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1 Introduction

This paper describes a method for developing object-oriented applications that involve
concurrency. The method, called OO/CAD (Object-Oriented Concurrency Analysis and
Design), is useful for systems which need to be structured as a network of sequential pro-
cesses. This includes many types of applications, including real time software and firmware
for controlling instruments and computer peripherals.

The paper starts by reviewing the requirements for OO/CAD. The next section describes
the concurrency model that is assumed for the method. Later sections present an overview
of the method and show its application to a non-trivial example. The paper concludes with
a discussion.

2 The Needs of Industrial Software Developers

The increasing use of software in instruments means that concurrency is becoming a common
place feature of many industrial applications. Furthermore, the need to continually improve
software productivity and quality is encouraging the uptake of object technology. As a result,
it is becoming more important to be able to develop concurrent object-oriented software in
a systematic fashion.

At the start of our work, a number of these projects were surveyed from different Hewlett-
Packard divisions, [12]. They were asked about the nature of the concurrent applications
that they developed. All the applications exhibited a similar limited form of concurrency
characterised by:

e processes are sequential C++, or C, programs.
e concurrency is provided by the operating system.
e a relatively small number of processes, usually less than 30.

o very limited use of dynamic process creation.

The projects also emphasised the lack of guidance from existing object-oriented methods
on how to obtain a concurrent structure for applications. The following requirements were
identified for an object-oriented method for these kinds of applications. These were that the
method should be:

e object-oriented in approach, and use familiar object-oriented notions wherever possible.
e complementary to the use of existing ob ject-oriented methods for developing the processes.

e of help finding concurrency, and provide heuristics for improving efficiency and checks for
safety etc



e manageable, with a defined process and deliverables that can be checked by inspections etc.

The next section introduces the concurrency model that is used in OO/CAD.

3 Concurrency model

Concurrency models for object-oriented systems can be partitioned into ezplicit concurrency
models and implicit concurrency models [14].

The implicit concurrency model integrates parallelism into the object structure. Processes,
i.e control activities are encapsulated within objects. The concurrency commitment for a
system is decided by defining activity behavior for objects.

The ezplicit concurrency model describes concurrency external to the object structure. The
parallelism sits on top of the object structure rather than being integrated into it. Ex-
plicit mechanisms like locks, monitors and semaphores are used to ensure object integrity.
The explicit model requires two abstraction levels, objects and threads, and makes it the
responsibility of the analyst to separately specify the parallel activity.

Most concurrent object-oriented languages support the implicit model. A few languages
support the explicit model by having a set of predefined threads or root object types for
initiating parallel activity. Systems in which the concurrency is provided by the operating
system, rather than the programming language, conform to the explicit model. The systems
surveyed in the previous section all use explicit concurrency. The processes can be considered
as objects as they encapsulate their data which can only be accessed via the interface.
Therefore, for the rest of the paper we use the term Concurrent Object to denote a system
component which has a thread in the overall parallel system behaviour. Since the concurrency
is provided by the operating system there are no classes and no inheritance. OO/CAD uses
an explicit concurrency model without inheritance and classes for concurrent objects.

The method develops a system architecture in terms of a set of synchronous communicating
concurrent objects, each representing a single thread of control. Communication is in terms
of events. Events are atomic units of mutually synchronised communication that may carry
data from the sender to the receiver. They can be used to model a number of different
styles of concurrent object communication such as one to one and multiple receives and
sends. Multiple participation in the same event gives concurrent object synchronisation.
Asynchronous communication can be modelled by the use of a concurrent buffer object.

4 Overview of the OO/CAD method

The OO/CAD method covers the analysis and design of the concurrent aspects of object-
oriented systems. The starting point is a natural language requirements document. The
finishing point is a concurrent architecture that takes the run time platform into account.



The method employs three means for finding concurrency:

o Temporally independent input events. If there is no ordering on the occurrence of input events
then they can be processed by different concurrent objects.

e Object responsibility. If an object has to carry out a task that can be performed asyn-
chronously then a new concurrent object may be introduced to take on the responsibility.

o Shared objects can be encapsulated in concurrent objects.

Figure 1 shows how the techniques are used in OO/CAD. The nodes correspond to steps
for producing and refining the concurrency architecture and object model. As the figure
suggests, there is a preferred ordering on the step, but they can be applied iteratively. The
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Figure 1: The OO/CAD method

figure also shows the principal deliverables from OO/CAD:

Concurrency Architecture which structures the system as a set of communicating con-
current objects. Each concurrent object is defined by its
e interface, i.e. the events it can receive and send
o life cycle, i.e. the allowable sequences of events in which the object can participate
e functionality, i.e. the responsibilities or tasks that it must perform.

Object Model which shows the static structure of each concurrent object as a set of classes
and their relationships.

The first three steps of the method build the first cut at the models; the remaining steps
refine them. Step one to six constitutes the analysis phase; step seven is the design phase.
We now briefly explain each of the steps in turn.



Step 1: Classes and Relationships This step produces the initial version of the object
model, which describes the static structure of the concurrent objects. It provides a
vocabulary for expressing the analysis and design.

Step 2: System Boundary and Events The first step in determining the concurrency
partition is to find the events that cross the boundary between the system and its
environment. An event-list is produced for all the events that the system sends and
receives.

Step 3: Input Event Dependencies The temporal dependencies between events can be
used to determine the first cut at the concurrent architecture of the system. Events
which are temporally independent can be handled by different concurrent objects.

Step 4: Responsibilities of Concurrent Objects This step takes system functionality
into account in order to discover further concurrency. The CRC notion of responsibility,
[1], is used to define the essential tasks that a system has to perform.

Step 5: Shared Objects The responsibilities are investigated to find if there are objects
that need to be accessed by more than one concurrent object. These shared objects are
potentially a source of concurrency.

Step 6: Review of Efficiency and Safety This step completes the analysis phase by ap-
plying heuristics to improve efficiency and checks for safety, fairness and liveness prop-
erties. It produces a logical concurrency architecture that ignores implementation is-
sues, cf essential models in structured methods for real time systems [13].

Step 7: Run Time Platform This is the design step that produces a real concurrency
architecture by mapping the logical concurrency architecture onto the target run time
environment.

The next section introduces a problem which is used to explain the method in more detail.

5 Problem Statement
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Figure 2: The ISDN Server

The task is to design a simplified Integrated Services Digital Network (ISDN) server. The
server is responsible for transmitting packets of data between a Local Area Network (LAN)
and a telecoms network; see figure 2. The server receives and sends a number of different
kinds of packets and events, as it is shown in figure 3. Packets received from the telecoms
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Direction | _identifier Source/Sink Description

|in-event | LAN-packet LAN inweriace Packet from the LAN
in-event | connect-confirm Lower interface Telscorn confirmation of connection astablished
in-event | connect-indication Lower interface Telecom request for connection

in-svent | disconnect-indicatio] _Lower interface Telecom initatad clearing of connection
in-event | dat-indication Lower inieriace Telecom daia inwards

out-event | Out-packet LAN interface Data packet to be sent to LAN

out-event | connect-request Lower interface Server st to establish a connection
oUl-event | connect-response Lower interface Server response that connection is estabiished
out-event | data-request Lower intsrface Telecom data outwards

Figure 3: Packets and events sent and received by the ISDN server

network are sent straight out to the LAN. Packets coming from the LAN carry data and a
destination address.

In order to transmit packets there must be a connection. Each connection requires the use of
some server resources, ie circuits and protocols. An outbound connection allows packets to be
sent out to the telecom network. It is established by the server requesting the telecom network
to connect to a destination address and requires access to configuration data internal to the
server. An inbound connection permits packets to be received from the telecom network. It
is initiated by a request from the the telecom network;

the server is not informed of the address of the source of the packets.

For outbound connections the sequence of events at the Lower interface is: connect-request
followed by connect-confirm. For inbound connections the sequence is connect-indication
followed by connect-response, The server clears the connection when it receives a disconnect-
indication event.

Outbound connection policy Packets received from the LAN interface are queued sep-
arately for each destination address. For each destination the server knows whether
there is a connection established or not. If a connection is established, packets are
transmitted from the queue. If a packet is received for a destination for which there
is no connection, then the server makes the connection as soon as the resources are
available. The following rules apply:

1. The server attempts to establish a connection to the destination address.

2. Outbound packets for a destination are queued whilst waiting for confirmation of a
connection to that destination.

3. When the connection confirmation arrives, packets can be transmitted and received on
that connection.

Inbound connection policy: The server operates only one incoming connection at a time.
Incoming data-indication packets are passed to the LAN interface. On receiving an
incoming disconnect-indication the corresponding destination is disconnected and the
associated resources are freed.



6 Method description and Problem solution

Each step in the method is explained and applied to the ISDN server.

6.1 Step 1: Classes and Relationships

The first step produces the initial version of the object model, which is an entity-relationship
model for the system and its environment. The relationships include specialisation/generalisation
(is-a) and aggregation (part-of). The object model is a static description of the problem do-
main concepts and provides a vocabulary for the rest of the analysis and design. In this step,

no attention is paid to how the system is partitioned into concurrent objects. Heuristics for
constructing an object model can be gleaned from other methods, e.g. Fusion or OMT.

ISDN server: In an object model, classes are represented by rounded rectangles and relation-
ships by diamonds and arcs. The is-a relationship is shown as a triangle. Figure 4 models
inbound and outbound connections as specialisations of the connection class. A LAN packet
is an aggregation class containing data and a destination address. The relationship sends
data via models the queues that are associated with each destination address.
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Figure 4: Object Model for the ISDN Server (Step 1)

6.2 Step 2: System Boundary and Events

The step finds the events that crosses the boundary between system and environment. An
event-list is produced for all the events that the system sends and receives.



A useful technique for discovering the events is to consider different scenarios in which the
system can be used. A scenario is a time line diagram, that shows the temporal order
of events that result from typical uses of the system. This technique is sometimes called
“use-case” analysis and is the basis of the Objectory method [9].

ISDN server: The scenario in figure 5 shows how the server is used to transmit packets to
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Figure 5: Scenario for transmitting packets to destination addresses a and b (step 2)

two different destination addresses a, and b. It asynchronously sets up connections towards
the destination address while receiving LAN packets and transmitting telecom packets (data-
request) on established connections. The full list of events is constructed by considering other
scenarios for different uses of the server. For example, another usage would be transmitting
packets from the telecom network. The event list for the problem is contained in the problem
statement, figure 3.

6.3 Step 3: Input Event Dependencies

The step produces the first cut at the concurrent architecture of the system. Events which
are temporally independent can be handled by different concurrent objects. The temporal
ordering of events is determined by building event life cycles. Each life cycle is a regular
expression which shows the sequencing and choices between events. Life cycles are built
by considering the dependencies between in-coming events. Each life cycle is allocated to a
separate concurrent object [8].

ISDN server: Two concurrent objects are identified, namely P1 and P2, figure 6. The in
coming events related to each of the two concurrent objects are temporally dependent, i.e
they happen in the order described in the life cycles below:

P1 = LAN-packet_i; connect-confirm_i
P2 = connect-indication_i;data-indication_i;disconnect-indication_i

Input events are annotated with i, output events with o. The initial life cycle for P1 states:
A LAN packet must arrive before a confirmation about a connection setup is received.



The initial life cycle for P2 states: A connection must be established before data can be
transmitted into the server from the telecom side. The connection can be disconnected
afterwards. For the rest of the example we only consider properties of P1, i.e the connections
and data coming from the telecom network are not analysed further.
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Figure 6: Initial Concurrent Objects with events (step 3)

6.4 Step 4: Responsibilities of Concurrent Objects

In deciding concurrency is it necessary to take system functionality into account. At this
early stage in the development it is inappropriate to invest in detailed specifications of
functionality. Instead, the CRC notion of responsibility, [1], is used. A responsibility is an
informal statement of some essential task that the system has to perform. Responsibilities
identify problems that have to be solved.

6.4.1 Allocate responsibilities to objects

Each responsibility has to be coupled, i.e. be undertaken, by a concurrent object. The
coupling can either be tight or loose. A tightly coupled responsibility has to be completed
before the concurrent object can process any more incoming events. A responsibility that is
loosely coupled to a concurrent object may be performed simultaneously with the concurrent
object, although it may have to synchronise with some later event.

The CRC game for finding and allocating responsibilities to classes can be adapted for the
purpose of finding responsibilities and coupling them to concurrent objects. Each respon-
sibility is documented by describing what the task is, what events coming into the system
causes the responsibility, what events may be sent out of the system or to other concurrent
objects and whether the coupling is tight or loose

6.4.2 Refine Responsibilities

Responsibilities are a further source of concurrency. In the logical concurrency architecture
all responsibilities have to be tightly coupled to some concurrent object. A loosely coupled
responsibility must be refined into constructions of other concurrent objects, tight responsi-
bilities and possible asynchronous communication links. Tightly coupled responsibility can
also be refined by the introduction of new concurrent objects.



The refinements introduce new concurrent objects and events. The life cycle associated with
each existing concurrent object must be updated to show output events. Life Cycles have to
be established for each concurrent object, as was done in the previous step. Generally there
are many possibilities for refinement. These include decomposing a complex responsibility
into simpler responsibilities and allocating them to new concurrent objects. The decisions
taken in this step depend very much on the system requirements and the developers experi-
ence of developing concurrent systems.

ISDN server: Figure 8 shows the allocation of responsibility to P1. Figure 7 shows the
responsibility descriptions.

Responsibiity Deecription Cause Sends Coupling
Queue Packet QseusallLANpldras.Pucbum LAN packet - Tightly coupled to P1
iquely for each destinati
ﬂMAW
Check oonneclion | Checks a requst list for whethera LAN packet - Tightly coupled to P1
connection request has been sent
for the actual destination address
Selup Out Allocates resources and sets up LAN packet connect-request Loosely coupled to P1. The
connection connections for transmission of to the Lower interface | system must be able to receive
packets to the telecom, LAN packets without delays
from connection setup
Send Packets Se\d:dmfmmquuswhae LAN packet data-request Loosely coupled to P1. The
from Queve destination address conneci-confirm | to the Lower interface | system must be able to send
connected. Thedanbmt -\dnoelvepudmsnhsﬂ
\ to the Lower interface time

Figure 7: Responsibility descriptions (step 4)
The loose responsibilities are refined according to the following ideas: (See figure 8).

The Setup Out connection responsibility is loosely coupled to P1. We choose to make a
new concurrent object P1-2 which gets responsibility for setting up connections towards the
telecom network. Every time P1-2 must setup a connection it gets a create event from
P1-1. A buffer is introduced for the create events. The buffer gives an asynchronous timing
between P1-1 and P1-2.

The Send Packets from Queue responsibility is loosely coupled to P1. We choose to make
a new concurrent object P1-3 which gets responsibility for sending packets to the tele-
com network. Every time a new connection is ready for transmission P1-3 is told by a
connection — ready event from P1-2. The timing of P1-2 and P1-3 is decoupled by a buffer.
P1-3 also gets the responsibility for marking the packet queues when their connections are
ready.

New life cycles for P1-2 and P1-3 are created. The life cycle for P1 is updated to a life cycle
for P1-1. Events out of the system are mixed into the different life cycles:

P1_1 =  (LAN-packet_i;[create_o])*
P1.2 = (create_i;connect-request_o;connect-confirm_i;connection-ready.o)*
P1.3 = (connection-ready_i | data-request_o*)*



Figure 8: Refinement of responsibilities for initial concurrent objects (step 4)

The life cycle for P1-1 denotes: After arrival of a LAN packet the system will possibly send
a create event. This pattern is repeated (*). The life cycle for P1-3 allows for later design
to decide how many data — request, to send out before accepting a connection-ready event.
The life cycles describes the temporal order of events coming in and out of the system.

The new concurrent objects and the refinement of the responsibilities gives changes in the
description of the responsibilities. The changes are described in figure 9.
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Description Cause Sends Coupling

Selup Out Allocates resources and sets create comection-ready Tightly coupled to P1-2 . This
canneclion connections for transmission toP13 inpliathnp?l-z might have

packets to the telecom. to wait for freeing of resources
Mark queve Takes care of marking that anew connsction-ready | — Tightly coupled to P13
ready queue is ready to be tranamitted from
Send Packets | Sends data from queues which connection-ready | dasa-request Tightly coupled to P13
from Queue are marked ready for tranamission to the Lower interface J

Figure 9: Updated responsibilities (step 4)

6.5 Step 5: Shared Objects

In this step, the responsibilities and object model are investigated to find if there are objects
that need to be accessed by more than one concurrent object. These shared objects are
potentially a source of concurrency.

6.5.1 Identifying Shared Objects

An object accessed by a responsibility must be an instance of some class in the object
model. If this is not the case, then the object model is deficient and must be updated.
Each responsibility is considered in turn and the objects that it needs to read and to update
are identified. An object is shared if it is accessed by responsibilities coupled to different
concurrent objects. The shared objects are added to the concurrency model so as to show
read and update access by responsibilities.
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6.5.2 Making Shared Objects Concurrent

Access to a shared object is controlled by making it a concurrent object. The protocols
for accessing each concurrent shared object need to be designed. For example, consider a
protocol for read access to a shared object. One protocol would be to require the reader to
send a request data event to the shared object, and then have the shared object send an
event carrying the data back. This protocol allows the reader to initiate the transmission of
data. A different protocol would give the shared object the initiative by have it send a data
event to the reader whenever it was ready. Clearly the two protocols give rise to different
behavioural characteristics.

The synchronisation of events must also be defined. For example, read access of shared
objects must not happen simultaneously with an update access. The granularity of data
associated with each event is a further issue. A balance has to be struck between the
computation required to generate or process a packet and the number and frequency of
packets to be transmitted. If the components of a shared aggregate object are accessed by
different objects, then it may be possible to make each component into a concurrent object.

These issues cannot be properly decided in a local context. They all have to be considered
for their impact on system performance. Buhr, [3], has some useful heuristics for this aspect
of concurrency design.

Once the decisions have been made, the life cycles of the concurrent shared objects must be
defined and the life cycles of existing concurrent must be updated.

ISDN server: Each responsibility is considered in terms of Reads and Changes, figure 10.

[ Responsibility Reads Changes ) PP
— . g
Queue packet — packet queue’s e \ tight
new packet queue’s " 1

Check connection Request list — . J tlgh: _——
Sehp Out system resources  dibipariond ~-=-7 ) “\
connecion C data packet 1o )
Mark queus resdy packet queue’s Xoy: o queuss . ’ll
Send packets from packet queue’s packet queue’s tight ~~

| Quoue

Figure 10: Shared Objects (step 5)

By referring to the Object Model do we identify packet queues as shared, see figure 10.
The Object Model must be updated with a Request List read by the Check connection
responsibility. The packet queues requires new, enqueue, dequeue and mark ready as abstract
operations. They must be mutually exclusive.

The concurrent object which must encapsulate packet queues needs event interface and a
life cycle which enforces mutual exclusion of the operations. The event interface decides
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whether packet queues shall be passive or active in the sense of sending data on requests or
by initiating it itself. We propose that packet queues decide when to send data. This requires
a small change in the event interface and life cycle for P1-3. Below is shown event interfaces
and life cycles for all concurrent objects in the system. The system is depicted in figure 11

Pi_1 = (LAN-packet_i;[new_olenqueue_o];[create_o])*

P1_.2 = (create_i;connect-request_o;connect-confirm_i;connection-ready._o)*
P1_.3 = ((connection-ready_i;mark_o) | (dequeue_i;data-request_o)*)*
packet queues = (new_i|((enqueue_i|mark_i);dequeue_o*))x*

The life cycle for packet queues leaves it open how many dequeue events should follow
(enqueue |mark). This will be decided when the packet queues is designed.

-
- -
-~
- -

Figure 11: Concurrency Architecture with shared concurrent objects (step 5)

6.6 Step 6: Efficiency and Safety

This step completes the logical concurrency architecture. It is produced by reviewing the
logical concurrency architecture that has been produced so far. Heuristics and checks for
the following issues need to be applied:

o Efficiency improvement. For example, consider merging concurrent objects and/or adjusting
the granularity of data passed by events. Consider real time properties by working out end
to end responses on events coming into the system. The ADARTS method contains many
useful guidelines for this stage, [7].

e Safety, fairness and liveness properties. The system should be checked for deadlocks etc. See
~ [4] for guidelines and tests to avoid these problems

The logical concurrency architecture now consists of concurrent objects, life cycles, event
interfaces and tightly coupled responsibilities. The parts of the object model relevant to each
concurrent object can be found by examing the responsibilities of each concurrent object.

ISDN server: Figure 11 shows that concurrent object P1-3 marks queues ready and receives
data via the dequeue event. It is more efficient to collapse packet queues and P1-3 into
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one concurrent object. The activity related to mark and dequeue events becomes internal
for the collapsed concurrent object. This simplification is depicted in figure 12. Buffers are
introduced between P1-1 and the collapsed concurrent object for decoupling of timing. The
life cycle for the collapsed concurrent object is:

P1_3 + pack = (connection-ready_il|new_ilenqueue_ildata-request_o*)*
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connection-request connection ready ~ =\ "~~~ data-request

Figure 12: Final logical Concurrency Architecture (step 6)

Figure 12 shows the reviewed final structure of the system. This model is also basis for con-
sidering communication overhead on communication links. Safety properties of the system
can be derived from analysis of the model. This properties are not further analysed in the
example.

6.7 Step 7: Runtime Platform

This step maps the Concurrency Architecture onto a specific run time platform.

Concurrent objects map into the tasks or processes provided by the runtime platform.
The responsibilities, object model and life cycle of each concurrent object are the
basis for further design. They are a good staring point for any of the object-oriented
methods.

Event communication Synchronous event communication has to be implemented by the
communication primitives of the target platform. These primitives can be exchanges,
pipes, message queues, events etc. The asynchronous buffering has also to be imple-
mented using features of the platform.

Shared Concurrent Objects Although they can be mapped into tasks or processes they
can also be mapped to passive implementation platform features, such as monitors, for
managing shared memory.

Time critical concerns Time critical concurrent objects in the logical concurrency archi-
tecture are considered. The facilities offered by the operating system for manipulating
the scheduling and priorities of its concurrency units should be used to meet the needs.
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The above lists some of the problems in considering a specific runtime platform. The main
concern is to ensure that the way of using the operating system primitives does not violate
the logical properties of the system.

ISDN server: We do not consider a specific platform in detail for the ISDN server. However,
it is a straight forward task to map the Concurrency Architecture into a real time operating
system, e.g pSOS.

7 Internal Design of Concurrent Objects

It is a requirement that OO/CAD be compatible with object-oriented methods for design-
ing sequential systems. On conclusion of the analysis and design phases of OO/CAD each
concurrent object in the concurrency architecture has a description comprising a event inter-
face, life cycle, responsibilities and part of the Object Model. Figure 13 shows the deliverables
for concurrent object P1-1. The deliverables from OO/CAD are expressed in terms which

' Life cycle: (LAN-packet-i;[new-o!enqueue-o};[create-o])*
1 ( LAN packet :

[
? \ <“> Responsibliities: Queue Packet
J

Every time P1-1 receives a LAN-packet it must queus the packet.
[new-olenqueus). Afterwards P1-1 must decide whether to request
a connection for the packet. [create-o] . This behavior is repeated

1/

)
]
]
]
]
1
]
1
]
]
)

L J i Refer to the responaibility descriptions given in figure 7

Figure 13: Deliverables for P1-1

are similar to many methods. For example, Coad-Yourdon [5], Fusion [6], OMT [10] and
Shlaer-Mellor [11] all use entity-relationship based object models. Likewise the responsibil-
ities and events help define the behaviour to be analysed and designed. Consequently it is
straightforward to apply an object-oriented method to the task of designing the concurrent
objects.

8 Discussion

The OO/CAD method was developed, because other object-oriented methods, such as Booch
[2], OMT and Shlaer-Mellor, do not work well for explicit concurrent systems. These methods
adopt the implicit model of concurrency and integrate concurrency into the object structure.
The problem, is that there is no straightforward way of mapping complex implicit concurrent
structures on to the simple concurrency provided by run-time platforms. Consequently the
concurrent aspects of the design have to be done in an ad-hoc fashion, which makes them
difficult and error-prone.
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The OO/CAD method should be judged against the requirements, presented in section 2.
To summarise, these were that the method should be object-oriented in approach, assist in
finding concurrency, be complementary to the use of object-oriented methods for developing
the processes, and be manageable, with a defined process and deliverables. We believe that
OO/CAD satisfies all of these. OO/CAD is based on object-oriented concepts, e.g. entity-
relationship modelling and responsibilities. The method embodies three powerful techniques
of finding concurrency. However, more work needs to be done in providing heuristics for
ensuring efficiency. Use of OO/CAD does not prejudice the choice of method for designing
the sequential object-structures. Object models, responsibilities and event interfaces can be
used as the starting point for almost any object-oriented method. The systematic nature
of the OO/CAD process, and the well-definedness of its deliverables, means that it is sup-
portive of good project management techniques. One weakness, however, is that 00/CAD
does not provide much help with checking whether a concurrent implementation satisfies its
requirements document. This a hard research problem.

Currently OO/CAD should be regarded as a “lab prototype”. It has been used in experi-
ments, but has yet to be tested by live projects. Controlled technology transfer of OO/CAD
is the next step. In Hewlett Packard, we expect to see it used as an supplementary technique
for projects using the Fusion method.

Finally it is worth noting that OO/CAD has been developed by focusing on the needs of a
particular group of software engineers. The great benefit of this approach is that “customers
needs” provide the methodologist with strong criteria for making technical decisions. This
is very useful when dealing with highly complex and varied domains such as concurrent
systems. We believe that producing software methodologies targeted for particular needs
is a useful alternative to the all purpose generalised methodology. In the future, we can
imagine methods being produced for applications developers working on particular platforms
or in specialised application domains. The future direction of our work will be to develop
specialised methods for specific needs, e.g. TMN in telecommunications software, distributed
object platforms etc.
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