
Fl..-. HEWLETT
.:~ PACKARD

Where Did You Put It?
Issues in the Design and Use
of a Group Memory

Lucy M. Berlin, Robin Jeffries, Vicki L. Q'Day,
Andreas Paepke, Cathleen Wharton*
Software Technology Laboratory
HPL-93-11
February,1993

collaborative work,
information sharing,
information search
and retrieval, group
memory, group
conventions

Collaborating teams of knowledge workers need a
common repository in which to share information
gathered by individuals or developed by the team.
This is difficult to achieve in practice, because
individual information access strategies break
down with group information - people can
generally find things that are on their own messy
desks and file systems, but not on other people's.

The design challenge in a group memory is thus to
enable low-effort information sharing without
reducing individuals' finding effectiveness. This
paper presents the lessons from our design and
initial use of a hypertext-based group memory,
Teamlnfo. We expose the serious cognitive
obstacles to a shared information structure,
discuss the uses and benefits we have
experienced, address the effects of technology
limitations, and highlight some unexpected social
and work impacts of our group memory.

*S.E.E.D. at HP Labs, Summer 1991, University of Colorado, Boulder, Colorado

© Copyright Hewlett-Packard Company 1993

Internal Accession Date Only





Where Did You Put It?
Issues in the Design and Use of a Group Memory

Lucy M. Berlint,Robin Jeffriest, Vicki L. O'Dayt, Andreas Paepcket,Cathleen Wharton+

tHewlett-Packard Laboratories
1501 Page Mill Rd.. Palo Alto. CA 94304

E-mail: berlin@hpl.hp.com

tUniversity ofColorado at Boulder
Department ofComputer Science and Institute ofCognitive Science

Boulder. CO 80309-0430.

ABSTRACT

Collaborating teams of knowledge workers need a common
repository in which to share information gathered by individ­
uals or developed by the team. This is difficult to achieve
in practice, because individual information access strategies
break down with group information - people can generally
find things that are on their own messy desks and file systems,
but not on other people's.

The design challenge in a group memory is thus to enable
low-effort information sharing without reducing individuals'
finding effectiveness. This paper presents the lessons from
our design and initial use of a hypertext-based group memory,
Teamlnfo. We expose the serious cognitive obstacles to a
shared information structure, discuss the uses and benefits we
have experienced, address the effects of technology limitations,
and highlight some unexpected social and work impacts of our
group memory.

KEYWORDS: collaborative work, information sharing, infor­
mation search and retrieval, group memory, group conventions.

INTRODUCTION

In a previous study of the information needs of technical work­
ers in many domains, we confirmed that computers are used
to save masses of ad-hoc, mostly textual information crucial
to people's work [11]. In our own field of software research
we exchange design ideas and alternatives, schedules and con­
straints. We track other projects and the names of contacts.
We exchange software pointers, bugs, and tricks of use. When
we need an information nugget to make progress, that item ­
the bug work-around, decision, phone number or procedure­
becomes critical.

Currently such sharable information is individually archived
and managed. People save what they expect to need, using
electronic mail folders and files.

However, such individual caches have four disadvantages:

1

• Each individual has the overhead of deciding what to
save, where, and how to manage changes, updates, and
weeding.

• As team members' tasks change, they must go to others
to find information they deleted when it wasn't relevant,
or information they never saw.

• New members of a project do not inherit a store of
project-related information.

• When any person leaves, much of their saved expertise
is lost to the rest of the team.

For these reasons, organizational redesign experts, software
reuse experts, and many knowledge workers have expressed
a desire for a shared repository for informal, group-relevant
information [12, 2, 4] However, there are two major obsta­
cles to such a shared repository. First, ad-hoc, textual data
doesn't fit traditional information models - models designed
for published documents or database records. Second, individ­
ual information-management strategies do not map well onto
group information.

As part of an ongoing project on shared information access,
we have designed Teamlnfo, a prototype group memory. The
first four authors have been using Teamlnfo for our project's
information needs since the summer of 1992. As of Nov 1992
it contains some 1500 items, including an initial set of 1000
items copied from our individual e-mail folders. Our research
goal for Teamlnfo is to help identify the features and social
issues crucial to a useful group memory, to expose conflicting
individual strategies for managing information, and to serve as
a basis for trying out alternate solutions.

We define a group memory broadly as a common repository of
on-line, minimally structured information of persistent value
to a group. It is a variation of Walsh and Ungson's concept
of an organizational memory [15], but tailored to the needs of
a collaborating work-group. A group memory is still a broad
concept; a group memory must be appropriate to its context
- the heterogeneity, stability, computer sophistication, goals,
and social environment of its users.

Our Teamlnfo prototype is designed as a shared repository



for information useful to multiple people in a small, stable trying to avoid the complex task of automatic concept recogni­
team of knowledge workers. We decided to initially focus on tion by Teamlnfo's mixed manual and automatic classification.
stable teams, because their shared experiences help them antic-
ipate which information might be in the group repository. We After introducing Teamlnfo, this paper describes our project's
chose knowledge workers because their tasks require problem- experiences with developing a shared classification, the effects
solving. They are a particularly appropriate group, because ofTeamInfo 's design and technology choices, and the emerging
their problem-solving requires shared information about work-social and work impacts of a group memory.
flow, tasks, and hardware and software environments[12].

TEAMINFO: A GROUP MEMORY PROTOTYPE
We view Teamlnfo as a shared library of informal information
- a repository of items of long-lived value. It is explicitly
not another communication channel that bombards users with
time-critical information. Users may browse to see what's
new, ask to be notified of acquisitions in a given category, or
simply search for information relevant to a current task. Our
current focus is on the types of information that engineers and
computer scientists save on the computer for longer-term refer­
ence: meeting notes, design documents, software installation
instructions, bug work-arounds, pointers to reports, bits of in­
formation about interesting projects and products, and personal
recommendations (e.g., restaurants).

Teamlnfo combines features of other systems that address as­
pects of the data overload faced by individuals and teams.
Teamlnfo provides mixed manual and automatic classification
of mail-based information, hypertext links, notification, and a
browser- and query-based interface with simple full text re­
trieval.

Systems with goals related to Teamlnfo include electronic mail
filters such as the Information Lens [10] and Strudel [13].
These help users organize their e-mail and facilitate the struc­
turing of discussions. However, they do not support the sharing
of such information after it has been saved. Issue management
systems such as gIBIS [5] also help teams track design alter­
natives, supporting positions and objections, but they require
a very structured representation of discussions. And, systems
such as Answer Garden [1] providea decision-tree-based struc­
ture for recording software questions and answers, but do not
span as broad a range of information types as Teamlnfo, nor
do they provide automatic classification or full text retrieval.

Our initial prototype does not try to cover all technical issues
or information types. We omit security levels beyond Unix
security, which is reasonable given our focus on single teams.
The Teamlnfo prototype handles only textual data; we believe
that gives enough value while avoiding the complex issues of
indexing voice, bitmaps, schematics, or video.

We provide full-text regular-expression searching, but our re­
search focus is not on text retrieval. We agree with Evans
that real-world problems of complex text management require
representations that can recognize concepts from the relations
among words, "but the facilities required to solve [such] prob­
lems are very complex. In general, they are not portable, not
extensible, and not easy to implement or maintain." [7]. So,
even though Teamlnfo's platform is extensible to multiple text
retrieval platforms, we have chosen not to immediately add
lexicons, thesauri, or latent semantic indexing. Instead, we are

2

Teamlnfo is group memory application based on the prototype
Group Memory Manager, GMM, developed by Cathleen Whar­
ton during her summer internship at HP Laboratories. [16].
Both versions are built on top of a general-purpose hyper­
text system, Kiosk, also developed at HP Laboratoriess [6].
Kiosk provides a flexible nodes and links model implemented
using Unix text files, an InterViews-based interface [9], and
inter-process communication and concurrency control using
the BART software bus mechanism [3]. Kiosk also provides
the Cost++ automatic linking tool, which enables us to spec­
ify declarative rules to extract patterns from files and to link
messages to the appropriate classification nodes.

Wechose an electronic mail-based input model to Teamlnfo for
four reasons. First, e-mail submission minimizes the hurdle of
submitting information by enabling users to stay in the context
of an e-mail reader or editor. Second, since much of our
information comes via e-mail, users can easily forward the
useful nuggets of information they receive - items such as
software installation notes, product ordering information, bug
work-arounds, and technical report abstracts. Third, the team's
e-mail discussions can be trivially archived in Teamlnfo by
adding the repository to the messages' cc list. Fourth, any
other on-line document types can be easily converted into e­
mail messages.

Teamlnfo first parses each mail message and extracts data from
structured fields such as sender, date, subject, and message­
id. If a message is part of a conversation thread, i.e. a set
of messages and replies on one topic, Teamlnfo locates the
message's predecessor and links the two messages.

Next, Teamlnfo classifies the message, linking it to one or
more group-defined categories. Messages are classified using
a combination of automatically extracted and sender-provided
information. Senders assign each item to one or more of a
small number of categories, such as Literature, Events, or Mis­
cellaneous. Senders may also specify any number of keywords
or phrases that are potentially useful to finding the message,
using a free vocabulary. Costt" then scans the message and
pattern-matches to the expressions, terms, and phrases that we
have specified as indicative of a category.

In order to alert users of potentially interesting additions with­
out inundating them with notifications, we began sending peri­
odic summaries of new contributions viae-mail. This is similar
to a library's sending a monthly list of new acquisitions. If the
sender wants a team member to see the item quickly, one uses
the usual mail mechanism and adds that person to the mail's



cc: list.

Thus, in our model, users go to TeamInfo when they have a
question to answer, or when they see an interesting contribution
title. TeamInfo supports both query-based and browser-based
search. The query-based access uses regular expression search­
ing over the messages' contents. Since one can sometimes
more effectively recognize appropriate items than specify a
good query to retrieve them, TeamInfo also supports browsing
and navigation through the classification hierarchy.

FORCED COGNITIVE COHABITATION:
Reconciling Long-Lived Filing Habits

An inherent problem of a shared repository is that individual
finding strategies do not work for a group. Individual filing
systems have four advantages. First, there is no negotiation
overhead: users do not have to discuss explicitly their clas­
sification conventions. Second, consistency is less important:
users remember their own classification rules, the changes,
and the exceptions. Thus, they can guess a small set of classes
where they might have put the item. Third, users are less de­
pendent on a classification. Since they had read all the items
they'd saved, they are likely to remember a unique word or
phrase, and be able to use use text search. Fourth, if the initial
searching attempts fail they will try different strategies, since
they know the item is there, somewhere.

A group memory does not have these benefits. Users won't
know another user's idiosyncratic rules and exceptions, won't
be sure an item is there, and won't necessarily be able to
search for a remembered unusual word or phrase. Thus, the
first challenge in a common repository is for the group to
develop some classification conventions that allow individuals
freedom ofexpression, while maintaining some constraints that
will ensure a high rate of findability.

Since our goal was to have TeamInfo span all of a team's
shared information needs, we didn't think that unstructured
text items would include enough of the descriptors needed for
findability bysomeone otherthanthepersonwhohadsubmitted
an item. We adopted a two-pronged approach to facilitate
findability. First, as mentioned above, we added a keywords
field to the e-mail messages, allowing authors to specify likely
search terms. Second, we hypothesized that browsing would
become more important in a group repository - that searchers
would want to cast a net broadly and then try to recognize
the right information, rather than trying to guess at the right
retrieval terms. Thus, we designed a group classification to
serve as an initial clustering. The classes serve two purposes:
they enable browsing and they serve as natural contexts for
queries.

We decided to design a simple classification: one with no
more than ten top-level classes and a maximum of two levels
of hierarchy. The goal of simplicity was driven by the desire to
minimize the overhead for submitting an item to TeamInfo, and
the knowledge that complex controlled vocabularies require
extensive training for effective indexing and retrieval. On

3

the other hand, given the very small «0.20) agreement in
users' spontaneous word choices for objects [8], we felt that
a small controlled vocabulary was necessary to give an initial
clustering.

We expected to sit down, agree on a single, simple classifica­
tion, and be done. Given our similar project goals, computing
environment, and research interests, our only concern was that
we were too homogeneous to have interesting differences in
personal styles. We were wrong. Very wrong. Fortunately we
had approached this systematically - after an initial discussion
we listed our personal votes for the top ten (or fewer) cate­
gories, then sat down to create a group list. We audiotaped
our discussions, so as to capture the reasons for individual
positions and the habits that underlie different choices.

Over a few meetings we agreed on a set of core candidates
we could live with. These included our two major project
foci: DIME and Group Memory; a set of secondary activi­
ties (such as our study group, Datalunch) which became cate­
gories under Sidelines; and Project-Miscellaneous. Beyond
that, we had categories such as Events, Technology Hacks
(for messages about hardware and software tools, tricks etc),
People-Projects,Topic Tracking [with subcategorlesl.Arc/nve
[with subcategories] and finally a global Miscellaneous.

It's not enough to agree on a set of categories

Beneath our surface agreement on the categories lay crucial
differences, exposed when we compared how we would clas­
sify a set of test messages based on project members' activities
and recent e-mail. We differed along the following five dimen­
sions:

1. purists and proliferators
2. semanticists and syntaeticists
3. scruffies and neatniks
4. savers and deleters
5. the expected purposefor which the item is saved

Here are descriptions and examples of the differences in each
dimension:

Purists and proliferators Many items might fit into multiple
categories. The purists wanted to put things into one place
as an author, and were willing to look into multiple places
as a searcher. As one said, "I prefer this to proliferating
[virtual] copies allover the place. As a reader, I want the
buckets uncluttered and thematically clear." For the prolif­
erators, no one choice was correct - for example, an article
about project "Papyrus" clearly belonged in both Literature
and People-Projects; to them it would be frustrating to not be
able to find all Papyrus-related things withinPeople+Projects;
to have to also search Events, Literature, and perhaps even
Project-Misc.

Semanticists and syntactists For the syntaetists, structural and
episodic clues are important for retrieval, and unlike seman-



tic classification, they are unambiguous. Thus, the syntactists
wanted articles and issues discussed at Datalunch, our weekly
study group, to be visible under Datalunch. On the other
hand, he semanticists wanted to find the Datalunch discussion
of Nardi's latest groupware study under CSCW, and the next
week's discussion of ethics in video research under Miscella­
neous. Those who use episodic cues were quite discomfited
at the thought of playing detective to find the semantic cate­
gory that someone elsedecided a Datalunch item belongs into.
The proliferators had an easier time choosing - they would
put each item into both. However they too wound up being
affected by others' styles: they expected to be able to find the
items under both the semantic and syntactic categories.

Scruffies and neatniks

We drastically differed in our optimal classification granular­
ity - the scruffies had originally wanted TeamInfo to have just
five top-level categories while the neatniks are used to living
with up to three hundred fine-grained (and hierarchical) e-mail
folders. The neatniks deplored the loss of clustering in Team­
Info caused by stuffing items on a dozen software packages
onto Hacks, and our information on all relevant projects un­
der People-Projects. To each person, the effort required to
adopt other's style is burdensome at exactly the wrong time:
the scruffies want to minimize the up-front cognitive load of
filing, and are willing to spend more effort at retrieval time; the
neatniks, on the other hand, want items to be pre-organized,
and browsable. They prefer to spend up-front time to reduce
the retrieval cost.

When we settled on a relatively small number of categories,
we really weren't settled: the neatniks asked for documents to
at least be given keywords that might permit future subclassifi­
cation, or personal views at smaller granularity. Only extended
use may show whether the scruffies will continue to generate
these keywords, and whether such informal indexing meets the
needs of the neatniks.

Savers and deleters

Our individual styles also affected what we each thought be­
longs in TeamInfo. The savers would like TeamInfo to include
individual wisdom ofpotential group utility, such as restaurant
recommendations, or the steps and pitfalls to editing a book.
The deleters wouldn't have dreamt of cluttering TeamInfo with
items that don't represent project-related group activities, or
with e-mail design discussions of unknown future value.

Purpose-based filing

Even after we agreed on the set of TeamInfo categories, the
category that seemed appropriate depended on our roles and
expected future tasks. For example, here the engineers and
manager disagreed on how to file a report we had written,
evaluating another HP project's CD-ROM interface:

researcher!: I think that's Technology Tracking
manager: No, this is ... definite[ly] ... I would put in Peo-

4

ple-Projects.
researcher!: I don't care about the people - I mean this is a tech­
nology that I am tracking, right?
manager: I save those things because at some point as a manager I
am going to need to know this for something. That is, I am going
to need to know: "who is the manager of it?" ... "what's going to
be different in it?" ... That is exactly what People-Projects are [for)
and it will be hard to get me to change to put that under Technology
Tracking although I can see exactly what your argument is for it.
researcher2: And I would put it under, in myoid categorization, un­
der Project-Miscellaneous and under People-Projects because it is
[both] something that we did as a minor activity and it has to do with
an ongoing project that I might be tracking. . .. [much of] my tech­
nology tracking is likely to be under People-Projects because there's
a lot of technologies that I track based on who is doing [what].

Over the discussion sessions we developed models of one an­
other's idiosyncratic styles, so that we could compensate some­
what when searching (e.g. "Ah, she might have put it under
People-Projects or Events"), but our theories weren't reliable,
and remain very foreign to our natural habits. Given that our
predictions are unreliable even within this ideal case - a stable
group - we expect that individuals in more dynamic groups
would have many more problems. New group members would
have to learn not only the group's categories and filing rules,
but also the fact that only some people file things under mul­
tiple categories, and that some hardly ever put items under
People+Projects.

Personal vs. Group Information Habits

The differences described above are based on long-lived fil­
ing habits and our varied goals for the information. Thus,
even after we had agreed on common categories in Teamlnfo,
we were faced with ongoing dissonance between the group
memory classification and our personal e-mail folders and our
natural tendencies. This dissonance was immediately visible
in meetings when we re-visited TeamInfo policy issues (such
as whether items could be in Miscellaneous plus another cate­
gory). It was hard to remember what we'd agreed to, and what
each person remembered tended to drift toward the person's
initial position.

DESIGN AND TECHNOLOGY CHOICES

To learn from any prototype one must ask how well the task
model is supported by the fundamental data model choices, and
where the prototype's usefulness is affected by technological
obstacles. Here we give our observations to date ofthe utility of
two data model decisions in TeamInfo: (1) the hypertext model
and (2) the model of mail-based input. We also discuss our
experiences with and technical requirements for notification
and for the searching and browsing interface. These issues
are also applicable to the design of other shared information
systems such as electronic bulletin boards and asynchronous
conferencing systems.



Is Hypertext a good modelfor a group memory?

We find that hypertext links add value at the implementation
level, but at the user's level a group memory requires a layer
above hypertext. The user model of TeamInfo is that of doc­
uments put into one or more thematic categories, not of nodes
linked to classification nodes. Users should not care that, at an
implementation level, documents are linked to classification or
query nodes - it is more familiar to think of the classes as an
indexing hierarchy.

Hypertext links provide an understandable conceptual model
for threaded messages in an e-mail conversation, but the user­
level link-following operations are little used. When reading
an e-mail conversation we find it choppy to bring up a separate
window for each conversational turn. To handle that, we've
thought of presenting the messages as speech acts in a conver­
sation, and having the system build a transcript to be read as
a consistent whole, perhaps with an index showing the author,
date, subject and keywords for each message. Such a linear
transcript would reduce the overhead of reading, make it easier
to maintain context, and could simplify skimming or searching
within a vaguely-remembered conversation.

The hypertext data model provides a clean way to link infor­
mation. We link messages and their replies, queries and their
results, classification nodes and the items within them, and key­
words and the items which refer to them. The Kiosk platform
provides a powerful filtering mechanism that is link-aware­
we can search for, say, all messages by person X by searching
the "author" link. Again, that is useful functionality, but it
can be provided by pre-computed indexes or by queries over
database records (such as provided in Tapestry [14]); it does
not require the "author" attribute to be represented by a link.

Mail-based information

We are quite happy with the choice of mail-based input to team
memory. It is easy to cc: TeamInfo on e-mail discussions
and to forward information we get via e-mail. Also, many
useful attributes of an item (date, sender's name, ID, reply-to
ID, original sender...) are automatically generated. Thus, the
author needs only to fill out the class and keywords fields in
the augmented mail header. Since people sometimes forget to
fill in those fields, TeamInfo provides graceful failure by also
running the automatic classification rules on all new items. A
more sophisticated solution would be to run the classification
at send-time, and ask the sender to verify whether the identified
categories are correct. This would reduce the cognitive load to
the sender and avoid missing categories, but it would require
extensions to each different mail interface used by the team
members.

However, the mail model does have an impact on our interac­
tion style. Items within TeamInfo are editable, so there is no
technical reason keeping us from changing a submitted item
(e.g. a bug report, or a set of instructions). However, that's
strongly not in the model of e-mail. For that to feel comfortable
within the e-mail model would require a mechanism to mark

5

and timestamp the revisions and authors, and to allow us to
notify others that an item has been modified.

Similarly, the e-mail model doesn't support shared dynamic
documents. Dynamic documents - such as a software release
to-do list, a list of open questions, a bibliography file, or a file
of useful commands for infrequent activities - do not just get
appended to; information is added in the middle, updated, and
sometimes deleted. We generally haven't put such potentially
sharable documents into TeamInfo, even though Kiosk does
provide concurrency control. We are beginning to analyze
why that is. It may be because we're still switching our work
styles to make use of TeamInfo, but we are also bothered by
fundamental obstacles such as TeamInfo's lack of a browser of
"commonly accessed documents"; the lack of change bars and
time/namestamps for changes; and each person's desire to use
a favorite editor to search and edit complex documents.

Will the real sender please stand up?

As we said, messages sent to individuals are often forwarded to
TeamInfo. In the initial design we became erroneously listed
as the item's author. A similar problem occurred whenever
we forwarded a team-member's messages to TeamInfo if we
noticed that the original author forgot to cc TeamInfo. For­
tunately with the mail-based input we were able to fix this,
since a mail message preserves info on both senders, as well
as both dates, message-ID's and subject lines. Using these,
TeamInfo is now able to sort messages by their original send
dates, and figure out reply-to links appropriately, even if the
original message in a discussion thread is submitted after some
of the replies.

The multiple IDs, subject lines, dates, and authors in forwarded
messages pose a challenge when designing the browser-based
interface. Which name, date, and subject line should appear in
the message header? Which is the real message-id for the item?
We chose to present the most recent (and usually most infor­
mative) subject line, but the original date and author. Using
the original date and author helps compensate for us forgetting
to cc TeamInfo. It also allows anyone to resend an item (e.g.
about a new software release) without appearing to become the
message's author. On the other hand, we miss the low-cost
mutual awareness we could get by knowing who forwarded a
message to TeamInfo; the sender's name provides an indirect
window onto team-members' expertise and interests.

Notification

In TeamInfo, new items may be added without other people
being notified of the additions. This makes sense for items that
are of only future relevance to others: for example, when one
of us began using a laptop computer, others did not want to
see the nuggets of knowledge, strategies and work-arounds he
was acquiring until we began to use laptops ourselves. Thus,
individuals can avoid being bombarded by items with only
potential future relevance. On the other hand, there are advan­
tages to notification. Ifone has even glanced at an item that's in
such a repository, one may recall the title, a keyword, or an un-



usual phrase, and will search more creatively and persistently threads.
than if one doesn't know it's there.

We have experimented with both styles, and we believe that
notification does aid findability, but it has to have low cog­
nitive overhead. We believe that the notification messages
shouldn't interrupt a train of thought or demand immediate
action. The messages should be informative, directly manip­
ulable, and come at recipient-controlled times. Notification
messages need to show the item's summary line, and let recipi­
ents individually mark,acknowledge or directly view the items.
We are experimenting with periodic summaries of messages
recently added to TeamInfo, and are designing customizable
notification based on individuals' registration of their interests.

Many external messages are sent to the whole team. In our
project, the social convention is that anyone may forward these
to TeamInfo. To avoid redundant copies, we've sometimes
used the notifications to check whether someone else has al­
ready submitted a particular item to TeamInfo. However, it
would make more sense to see this within the e-mail read­
ing context; just like there is a 'deleted' flag on each message
header, one could imagine an 'archived' flag. This unfortu­
nately would require a centralized model of e-mail, one in
which all recipients view the same copy of a mail message.
With a central e-mail server, one person's archiving action
could trigger the 'archived' flag for other readers in a team.
Of course, with distributed responsibility, the more common
problem may be that nobody will submit a message to Team­
Info. That is a question of social conventions - notification
or central e-mail with an 'archived' flag makes distributed re­
sponsibility possible, but will not alone make it work.

Searching and Browsing

The initial prototype provides full-text searching with optional
case sensitivity, but without structured search of e-mail fields.
Since the documents are e-mail messages, we really wanted to
be able to express restrictions based on fields such as date range,
author, or keywords. We also wanted to be able to express
structural constraints such as "search these two categories, and
their subcategories" or "search all messages in this thread".
Both of these features are planned but not yet available.

We do use the query-based interface, but primarily for brute­
force search when we know that an item is there somewhere,
and when we remember some unique phrase that we can search
for. However, the limitations on its expressiveness and its
slower speed inhibit its use, even among those who expected
to always use queries.

Wewere able to get by with the more limited search capabilities
once we revised the browser view's message summary lines to
show date, author, subject, and also keywords. After that, the
query-results browser generally gave enough information on
each message to let us quickly find the target items. However,
this wasn't true for design discussions, in which a half dozen
or more messages had the same title - again suggesting the
need for a more task-oriented representation of conversation

6

We had strong differences in how much we expected to use the
browser interface - some of us expected to always use queries
and never to use the browser based interface, while others felt
they could often recognize a hit more effectively than they
could describe it in a query. The final answers are not yet
in; our use patterns still vary as a result of changes in the
functionality, presentation information, and the performance
of the query and the browsing interfaces. However, browsing
seems especially useful in three situations: (1) when we have
an imprecise notion of when the item was created, so that a
time-sorted view helps in searching, (2) when we expect to
recognize the item but don't quite know how to describe it,
and (3) when we're not sure whether the right information is in
TeamInfo but figure we know where it is likely to be. Browsing
gives a better feel for what's in a category, the time sequence
of its items, and the keywords that have been used to describe
items.

Browsing also leads to serendipitous finds. We had seeded
TeamInfo with around 1000 items from our personal folders.
Since these items were often forgotten, our browsing led to un­
expected "discoveries" ranging from forgotten article pointers,
to text formatting tricks, to rollerblading recommendations.
The browser's quick overview of its contents enables graz­
ing - semi-random wandering through the space, stopping at
interesting-looking messages.

Our use of the browser and the query interfaces confirm our
desire for an integrated query and browser mechanism support­
ing incremental refinement. The mechanism should include
queries over previously retrieved sets, relevance feedback on
matching items, and a browser of query results - sorted by
category, and with secondary sorts by time, number of hits,
author, etc.

WORK AND SOCIAL IMPACT OF TEAMINFO

Use of Teamlnfo is slowly becoming a habit, both for informa­
tion saving and for retrieval. Its use requires one to remember
that an item is worth archiving for the group or that an item is
likely to be in TeamInfo. As with most repositories, the more
we find TeamInfo useful, the more we remember to use it and
the more willing we are to add information.

TeamInfo is changing our information management style. We
are increasingly submitting items to TeamInfo without cc'ing
team members, items such Je.Tpctricks, recommendations, and
sometimes older information that ought to be in TeamInfo.
We used to toss away many such items once they were no
longer needed. Instead, we are starting to ask each other "do
you want to see such in Teamlnfo," and are often getting the
answer "yes." Thus more information of potential relevance is
archived, rather than being discarded or disseminated to others
who have no immediate need for it.

Even though we are in the early phases of evaluating the sys­
tem's utility for specific tasks, many areas of social impact are



already apparent: we are facing issues of trust in TeamInfo's
longevity; we've evolved a curator role; we are beginning to
see effects on our e-mail, information saving and organizing
habits; we are seeing issues of privacy and ethical use; and are
dealing with issues of reward and social pressure.

Dependence on the groupmemory

necessarily in a group repository. Thus, even if thematically a
message sent to an individual belongs with other items already
in the memory, it may not be put there. Thus, there is a
tension between the group-memory culture of sharing relevant
information, and the usual e-mail etiquette that treats as private
e-mail sent to an individual.

The persistence of items in the repository has other effects
Saving items in TeamInfo rather than one's personal files re- as well. Some of us feel a subtle pull to be more cogent,
quires trust in the system's longevity. This is an issue for us, more serious, and more accurate in choosing keywords. In
as it will be for any users of a group memory. Individuals are regular e-mail one often writes subject lines whose meaning is
used to taking their personal e-mail folders with them as they clear in the current context, such as "the list you asked for",
switch projects, sometimes even companies. With TeamInfo, or whose meaning is clear once the message is read. One
each item now raises the question of whether to save it in one's sometimes writes amusing or cute titles, where the pleasure
individual mail folders or to save it in Teamlnfo. The latter to the recipient is worth the loss of subject line information.
decision requires trust that TeamInfo will last for the useful Thus, a major software release may have the title "try it, you'll
lifetime of the information, or that the information will be eas- like it." - or a bug report the subject line "arghh", Such levity
ily exportable if the individual leaves the group. Clearly, much may work less well when the messages are archival and the
of the information does not only belong to the group; it is often titles become a major retrieval cue. This would be a pity; the
useful to and "belongs" to individuals even independently of informality and levity help maintain the personal relationships
their role in the group. Thus, to be trustworthy in a dynamic in a team, and more informative subject lines do take more
organization, a group memory must provide export facilities effort to compose.
that let individuals retrieve copies of relevant items which they
and their team-members had entrusted to the repository. Rewards

The curatorrole Since we are trying to figure out the necessary features for a
useful group memory, we are currently under a moral contract

The cosrtr automatic classification tool uses a set of declara- to use the system. Thus, it is hard to evaluate whether Team­
tive rules to match text expressions to classes. This is extremely Info's utility outweighs the overhead of contributing, or how
useful for classifying a corpus of messages, but the rules re- individuals will decide whether to forward information sent
quire significant experience to use well. One has to become to the whole group, and when they will rely on someone else
aware that terms like "report" are verbs as well as nouns, that to do that. The summary of submitted messages may exert a
CHI should be specified case-sensitive, but LaTeX shouldn't. subtle pressure, by making it visible who is contributing and
Since classifications are cached in the items, incorrect auto- who isn't. 1 However, longer use and experiments with other
matic classifications must be repaired by a custom script. The groups will be needed to explore reward issues, to see whether
amount of detailed knowledge required for these functions en- the utility outweighs the overhead of putting material in, and
courages specialization, and thus we have made one person be what factors the utility depends on.
the system's curator.

In TeamInfo's case, the curator does not make sure the right
things are archived; that is still a distributed responsibility.
However, she or he is alert to and fixes classification problems,
and brings up classification issues for group discussion.

Changesin e-mailuse

TeamInfo subtly but definitely changes our use of e-mail. It
requires some cognitive overhead to decide whether a message
to a team-member or a reply is worth archiving, and if so,
to give it meaningful keywords. It requires more effort to
slip into the group's mindset and classify it using the group's
conventions. In addition, we try to catch ourselves sending
mail without cc'ing TeamInfo; and we have trained ourselves
to check if team-members' messages went to TeamInfo. That
too requires vigilance.

The permanence and sharability of items in the repository raises
issues of trust and etiquette. People usually feel fine about
saving sensitive messages in their own e-mail folders, but not

7

Evolutionofcategoriesand project direction

In individual information files, individuals choose when to
begin new categories, or whether to modify their organiza­
tion to reflect name changes. As individuals, we are often
comfortable with inconsistencies. For example, if we have
conference-based e-mail folders, we might continue to file the
INTERCHIitems under CHI,and not bother with an ephemeral
category. However, such a simplification will only make sense
to those team members who are already aware of the relation­
ship between INTERCHIand CHI.Thus, in a group repository,
people feel the need to maintain group consistency, despite the
additional overhead.

Division of categories also triggers group discussion. In our
individual files, we create new categories when an old one gets
too big, or when a subsidiary activity takes on a life of its
own. Generally, we don't take the effort to extract the relevant

1This is reduced by the fact that forwarded messages' summary lines show
the original author, not the Teamlnfo contributor.



messages from the old combined category - we just remember
the divergence time and search accordingly. However, in a
group repository this is not acceptable. The old items (that
belong to the new category but are hidden within the old general
category) would be inaccessible to those team members who
are not familiar with the repository's history. Thus, evolution
of categories requires group agreement on the new structure,
and then it requires work by the curator to retroactively re­
classify items.

Our discussions about new categories sometimes force us to
re-examine the group's goals. Because we have to agree what
belongs in TeamInfo and on how to classify items, we wind
up discussing whether an activity is part of a project major
focus or a sideline, and how sidelines such as task forces may
affect our future direction. It's not yet clear whether such
discussions are premature or if they are beneficial (by making
us grapple with project goals and tradeoffs earlier). In either
case, the introspection and discussions are an impact we hadn't
foreseen.

SUMMARY AND CONCLUSIONS

This paper explores the feasibility and implications of a group
memory, a shared repository of minimally structured informa­
tion of long-lived value to a group. Our design experiences
and pilot use of TeamInfo illuminate some of the social and
technological issues inherent in this groupware tool.

Even though TeamInfo is an early prototype, it has become use­
ful to our project. Our initial observations are confirming the
utility of design choices such as e-mail based input, mixed man­
ual and automatic classification, periodic notification, and the
need for integrated browser-based and query -based capabilities
for information finding. Our problems with the TeamInfo pro­
totype also confirm other (familiar) requirements for effective
information retrieval: fast query and browser response, a good
query language with boolean and proximity operators, and an
interface that facilitates iterative refinement of the queries.

As a system used for real tasks, the TeamInfo prototype has
been invaluable in exploring the cognitive aspects of informa­
tion sharing. It has helped expose the conflicts between saving
information in a personal vsi!: group repository, the social issues
of rewards and responsibility for the care and feeding of the
group memory, and the subtle changes in our communication
styles and our use of e-mail.

This paper has shown that information management strategies
that are appropriate for individuals break down in a shared
information repository. We have described how individuals'
long-lived filing habits differ along a number of fundamental
dimensions, complicating the design of a shared information
space. Our experience shows that even after agreeing on cate­
gories for TeamInfo, our filing styles made us likely to classify
the same items differently. Individual differences in the fa­
vored retrieval clues, the tendency toward filing under single
or multiple categories, the expected use of information, and
the willingness to expend effort at filing time versus retrieval

8

time, affect (1) whichclasses seem appropriate for an item, (2)
how manycategories we put an item into, and (3) whether we
each choose to spend the up-frontenergy to add keywords to
further describe an item.

With extended use of TeamInfo, we may identify potential so­
lutions to the forced cognitive cohabitation in a group informa­
tion system. Extended use is also needed to expose long-lived
social barriers to shared information. Other important issues
include the scalability of the classification and information re­
trieval mechanisms, and the social issues related to ownership,
deletion, and changing group membership.

As researchers in shared information, we believe that group
memory systems have the potential of being useful. However,
this will not be an easy task. As this paper has shown, many
cognitive and social issues must be addressed in order to de­
velop a successful design. We hope that our observations of
use, our technological suggestions, and the research hypothe­
ses raised by our reflective use of the TeamInfo prototype will
serve as a guide to practitioners and applied researchers in
CSCW and group information retrieval.

ACKNOWLEDGEMENTS

Mike Creech, Dennis Freeze and Mark Gisi made major exten­
sions to Kiosk to address the needs of TeamInfo's task domain.
Mike Creech, Mark Gisi, Bob Leichner, Bonnie Nardi, and
Glenn Trewitt also gave helpful comments on earlier drafts.

References

[1] Mark S. Ackerman and Thomas W. Malone. Answer
Garden: A tool for growing organizational memory. In
Proceedings oftheConference onOffice lnformationSys­
tems,1990.

[2] Victor R. Basili, Gianluigi Caldiera, and Giovannni Can­
tone. A reference architecture for the component factory.
ACMTransactions onSoftware Engineering andMethod­
ology, 1(1), Jan 1992.

[3] Brian Beach. Connecting software components with
declarative glue. In 15th Annual International Confer­
enceon Software Enginnering, 1992.

[4] John Seely Brown. Research that reinvents the corpora­
tion. Harvard Business Review,69(1), 1991.

[5] Jeff Conklin and Michael L. Begeman. gIBIS: A hyper­
text tool for team design deliberation. In Hypertext '87
Proceedings, November 1987.

[6] Michael L. Creech, Dennis F.Freeze, and Martin L. Griss.
Using hypertext in selecting reusable software compo­
nents. In Hypertext '91 Proceedings. ACM, 1991.

[7] David Evans. First order solutions to second-order prob­
lems in information manageement. In Proceedings of
theBellcore Worshop on High-Performance Information
Filtering,1991.



[8] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T.
Dumais. The vocabulary problem in human-system com­
munication. Communications of the ACM, 30(ll),1987.

[9] Mark A. Linton, John M. Vlissides, and Paul R. Calder.
Composing user interfaces with InterViews. IEEE Com­
puter, 22(2), 1989.

[10] Thomas W. Malone, Kenneth R. Grant, Franklin A. Tur­
bak, Stephen A. Borbst, and Michael D. Cohen. Intel­
ligent information-sharing systems. Communications of
the ACM, 30, May 1987.

[11] Vicki L. O'Day and Andreas Paepcke. Understanding
information needs in technical work settings. Techni­
cal Report HPL-92-123, Hewlett-Packard Laboratories,
1992.

[12] Calvin H. P. Pavao Managing New Office Technology.
The Free Press, 1983.

[13] Allan Shepherd, Niels Mayer, and Allan Kuchinsky.
Strudel: An extensible electronic conversation toolkit. In
Proceedings of the Conference on Computer Supported
Cooperative Work, 1990.

[14] Douglas Terry, David Goldberg, David Nichols, and
Brian Oki. Continuous queries over append-only
databases. In Proceedings of the 1992 ACM SIGMOD
International Conference on Management ofData. ACM
Press, 1992.

[15] James P. Walsh and Geraldo Rivera Ungson. Organiza­
tional memory. Academy ofManagement Review, 16(1),
1991.

[16] Cathleen Wharton and Robin Jeffries. Understanding the
role of structure in information filtering in the context
of group memories: Some application and user require­
ments. In Proceedings ofthe Bellcore Workshop on High­
Performance Information Filtering.. Bellcore, 1991.

9




