps resends the key1. We will

show that the third recipient must be the �nal one. In

other words, in the worst case, there are two forwarding

messages, or three buckets visited.

Finally, the third principle of LH* is that the client

that made an addressing error gets back an adjustment
message. This message contains the level of the bucket

the client �rst addressed, e.g., in Figure 2, buckets 0{79

and 512{591 are at level 10 while buckets 80{511 are at

level 9. The client executes the client adjustment algo-
rithm which updates n0 and i0, thus getting the client's

image closer to the actual �le. The typical result is that

clients make very few addressing errors, and there are

few forwarding messages, regardless of the evolution of

the �le. The cost of adjusting the image is negligible,

the adjustment messages being infrequent and the ad-

justment algorithm fast.

We now describe these three steps of the LH* address

calculation in detail.

3.2.2 Client address calculation

This is simply done using (A1) with n0 and i0 of the

client. Let a0 denote the resulting address.

a0 hi0(C); (A10)

if a0 < n0 then a0 hi0+1(C);

1If the �le can shrink, a server may occasionally send a key
to a bucket that does not exist any more. See [LNS93] for the
discussion of this case.

(A10) can generate an incorrect address, i.e., a0 might

not equal the a that algorithm (A1) computes, but it

can also generate the correct one, i.e. a0 = a. Figure 3

illustrates both cases. The actual �le is shown in Fig-

ure 3a with i = 4 and n = 7. Thus, buckets 0{6 are at

level 5, buckets 7{15 are at level 4, and buckets 16{22

are at level 5. Two clients, Figures 3b{c, perceive the

�le as having i0 = 3 and n0 = 3. The client in Figure 3d

has a still di�erent image: i0 = 3 and n0 = 4.

Figure 3b illustrates the insertion of key C = 7. De-

spite the inaccurate image, the client sends the key to

the right bucket, i.e., bucket 7, as (A1) would yield the

same result. Hence, there is no adjusting message and

the client stays with the same image. In contrast, the

insertion of 15 by the client in Figure 3c, leads to an

addressing error, that is, a0 = 7 while a = 15. A new

image of the �le results from the adjustment algorithm

(explained in Section 3.2.4). Finally, the client in Fig-

ure 3d also makes an addressing error since it sends key

20 to bucket 4, while it should have gone to bucket 20.

It ends up with yet another adjusted image.

3.2.3 Server address calculation

No address calculated by (A10) can be beyond the �le

address space, as long as there was no bucket merging.

(See [LNS93] for a discussion of bucket merging.) Thus,

every key sent by a client of a LH* �le is received by a

server having a bucket of the �le, although it can be an

incorrect bucket.

To check whether it should be the actual recipient,

each bucket in a LH* �le retains its level, let it be j; j =

i or j = i + 1. In LH* �les, values of n are unknown to

servers so they cannot use (A1). Instead, a server (with

address a) recalculates C's address, noted below as a0,

through the following algorithm:

a0 hj(C); (A2)

if a0 6= a then

a00 hj�1(C)

if a00 > a and a00 < a0 then a0 a00;

If the result is a = a0, then the server is the correct

recipient and it performs the client's query. Otherwise,

it forwards the query to bucket a0. Server a0 reapplies

(A2) using its local values of j and a. It can happen

that C is resent again. But then, it has to be the last

forwarding for C.

Proposition 3.1 Algorithm (A2) �nds the address of
every key C sent through (A10), and C is forwarded at
most twice.

The following examples facilitate the perception of the

proposition, and of its proof, immediately afterwards.

Examples: Consider a client with n0 = 0 and

i0 = 0, i.e. in the initial state, inserting key C where

C = 7. Assume that the LH* �le is as the LH �le in

Figure 1c with n = 1. Then, C is at �rst sent to bucket 0

(using A10), as by the way, would any other key inserted

by this client. The calculation using (A2) at bucket 0

yields initially a0 = 3, which means that C should be

resent. If it were resent to bucket hj(C), bucket 3, in our

case, it would end up beyond the �le. The calculation of

a00 and the test through the second if statement prevents

such a situation. It therefore sends key 7 to bucket 1.

The calculation at bucket 1 leads to a0 = 1, and the key

is inserted there, as it should be according to (A1).

Assume now that n = 0 and i = 2 for this �le, as

shown in Figure 1d. Consider the same client and the

same key. The client sends key 7 to bucket 0, where

it is resent to bucket 1, as previously. However, the

calculation 7 mod 4 at bucket 1 now yields a0 = 3. The

test of a00 leads to keeping the value of a0 at 3, and the

key is forwarded to bucket 3. Since the level of bucket

1 is 2, the level of bucket 3 must be 2 as well. The

execution of (A2) at this bucket leads to a0 = 3, and the

key is inserted there. Again, this is the right address, as

(A1) leads to the same result2.

In Figures 3c-d, keys 15 and 20 are forwarded once.

Proof: (Proposition 3.1.)

Let a be the address of the bucket receiving C from

the client. a is the actual address for C and there are

no forwards i� a = a0 = hj(C). Otherwise, let a00 =

hj�1(C). Then, either (i) n � a < 2i, or (ii) a < n or

a � 2i. Let it be case (i), then j = i. It can happen that

a00 6= a, consider then that the forward to a00 occurs. If

a00 6= a, then, i0 < j � 1, a00 > a, the level j(a00) is j = i,

and a00 = hj(a00)�1(C). Then, either a00 = a0 = hi(C),

or a00 < a0. In the former case a00 is the address for

C, otherwise let us consider the forward to a0. Then,

j(a0) = i, and a0 is the address of C. Hence, there are

two forwards at most in case (i).

Let us now assume case (ii), so j = i+1, and we must

have a00 � a. If a00 > a, then C is forwarded to bucket

a00. Then, j(a00) = i, or j(a00) = i+1. In the latter case,

hj(a00)(C) = a00, so a00 is the address for C. Otherwise,

a00 = hj(a00)�1(C), and it can happen that a0 = a00, in

which case a00 is the address for C. Otherwise, it can

only be that a0 > a00, a0 � 2i, hence j(a0) = i + 1, and

a0 is the address for C. Thus, C is forwarded at most

twice in case (ii).

(A2) implements the proof reasoning. The �rst and

second lines of the algorithm check whether the current

bucket is the address for C. The third and fourth lines

2We assume a reliable network that does not unreasonably de-
lay messages. Hence, we assume a forwarded key reaches bucket p
before p is split using hi+2. The latter split can only occur after
all the buckets preceding p are also split using hi+2.

-

-

-

6

n=7, i=4

0 6 7 15 16 22

(a)

0 3 7 10

7(b)

107

j = 4

30

15(c)

0 4 7 11

20(d)

j=4

0 3 7 10

7

0 15

15

0 5 16 20

20

j=4

j=4

j = 4

j = 3 j = 4

j = 5 j = 4 j = 5

j=4

j = 5j = 4

j = 3j=4

n'=3, i'=3, C=7! n'=3, i'=3

n'=3, i'=3, C=15! n'=0, i'=4

n'=4, i'=3, C=20! n'=5, i'=4

j = 5

j = 3

j = 3

j=4

Figure 3: Images of a LH* File.

(a) � actual file

(b) � inaccurate image; but no addressing error

(c; d) � image adjustments

trigger the forward to a00, if a00 > a.

As the examples showed, the rationale in forwarding

using j�1 is that the forwarding using j could send a key
beyond the �le. Note that several variants of (A2) can

be designed. For instance, one may observe that in (A2),

the calculation of a00 may be used to indirectly recognize

that C was already forwarded once. If a server can know

this from the incoming message, the calculation of a00 by

the second recipient is useless. On the other hand, if the

client sends i0 along withC, then if i0 � j, the calculation

of a0 can be eliminated.

3.2.4 Client image adjustment

In case of an addressing error by the client, one of the

servers participating in the forwarding process sends

back to the client the adjustment message with the level

j of the bucket a where the client sent the key. The

client then updates i0 and n0. The goal is to get i0 and

n0 closer to i and n so as to maximize the number of

keys for which (A10) provides the correct address. The

LH* algorithm for updating i0 and n0 when an address-

ing error occurs is as follows. a is the address where key

C was sent by the client, j is the level of the bucket at

server a.

1. if j > i0 then i0 j � 1, n0 a+ 1; (A3)

2. if n0 � 2i
0

then n0 0, i0 i0 + 1;

Initially, i0 = 0 and n0 = 0 for each client. Figures 3c-d

illustrate the evolution of images implied by (A3). After

the image adjustment through Step 1, the client sees the

�le as with n0 = a + 1 and with k buckets, k � a, with

�le level j�1. Step 2 takes care of the pointer revolving

back to zero. The whole guess can of course be inaccu-

rate, as in both Figures 3c-d. However, the client view

of the �le gets closer to the true state of the �le, thus

resulting in fewer addressing errors. Furthermore, any

new addressing errors result in the client's view getting

closer to the true state of the �le.

If no client inserts objects, (A3) makes every n0 con-

verge to n. Otherwise, for each client there may be a

gap between n0 and n, because of the evolution of n.

A rarely active client makes more errors, as the gap is

usually wider, and errors are more likely.

Examples: Consider Figure 3c. Before the adjust-

ment, an addressing error could occur for every bucket

in the client's image of the �le, i.e., buckets 0{10, as

for every such bucket the actual level was di�erent from

the considered one. The insertion of key 15 leads to a

new perception | a �le with level 4 for every bucket.

This image di�ers from the actual �le only at buckets

0{6. No addressing error can occur anymore for a key

sent by the client to a bucket in the range 7{15. This

should typically decrease the probability of addressing

errors for this client.

For the client in Figure 3d, the insertion of key 20 led

to an image that was accurate everywhere but at two

buckets: 5 and 6. Hence the probability of an addressing

error became even smaller than in Figure 3c.

Consider that the client from Figure 3c subsequently

searches for a key whose address is in the range 1{6.

Every such search leading to an adjustment can only

decrease the number of buckets with the level perceived

as 4, instead of the actual level 5. The remaining buckets

must be rightmost in the range. For instance, the search

for key 21 will lead to a new image, where only the level

of bucket 6 remains incorrect. Under the uniform hash-

ing assumption, the probability of an addressing error

will become almost negligible (1/32 exactly). Finally,

the insertion of a key such as 22 would make the image

exact, unless insertions expanded the �le further in the

meantime.

3.3 Splitting

As stated in Section 3.1, an LH* �le expands as an LH

�le, through the linear movement of the pointer and

splitting of each bucket n. The splitting can be un-
controlled, i.e., for each collision. Alternatively it can

be controlled, e.g., occurring only when the load factor

reaches some threshold, e.g., 80%, leading to a constant

load factor in practice [Lit80]. The values of n and i

can be maintained at a site that becomes the split coor-
dinator, e.g., server 0. For uncontrolled splits, the split

coordinator receives a message from each site that un-

dergoes a collision. This message triggers the message

\you split" to site n, and, assuming N = 1, it triggers

the LH calculation of new values for n and i by the split

coordinator using:

n n+ 1; (A4)

if n � 2i then n 0, i i + 1;

Server n (with bucket level j) which receives the mes-

sage to split: (a) creates bucket n + 2j with level j + 1,

(b) splits bucket n applying hj+1 (qualifying objects are

sent to bucket n+2j), (c) updates j j+1, (d) commits

the split to the coordinator.

Step (d) allows the coordinator to serialize the visi-

bility of splits. This is necessary for the correctness of

the image adjustment algorithm. If splits were visible

to a client out of sequence, the client could compute a

bucket address using an n that would be, for the time

being, beyond the �le.

Several options exist for handling splits [LNS93]. Most

importantly, the split coordinator can be eliminated and

splits can be done in parallel.

3.4 Allocation of sites

The bucket addresses a above are logical addresses to be

translated to actual addresses s of the sites on which the

�le might expand. The translation should be performed

in the same way by all the clients and servers of a �le.

There are two approaches: (i) a static table known to

all clients and servers, and (ii) a dynamic table that

can become arbitrarily large, perhaps encompassing the

entire INTERNET [LNS93].

3.5 Parallel operations

A parallel operation on a LH* �le F is an operation to

be performed on every bucket of F . Examples include a

selection of objects according to some predicate, an up-

date of such objects, a search for sets of keys in a bucket

to perform a parallel hash equijoin, etc. An interesting

characteristic of LH* is that a client might not know all

the buckets in the �le. In [LNS93], we show that the cost

of a parallel operation on a �le of M buckets is at most

2M + 1 messages delivered between 1 and O(log2M)

rounds of messages.

3.6 Performance

The basic measure of access performance of LH* is the

number of messages to complete a search or an inser-

tion. A message here is a message to the networking

system, we ignore the fact that it can result in several

messages. For a random search for a value of C, as-

suming no address mismatch, two messages su�ce (one

to send C, and one to get back information associated

with C). This is a minimum for any method and is im-

possible to attain if a master directory site is necessary,

since three messages are then needed. In the worst case

for LH*, two additional forwarding messages are needed,

i.e., a search needs at most four messages. We will see

in the next section that the average case is around two

messages and is hence better than any approach based

on a master directory.

For a random insertion, the object reaches its bucket

in one or, at most, three messages. Again, the best case

is better than for a scheme with a master site, where two

messages are needed. The bad cases should usually be

infrequent, making the average performance close to one

message. Furthermore, messages associated with bucket

splitting (discussed in the following section) do not slow

insertions as they are performed asynchronously.

The load factor of a LH* �le is as for LH, i.e., 65{

95% [Lar80, Ou91].

4 Simulation modeling of LH*

We constructed a simulation model of LH* in order to

gather performance results that were not amenable to

analysis in Section 3. We show that average case per-

formance is very close to the best case for insert and

retrieve operations, that clients incur few addressing er-

rors before converging to the correct view of the �le,

that performance for very inactive clients is still quite

good, and that �le growth is a relatively smooth and

inexpensive process.

We �rst describe the simulationmodel and then report

the detailed results of our performance analysis. The

simulator used the CSIM simulation package [Sch90].

The logical model of the simulator contains the follow-

ing components. The clientsmodel users of the LH* �le

and insert and retrieve keys, the servers each manage a

single bucket of the �le, the split coordinator controls

the evolution of the �le, and the network manager

provides the intercommunication. More detailed behav-

ior of each of these components is described below.

We assume a shared-nothing multiprocessor environ-

ment where each node has a CPU and a large amount of

local memory. Each server (and hence bucket) is mapped

to a separate processing node, as is each client. The split

coordinator shares the processor with bucket 0.

6

?�
�

�
� �3

B
B

B
B BN

-

4.Splitdone
2.Split

1.Ov

Insert

Tuples

3.Init

jn+2nc

BucketBucketBucket

Coord

Split

Figure 4: Splitting of a Bucket.

4.1 Simulation components

Clients: Clients typically act in three phases: a

series of random keys are inserted into an empty �le,

the client's view of the �le is cleared, i.e., i0 and n0 are

set to 0, and �nally, some randomly selected keys are

retrieved.

In our implementation, a client may or may not re-

ceive an acknowledgement message for each insert com-

mand. If acknowledgements are required, a minimum

of two messages is necessary to insert a key into a �le

| the original insert request from the client to a server

and a status reply. If an addressing error occurs in the

processing of such an insert, the adjustment message is

piggybacked onto the client reply. If acknowledgments

are not required, a server sends the adjustment message

directly to the client. In the case of retrieves, adjustment

messages are always piggybacked onto the client reply.

In any case, a client uses the information in an adjust-

ment message to update its view of the �le (Algorithm

A3 in Section 3.2.4).

Servers: Each bucket in a LH* �le is managed by a

distinct server. Servers execute algorithm (A2) to deter-

mine whether they should process the operation or for-

ward it to a di�erent server. If forwarding is required, an

adjustment message is sent to the client unless it is pos-

sible to piggyback it onto the client reply (as explained

above). Upon receipt of a split message from the split

coordinator, a server sends an init message to create a

new bucket of the �le and then scans all the tuples in its

local bucket and transfers those that rehash to the new

bucket. In the current implementation, this complete

operation requires a single message. When the transfer

of tuples is done, a splitdone message is sent back to

the coordinator.

Split coordinator: In our implementation, the

split coordinator controls �le evolution using uncon-

trolled splitting (see Section 3.3). The actual ow of

messages required to split a bucket is shown in Figure 4.

As is shown, four messages are required for each bucket

Build (w/splits)

Build (w/o splits)

Ave.Msgs/insert

Bucket capacity

 0.80

 0.85

 0.90

 0.95

 1.00

 1.05

 1.10

 1.15

 1.20

 1.25

 1.30

 1.35

 1.40

 1.45

 1.50

 30 100 300 1000 3000 10000

Figure 5: Performance of �le creation.

split. This is a slight simpli�cation because it could take

several messages to transfer the keys to a new bucket,

when bucket capacities are large. Furthermore, the co-

ordinator only allows a single bucket to be undergoing

a split operation. All collision noti�cation messages re-

ceived from servers while a split is in progress are queued

for later processing.

Network manager: A common network interlinks

the servers, clients, and the split coordinator. The net-

work is restricted to one active transmission and uses a

�rst-come, �rst-served (FCFS) protocol.

4.2 Experimental results

4.2.1 Performance of �le creation and search

Figure 5 shows the average cost, in messages per insert,

to build LH* �les with bucket capacities ranging from

10 to 10,000 keys. Each �le was constructed by inserting

10,000 random keys, thus resulting in �les with the num-

ber of buckets ranging from over 1,000 down to 1. In-

serts did not require acknowledgements. The lower curve

plots the average number of messages per inserted key as

seen by the client, i.e., it consists of the original message

from the client to the server, forwarding messages from

server to server, and �nally, adjustment messages from

servers back to the client. This curve con�rms our per-

formance predictions in Section 3. First, performance

is better for �les with larger bucket capacities, although

in this case performance is quite stable. And second,

insert performance is very close to the best possible |

one message per insertion. The �gure shows that the

di�erence is under 3%.

The upper curve shows the complete load on the net-

working system for building LH* �les. That is, it in-

cludes the messages from the lower curve plus the mes-

sages associated with bucket splitting (four messages per

split). Since inserts can take place concurrently with

bucket splits, this metric should not adversely a�ect

client performance (as shown by the lower curve) un-

less the network becomes a bottleneck. Note that the

curve converges rapidly towards the lower one anyway.

Table 1 presents a more detailed picture of the curves

in Figure 5. In addition to the average messages per

key insert (AvMsgs), which forms the upper curve in

Figure 5, it includes the number of addressing errors

incurred for the key inserts during �le creation (column

Errs). As is shown, the number of addressing errors is

very small, even when the bucket capacity is small.

The column Msgs-ack in Table 1 shows the average

number of messages per insert when the status of each

insert operation has to be returned to the client. For ex-

ample, this might be a requirement for clients that need

strong guarantees on the success of their updates. As

is shown, these numbers are almost exactly one greater

than the previous case where inserts are not acknowl-

edged. The reason for being slightly less than one is due

to the piggybacking of addressing error messages onto

the acknowledgement messages to the client.

Finally, column Search shows the average perfor-

mance of a client retrieving random keys from the �les.

For each bucket capacity the client �rst inserted 10,000

random keys. It then reset its view of the �le to empty

and retrieved 1,000 keys. This was repeated 100 times

and the results were averaged. As the table shows, it

generally requires just over two messages to retrieve an

object, regardless of the capacity of the buckets. These

values are very close to the best possible of two messages

per retrieval, with the di�erences being under 1%.

4.2.2 Convergence of a client view

In this set of experiments we were interested in determin-

ing how fast a read-only client, starting with a view of

the �le as empty, obtains a true view of the �le (using the

image adjustment algorithm (A3)). Two metrics are of

interest: the number of addressing errors incurred before

converging to the true state of the �le, and the number

Bkt No. of Build Search

Cap Bkts Errs AvMsgs Msgs-ack AvMsgs

17 1012 161 1.437 2.421 2.008

33 512 134 1.231 2.218 2.007

62 255 94 1.120 2.111 2.007

125 128 64 1.064 2.057 2.006
250 64 41 1.033 2.029 2.006

1000 16 14 1.009 2.007 2.004

4000 4 3 1.002 2.002 2.002
8000 2 1 1.001 2.001 2.001

Table 1: File build and search performance (10K inserts,

1K retrieves).

Bkt No. of Addr Errors Retrieves

Cap Bkts Ave Std Ave Std

25 7296 9.3 2.6 3995.8 2813.5

250 512 6.8 2.4 476.5 464.1
2500 64 5.1 1.6 69.3 60.5

Table 2: Convergence of a client view (100K inserts).

of objects retrieved before convergence is reached.

Table 2 presents the detailed results for �les with

bucket capacities ranging from 25 to 2500 (each �le was

populated with 100,000 random keys). The client was

run 100 times, each time starting with an empty view

of the �le, and the results were averaged. The results,

under the column Addr Errors, show that it takes rel-

atively few addressing errors before the client's image

converges to the true state, even when the capacity of

each bucket is small and hence the number of buckets is

large. In fact, the average number of addressing errors

is slightly less than log2 of the number of buckets. This

is intuitive, because, on average, each addressing error

halves the number of buckets that the client may address

incorrectly. Note also that performance is better for �les

with large bucket capacities.

Furthermore, the results under the columnRetrieves

demonstrate that a client can retrieve many objects

without incurring addressing errors even though the

client's view of the �le is inaccurate. For example, when

the bucket capacity was 25, the client retrieved 3,996

objects before its view of the �le matched the true state

of the �le. Since only 9 addressing errors were incurred

in order to reach convergence in this case, 3987 of the

3996 objects were retrieved without error, for an average

of just 2.002 messages per retrieve.

Insert Client 0 (Active) Client 1 (Less Active)
Ratio AvMsg Errs %Errs AvMsg Errs %Errs

1:1 2.01 125 1.25% 2.01 126 1.26%
10:1 2.01 115 1.15% 2.05 49 4.90%
100:1 2.01 104 1.04% 2.23 23 23.00%
1000:1 2.01 104 1.04% 2.50 4 40.00%

Table 3: Two clients (bucket capacity = 50).

Insert Client 0 (Active) Client 1 (Less Active)
Ratio AvMsg Errs %Errs AvMsg Errs %Errs

1:1 2.004 38 0.38% 2.004 39 0.39%
10:1 2.002 20 0.20% 2.013 13 1.30%
100:1 2.002 20 0.20% 2.100 10 10.00%
1000:1 2.002 20 0.20% 2.500 5 50.00%

Table 4: Two clients (bucket capacity = 500).

4.2.3 Performance of less active clients

In this section, we analyze the performance of LH* when

two clients are concurrently accessing a �le. Speci�cally,

we are interested in the case where one client is signi�-

cantly less active than the other. The expectation is that

a less active client experiences more addressing errors

than an active client since the �le may evolve between

accesses by the lazy client.

In these experiments, the two clients are synchronized

such that the �rst client inserts N keys for every key

inserted by the second client (N is referred to as the

Insert Ratio). The �rst client always inserts 10,000 keys.
Thus, with an insert ratio of 100 to 1, the second client

only inserts 100 keys. All insert operations required an

acknowledgment.

The results are summarized in Table 3 for LH* �les

with a capacity of 50 keys at each bucket. The aver-

age number of messages per insert, the total number of

addressing errors, and the percentage of addressing er-

rors related to the number of inserts are shown for each

client. As the table shows, the performance of the sec-

ond client degrades as it is made progressively less ac-

tive. This occurs because the inserts by the �rst client

expand the �le thus causing the second client's view of

the �le to be outdated. This then results in the second,

less active client experiencing an increased percentage of

addressing errors.

Table 4 repeats the experiments of Table 3 with the

exception that the bucket capacity has been increased

from 50 to 500. The overall result from this experiment

is that the percentage of addressing errors decreases with

larger bucket capacities because greater capacities result

in �les with fewer buckets and hence it is less likely that

a slower client will have an outdated view of the �le.

(For example, with an insert ratio of 1:1, the number of

buckets was decreased from 579 to 64 when the bucket

capacity was increased from 50 to 500.) However, a com-

parison of the two tables shows that the percentage of

addressing errors does not increase signi�cantly for �les

with smaller bucket capacities.

An experiment with 100,000 keys and with set-

tings identical to that of Table 4 showed that perfor-

mance of less active clients tends to be better for large

�les [LNS93]. For example, the percentage of errors ob-

served by the less active client was reduced to 17% and

the message cost was decreased to 2.17, for an insert

ratio of 1000:1.

4.2.4 Marginal costs during �le growth

Many �le access methods incur high costs at some points

during �le evolution. For example, in extendible hash-

ing, an insertion triggering the doubling of the directory

incurs a much higher cost. In LH*, the cost of �le evo-

lution is rather stable over the lifetime of a �le. Exper-

iments computing marginal costs reported in [LNS93]

show that access performance stays between 2.00 and

2.06 messages over the lifetime of the �le, even for �les

with small bucket capacities.

5 Conclusion

LH* is an e�cient, extensible, distributed data struc-

ture. An LH* �le can grow to virtually any size. In

particular, the algorithm allows for more e�cient use

of interconnected RAMs and should have numerous ap-

plications: very large distributed object stores, network

�le systems, content-addressable memories, parallel hash

joins, and, in general, for next generation databases.

Operations that were not possible in practice for a cen-

tralized database may become feasible with LH*.

Our analysis showed that it takes one message in the

best case and three messages in the worst case to insert

a key into a LH* �le. Correspondingly, it requires two

messages to retrieve a key in the best case and four in

the worst case. Furthermore, through simulations we

showed that average performance is very close to optimal

for both insert and retrieve queries. Hence, performance

of any algorithms that use a centralized directory has to

be worse than the average performance of LH*.

There are many areas of further research for LH*.

Variants of the basic LH* scheme outlined in this paper

and in [LNS93] should be analyzed in greater depth. Ap-

plications of LH*, e.g., hash-joins and projection, should

be examined. Concurrent use of LH*, e.g., on the ba-

sis of [Ell87], and fault tolerance are especially interest-

ing areas. The evaluation of an actual implementation

would also be interesting. For example, we ignored the

internal organization of LH* buckets. As buckets can be

several megabytes large, their organization could have

many performance implications. One attractive idea is

that of buckets of di�erent size, depending on bucket

address.

Finally, one should investigate other SDDSs, e.g.,

based on other dynamic hashing schemes, [ED88, Sal88,

Sam89], or preserving a lexicographic order, e.g., B-trees

or [Hac89, Kri86, LRLH91], that can improve the pro-

cessing of range queries.

Acknowledgements

We would like to thank Spyros Potamianos for his in-

valuable help in formatting the paper.

References

[ED88] R. Enbody and H. Du. Dynamic hashing systems.

ACM Computing Surveys, 20(2), June 1988.

[Ell87] Carla S. Ellis. Concurrency in linear hashing.

ACM TODS, 12(2), June 1987.

[Hac89] N.I. Hachem, et.al. Key-sequential access meth-

ods for very large �les derived from linear hashing.
In Intl. Conf. on Data Engineering, 1989.

[Kri86] H.-P. Kriegel, et.al. Multidimensional order pre-

serving linear hashing with partial expansions. In

Intl. Conf. on Database Theory. Springer-Verlag,
1986.

[Lar80] P.A. Larson. Linear hashing with partial expan-
sions. In Proc. of VLDB, 1980.

[Lar88] P.A. Larson. Dynamic hash tables. CACM, 31(4),
April 1988.

[Lit80] W. Litwin. Linear hashing: A new tool for �le

and table addressing. In Proc. of VLDB, 1980.

[LNS93] W. Litwin, M.-A. Neimat, and D. Schneider.

LH*|linear hashing for distributed �les. Tech.

report HPL-93-21, Hewlett-Packard Labs, 1993.

[LRLH91] W. Litwin, N. Roussopoulos, G. Levy, and

W. Hong. Trie hashing with controlled load. IEEE

Trans. on Software Engineering, 17(7), 1991.

[Ou91] S.F. Ou, et.al. High storage utilisation for single-

probe retrieval linear hashing. Computer Journal,

34(5), Oct. 1991.

[Sal88] B. Salzberg. File Structures. Prentice Hall, 1988.

[Sam89] H. Samet. The design and analysis of spatial data

structures. Addison Wesley, 1989.

[Sch90] H. Schwetman. Csim reference manual (revision

14). Tech. report ACT-ST-252-87, Rev. 14, MCC,
March 1990.

[SPW90] C. Severance, S. Pramanik, and P. Wolberg. Dis-
tributed linear hashing and parallel projection in

main memory databases. In Proc. of VLDB, 1990.

