
LOSSY COMPRESSION OF IMAGES
USING PIECEWISE-LINEAR APPROXIMATION

Vasudev Bhaskaran, Balas K. Natarajan, and Konstantinos Konstantinides

Hewlett-Packard Laboratories
Multimedia Systems Department

Palo Alto, CA

Abstract

We explore the lossy compression of images using an optimal algorithm for the approxima-
tion of wav eforms by piecewise linear functions. We also present the hardware implementa-
tion of a modified version of the optimal algorithm. The modified algorithm is simpler and
better suited for real-time applications. Furthermore, it retains all properties of the optimal
algorithm, except that the compression ratios maybe at most twice the optimal number. Rate-
distortion plots show that the proposed algorithms perform favorably in comparison with the
JPEG standard.

1

Internal Accession Date Only

1. Introduction
Sources such as speech and images are characterized by large amounts of data with proper-
ties varying widely over space and time. For such sources, there is often a need to compress
the data to minimize transmission time or storage requirements. In many applications, a
lossy compression scheme is acceptable, e.g. voice-mail, image browser. Traditional lossy
compression methods rely on spatial or temporal redundancies in the data. For example, in
Differential Pulse Code Modulation (DPCM), inter-sample correlations are exploited to pre-
dict future samples and the prediction errors are then stored with reduced resolution so as to
yield some compression. On the other hand, block based compression schemes such as
vector-quantization (VQ) first examine several samples within a block to derive a representa-
tive pattern for the block, and then assign a symbol to represent this block.

An alternate viewpoint is to consider the data as samples of a one-dimensional wav eform.
The wav eform can then be compressed by approximating it by a piecewise linear function
within a prescribed error tolerance, with the break points of the piecewise linear function
composing the compressed representation. Image compression schemes based on this
approach are reported in Rosenberg[1] and in Walach[2], although to be precise the latter
paper takes a fractal-geometric approach. These methods have yielded good quality images
at compression ratios of approximately 8:1. However, these methods are not provably good
in that they do not offer ana priori estimate of the compression achieved.

In Section 2 of this paper, we describe a compression scheme based on the idea of approxi-
mating a wav eform by a piecewise linear function. Unlike existing methods for this problem,
our method isprovably goodin that for specified error criterion, the number of pieces in the
approximation is guaranteed to beoptimal. Furthermore, the error can be set independently
at each sample point, allowing the algorithm to be used adaptively. The algorithm makes no
assumptions on the nature of the source and can be used in a variety of contexts such as
speech, medical data, and images.

In Section 3 we describe the use of this algorithm for compressing image data. A simplifica-
tion to the methods described in Section 2 and Section 3 is described in Section 4. A hard-
ware implementation of the simplified algorithm is presented in Section 5. Performance fig-
ures for the optimal and the simplified wav eform compression methods are presented in Sec-
tion 6. Proposals for future extensions of this algorithm are discussed in Section 7.

2. The Basic Algorithm
Let R be the set of reals and let [0, 1] denote the interval onR. We consider piecewise linear
functions F : [0, 1]→ Rk, for some fixed natural numberk. For instance, in the case of a
color image,F maps each pixel to three color values and hence can be viewed as a function
from [0, 1] toR3. F is specified as a sequence of points from [0, 1]× Rk and is the function
described by the line segments joining successive points in the given sequence.

2

Problem: Given a piecewise linear functionF : [0, 1]→ Rk specified as the interpolant ofN
sample points, and an error toleranceε ∈Rk, construct a piecewise linear functionG such
thatG

ε
∼ F , i.e., for allx ∈ [1, N], || F(x) − G(x)||∞ ≤ ε andG consists of the fewest number of

segments over all such functions.

This problem has been studied extensively in the literature for the casek = 1. See for exam-
ple Sklansky and Gonzalez[3], Roberge[4], Ishijama et al.[5], and Rosenberg[1]. The meth-
ods reported in these papers are heuristics, and are not accompanied by provable guarantees
of the optimality of the number of segments. Ihm and Naylor[6], Toussaint[7], and Imai and
Iri [8], offer optimal solutions to a restricted version of the problem, where the approximation
G must be defined as the interpolant of a subset of the sample points definingF . For the case
of a function in one dimension (k = 1), Imai and Iri[9] give an optimal algorithm that runs in
O(N) time. The same algorithm can also be deduced from the general results of Suri[10] on
visibility polygons, as noted in Natarajan[11]. The latter paper also generalizes this algorithm
for k > 1. The algorithm is approximate but provably good in the following sense: for vector
valued functionsF : [0, 1]→ Rk the algorithm runs in timeO(kN) and produces an approxi-
mationG consisting of no more than twice as many segments as the optimal approximation.

The optimal algorithms[9], [11], are based on visibility techniques and work as follows. For
each point (x, y) defining F , the algorithm constructs the points (x, y + ε) and (x, y − ε).

F— = F − εF

F+ = F + ε

Fig. 1: Error tunnel for functionF and errorε .

This creates an error tunnel as shown in Fig. 1. Note that Fig. 1 assumes thatF is a scalar
valued function, resulting in a tunnel in two dimensions. In general,F will be vector valued
in k dimensions with an error tunnel ink + 1 dimensions. The algorithm then constructs a
piecewise linear path connecting the two ends of the tunnel. For scalar valued functions, this
path will consist of a minimum number of segments over all such paths, and will therefore
result in an optimal piecewise linear approximation to given functionF . For vector valued
functions, the number of segments in the path will be within a factor of two of the minimum,
regardless of the dimension. In either case, the run time of the algorithm will beO(kN).

3

In fact, the above mentioned algorithm can solve the more general problem where each input
point of F has an error tolerance that is set independently of the other points. In essence, the
error tunnel mentioned above is giv en asthe input. Formally, we can state the problem as
follows.

Problem: Given two piecewise linear functionsF+ and F— such that for allx ∈ [0, 1],
F—(x) ≤ F+(x), construct a piecewise linear functionG such that for all x ∈ [0, 1],
F—(x) ≤ G(x) ≤ F+(x) andG consists of the fewest number of segments over all such func-
tions.

This generalization allows the error tolerance to be set adaptively. The run time of the algo-
rithm remainsO(kN) for functions ink dimensions. A complete description of the optimum
waveform compression algorithm is given in the Appendix.

Fig. 2 is a schematic showing the steps involved in applying the algorithm to wav eform com-

{ x̂}

Wa veform Compressor

F+

Huffman Coder

Error Tunnel Generator

F—

{ ˆ(xi , ŷi), . . . , ˆ(xK , ŷK)}

ε

{(xi , yi), . . . , (xN , yN)}

{ ŷ}

Fig. 2: The wav eform compression scheme.

pression. Referring to Fig. 2, to improve overall compression, the sequences{ x̂} and{ ŷ} are
entropy coded using Huffman coders. Decompression to recover the value of the function at
any point is achieved by first decoding the Huffman encoding, and then linearly interpolating
between the{ x̂i , ŷi }. Note that{ x̂} need not be a subset of the{x}, unlike previous wav eform
coders such as the one discussed in[1]. This additional degree of freedom allows the algo-
rithm to achieve an optimal number of segments for a givenε .

For the compression method depicted in Fig. 2, we define compression ratio to beNb/(Kb̂)
whereN is the number of input samples,K is number of output samples, andb andb̂ are the
number of bits required to represent each input and output sample respectively.

4

3. Wav eform Compression - Images
By considering a two-dimensional image as a collection of independent one-dimensional
scanlines, a wav eform compression scheme can be directly adopted for image compression.
In order to exploit the two-dimensional correlations of the image, it is necessary to scan the
image in a somewhat more sophisticated fashion. While several schemes were studied, few
offer significant advantages. For instance, the Peano scan performs poorly[1]. We adopt the
following scanning method, which is simple but performs well in experiments. LetI be an
N × N matrix of pixel entries defining the image. LetI i stand for thei th row (scanline), and
I i (j) the (i , j)-th entry.

Compression
input: ε ;
begin
i = 0;
while i ≤ N do

compressI i to toleranceε .
let Ji be the decompressed form ofI i .
j = i + 1;

while
l=N

l=1
Σ |I j (l) − Ji (l)| ≤ ε N do

j = j + 1; /* scanlinej ignored */
end

i = j ;
end

end

Decompression
begin
for eachscanlinei that was compresseddo

decompress to obtainJi ;
end

for eachscanlinei that was not compresseddo
find closest enclosing scanlines that were compressed,
linearly interpolate between them to obtainJi .
end

end

If the above scheme is used as is, the decompressed image tends to be blocky. To overcome
this, we bound the number of consecutive unencoded scanlines. Simulations also indicated

5

that a post-processing filter with a strong smoothing effect along diagonal axes improves
image quality.

4. Description of the modified algorithm
While the optimal line compression algorithm presented in the previous section yields the
minimum number of output segments, its arithmetic complexity preempts real-time perfor-
mance on a general purpose processor or an efficient custom VLSI implementation. In[12],
the authors presented a modified algorithm that is much better suited for real-time applica-
tions and retains all properties of the optimal algorithm, except that the number of output seg-
ments is at most twice the optimal number. The modified algorithm uses a simpler visibility
test that allows the algorithm to be implemented in an efficient and pipelined manner and
eliminates the need for the complex data structures required in the optimal algorithm. Fur-
thermore, simulation results showed that in practice the simplified algorithm is only about 1.5
times worse than the optimal in compression ratios.

Consider the sequence of data samples {xi , f +
i } and {xi , f —

i }, for i = 1, 2, . . . ,N, represent-
ing the upper and lower envelopes of the error tunnel. Denote bys the starting index point of
the portion of the wav eform under consideration at some stagep of the algorithm. Starting
from (xs, fs), the algorithm tries to draw tangents to increasingly longer prefixes of the upper
and lower envelopes. Specifically, initially the upper and lower envelopes are truncated to the
first two points. The algorithm then draws a tangent to each of the envelopes from the point
(xs, fs). It then seeks to extend each envelope to the next point, and update their tangents to
include them. Denote byk − 1 the index point representing the longest prefix of the error
tunnel separable by tangentsahx + bh andal x + bl passing through (xs, fs) (see Fig. 3). The
algorithm first checks if it is possible to include the next point,xk, in the tunnel prefix by
determining if f +

k is above the lower tangent andf —
k is below the upper tangent. This is

accomplished by testing the signs of

S1(k) = f +
k − (al xk + bl) = f +

k − fs − al (xk − xs) , (1a)
S2(k) = f —

k − (ah xk + bh) = f —
k − fs − ah (xk − xs) . (1b)

If any of these conditions is not met, then the algorithm terminates and outputs the coordinate
pair (xk−1, gp(xk−1)), where

gp(xk−1) = al xk−1 + bl = al (xk−1 − xs) + fs . (2)

This pair then becomes the starting point for the next stage of the algorithm. If none of the
termination tests fails, then the algorithm continues by determining if any of the tangent
slopes needs to be updated. The upper tangent is updated iff +

k is below the upper tangent
and the lower tangent is updated iff —

k is above the lower tangent. Thus, the algorithm tests
the signs of

S3(k) = f +
k − (ah xk + bh) = f +

k − fs − ah (xk − xs) , (3a)
S4(k) = f —

k − (al xk + bl) = f —
k − fs − al (xk − xs) . (3b)

6

F—

xs xk−1 xk

f —
k

f +
k

al x + blfs

Updated upper tangent

ahx + bh

Upper tangent

Lower tangent

F+

Fig. 3: Upper and lower tangents in the line-compression algorithm.

If any of these tests fails (for example, in Fig. 3,f +
k is below the upper tangent), then it com-

putes new tangents

âh =
f +
k − fs

xk − xs
, âl =

f —
k − fs

xk − xs
. (4)

Equations (1)-(4) represent the main computation requirements for the modified compression
algorithm. Note that for uniform sampled intervals (as in image data), (4) can be simplified
as in

âh = (f +
k − fs) Ck , âl = (f —

k − fs) Ck , (5)

whereCk = 1 /(xk − xs) = 1 / d (k − s) can be determined from an internal ROM table. The
size of the ROM table depends on the maximum value of (k − s). However, in practice, it
does not need to be larger than the maximum expected compression ratio.

5. Processor architecture
Following the description of the image compression algorithm in section 3, its hardware
implementation needs to address three major computation steps: (a) the compression of an
image lineI i , (b) the generation of its decompressed approximationJi , and (c) the evaluation

of
l=N

l=1
Σ |I j (l) − Ji (l)| to determine if the next image line needs to be compressed or not.

7

5.1 Image line compression

There are many possible implementations of equations (1)-(4), depending on the speed
requirements and cost constraints of our application. For example, implementations may
range from programming the algorithm into a general purpose processor, to a fully parallel
and custom architecture with two multipliers and eight adders. In this section, we present a
hardware implementation that is simple enough for a single-chip implementation, but ade-
quately fast for many real-time applications.

Fig. 4 shows a block diagram of the arithmetic processing unit and the register file for the

xs

fs

s3

f +
k − fs

f —
k − fs

Dk

Dk−1

xk−1

xk

xk+1

Dk+1

f +
k

f —
k

Ck

al , âl

ah, âh

ROM

Table

X

MUX

±

a3 a4 b3 b4 c3 c4

a1 a2 b1 b2 c1 c2

s2 m2 s4

± X ±

±

s1 m1

Fig. 4: Block diagram of the arithmetic and register file unit.

implementation of the modified compression algorithm. It consists of two multiplier units,
four adder/subtracter units, one look-up ROM table, data registers, and input multiplexors.

The main feature of the above design is the use of four adder/subtracter units operating in
parallel. Evaluation of (1) and (3) requires a minimum of two multiplications and seven sub-
tractions. This design allows, in pipelined mode, the computation of (1) and (3) in two
cycles, with a three-cycle initial pipeline delay. Table 1 shows the data flow of operations for
equations (1), (3), and (5). Note thatDk = xk − xs, for k = 1, 2, . . . ,N, and thatDk+1 is
computed in parallel with the other tests. Every two cycles, the controller can perform all
sign tests and evaluate new tangent slopes, even though they may not be needed. If any of
the continuation tests (S1 or S2) fails, then the rest of the computations in the pipeline are

8

discarded, the controller initiates an output of thegp(.) value, and the computational cycle
restarts for the remaining error tunnel. If any of the tangents needs to be updated, then the
processor uses the updated value and computations continue with a one cycle pipe-delay. For
example, if testS3(k) fails at timen + 2 (see Table 1), then an extra cycle (ˆn + 2) is needed
between the oldn + 2 andn + 3 cycles, because a new upper tangent, with slope ˆah needs to

Table 1

Pipelined Data Flow in Line Compression Algorithm

Clock

Inputs n n+1 n+2 n+3 n+4

a1 a2 f +
k fs s1 m1 f +

k+1 fs s1 m1

b1 b2 al Dk s1 Ck al Dk+1 s1 Ck+1

c1 c2 xk+1 xs s1 m2 xk+2 xs s1 m2

a3 a4 f —
k fs s2 m2 f —

k+1 fs s2 m2

b3 b4 ah Dk s2 Ck ah Dk+1 s2 Ck+1

c3 c4 s2 m1 s2 m1

Outputs

s1 f +
k − fs S1(k) f +

k+1 − fs S1(k + 1)

m1 al Dk âh al Dk+1 âh

s3 Dk+1 S3(k) Dk+2 S3(k + 1)

s2 f —
k − fs S2(k) f —

k+1 − fs S2(k + 1)

m2 ahDk âl ahDk+1 âl

s4 S4(k) S4(k + 1)

be used. At ˆn + 2, ah = âh, and the productahDk+1 is re-evaluated.

5.2 Image line decompression

After line I i has been compressed, the next step is to generate its approximationJi from the
compressed samples. Given two consecutive output pairs (xa, gp(xa)) and (xb, gp(xb)) from
the compression algorithm, the in-between samples are approximated using linear interpola-
tion, i.e.,

gp(x j) = al (x j − xa) + gp(xa) , for j = a + 1, a + 2, . . . ,b − 1 , (6)

whereal = (gp(xb) − gp(xa))/(xb − xa) = (gp(xb) − gp(xa)) Cb−a. The arithmetic unit of Fig.
4 can then be used to evaluate the above expressions using one multiplier, two adders, and the
ROM table. For example, Table 2 shows one possible pipeline flow of operations for evaluat-
ing (6). After an initial pipeline delay needed to compute the line slopeal and gp(xa+1), a

9

Table 2

Pipeline Data Flow in Line Decompression Algorithm

Clock

Inputs n n+1 n+2 n+3

a1 a2 gp(xa) m1 gp(xa) m1

b1 b2 al C1 al C2 al C3

c1 c2 xa+3 xa xa+4 xa xa+5 xa

Outputs

s1 gp(xa+1) gp(xa+2)

m1 al al C1 al C2 al C3

s3 D2 D3 D4 D5

newgp(.) value is available every single cycle. In Table 2,Dk = xa+k − xa.

5.3 Scanline compression test

According to the compression algorithm, scanlinej is ignored if

S(j) =
l=N

l=1
Σ |I j (l) − Ji (l)| ≤ ε N. (7)

Again, our arithmetic unit is very well suited for that operation using three of the available
adders. Two of the adders can be used to evaluate the absolute value by computing both
I j (l) − Ji (l), andJi (l) − I j (l), and selecting the positive output, while the third adder evalu-
ates the running sum

S(j) = S(j) + |I j (l) − Ji (l)| , l = 1, 2, . . . ,N . (8)

Hence, (8) can be computed inN + 2 cycles (including the initial two-cycle pipeline delay).

5.4 Processor architecture

Fig. 5 shows a block diagram of the complete design for the image compression algorithm.
In addition to the arithmetic unit, the design includes a PLA for control and address genera-
tion, an I/O unit for interfacing with external memory and a host microprocessor, and three
local memories. TheI memory is used for storing a scan line of the input image. TheG
memory contains the compressed data, and theJ memory is used to store the reconstructed
scan line from the compressed data. A dual adder/subtracter is used to generate on the fly the
I + ε (F+) and I − ε (F—) data needed in the compression algorithm. This adder could be
integrated into the arithmetic unit, or could be eliminated, provided those data is input
directly from the host processor.

10

Memor y

Control
PLA

I/O

CONTROL
Ar ithmetic Unit

and
Register File

Address

Data

Host Control

Control

Data

+/-

ε

I
Memor y

J
Memor y

G

Fig. 5: Block diagram of the image compression architecture.

6. Simulation Results
For purposes of illustration, as a test image, we have used a 512 x 512 8 bits/pixel grayscale
image referred to asLenain the image compression literature. We hav e performed tests with
other grayscale images and the results are similar to that obtained withLena. Fig. 6, shows
the rate-distortion performance for the proposed compression scheme. For distortion, we use
the Peak to Peak Signal to Noise Ratio (PSNR), which is defined as the ratio of the peak-
signal to the rms-error. Results for the optimal wav eform compression method of Section 3
and the suboptimal scheme of Section 4 are depicted. Note that the suboptimal scheme is
slightly inferior to the optimal scheme - typically the compression ratio is worsened by 20 -
30 %. For comparison, we also show the performance of the JPEG standard for still-image
compression. The JPEG scheme achieves higher compression for same PSNR as the
waveform coding schemes. This is due to the fact that the JPEG coder is a two- dimensional
coder whereas the wav eform coder is a one-dimensional scheme. However, the JPEG coder
is considerably more complex and in devices such as grayscale printers, the simpler decom-
pression procedure of our wav eform compression scheme might be preferable. In Fig. 6, we
also show the rate-distortion bound for the test image. The rate-distortion bound is computed
by imposing a two-dimensional auto-regressive model on the image and then integrating the
two-dimensional power spectral density function[13].

In Fig. 7, we show the test image compressed by the wav eform coding and JPEG methods.
For the optimal and suboptimal wav eform compression schemes, we compress the image

11

PSNR (dB)

5.00 10.00 15.00 20.00 25.00

28.00

30.00

32.00

34.00

36.00

38.00

40.00

42.00

44.00

46.00

48.00

50.00

52.00

54.00

56.00

Rate-Distor tion Bound

JPEG

Optimal scheme - wavefor m coding

Suboptimal scheme - wavefor m coding

Compression Ratio

Wa vefor m Coder Perfor mance: Lena (512x512, 8Bpp)

Fig. 6: Rate versus distortion for grayscale image using wav eform

compression schemes (optimal and suboptimal) and JPEG scheme.

with the sameε = 0.04. The waveform coder places samples as shown in Fig. 7c and Fig. 7f.
Note that the suboptimal scheme selects more samples from the edge regions of the image.
Examination of the error images indicates fewer errors in the edge regions for the suboptimal
waveform compression method. In Fig. 7c and Fig. 7f, we see some horizontal dark bands.
These bands correspond to scanlines in the image that were not encoded since these lines
were within the error threshold of previously encoded scanlines. For comparison, we show
the JPEG scheme at the same signal-to-noise ratio. Comparing decompression results with
that obtained for the JPEG scheme indicates better edge reconstruction for the wav eform cod-
ing method. However, the JPEG compression method is operating at nearly two to three

12

times higher compression ratio. Due to the flexibility in modifying the error toleranceε on a
sample-by-sample basis in the wav eform compression scheme, edge fidelity can be improved
by adjustingε based on further preprocessing such as using the output of an edge detector to
reduceε in edge regions.

7. Conclusions and Future Directions
We presented a compression algorithm developed from a geometric viewpoint. Specifically,
the method constructs an optimum piecewise linear approximation to a given wav eform
within a specified error tolerance.

As discussed in this paper, the simplicity of the algorithm makes it particularly suitable for a
hardware implementation. For instance, in a printer application, decompression can be triv-
ially implemented in a print engine. Furthermore, since the method uses sample points to
represent the compressed data, scaling of the image during printing or resolution conversion
for printing can be accomplished by combining the scaling and decompression function in
the print engine.

From an algorithm viewpoint, further investigation is necessary to examine methods of using
context-sensitive features in the data to construct the error tunnel so that the error tunnel
adapts to the data. For vector valued wav eforms, such as color images further studies need to
be performed to assess the efficacy of applying the compression scheme independently to
each dimension, or use the approximation algorithm for vector valued functions described in
Section 2. The problem of optimal piecewise linear tessellations to functions of several inde-
pendent variables remains open. A solution to this problem would lend itself to compressing
images by treating the image as a two-dimensional sequence rather than using the scanning
procedure we have adopted in the present work.

13

8. Appendix
In this section we describe the optimum wav eform compression algorithm. We first describe
the algorithm for functions in one-dimension, and then extend it to univariate functions in
higher dimensions. The algorithm consists of three major steps that are applied iteratively.
We will describe the algorithm in terms of these steps, and then suggest how the steps may be
implemented.

Let sequences (u1, u2, . . . ,um) and (l1, l2, . . . ,l n) determine the upper and lower envelopes of
the tunnel as shown in Fig. A1. Aseparatingtangent of the tunnel is a straight line that
touches both the upper and lower envelopes of the tunnel and lies between them. Fig. A1
shows the separating tangents for that portion of the tunnel defined by the first five vertices.
Note, that there are no separating tangents for the first six vertices.

Compression Algorithm
input: Error tunnel.
begin
while the error tunnel is not empty

(1) Find the largest indexi such that there exists separating
tangents for the firsti vertices of the error tunnel.

(2) Of these two tangents, pick the one that sees farther.
Add this tangent to the piecewise linear output of the algorithm.

(3) "Cut" the tunnel with this tangent and retain the latter portion.
end

end
Of the two tangentsA andB shown in Fig A1, tangentB sees farther into the tunnel in that it
projects further thanA. Fig. A2 shows the result of cutting the tunnel with tangentB. The
algorithm is then applied iteratively to the portion of the tunnel that is to the right ofB.

We now describe how step (1) may be achieved. Suppose that for a given value ofi , we can
determine inO(m + n) time whether or not separating tangents exist for the firsti vertices of
the tunnel. Then, using binary search, the maximum suchi can be determined in
O((m + n)log(m + n)). In particular, we know that separating tangents always exist for the
first two vertices (i = 2). We then check fori = 4, 8, 16, etc, until we find ani = k for which
no separating tangents exist. We then know that the maximum value ofi lies betweenk/2
andk. By repeatedly halving this interval, we can isolate the value ofi .

The following algorithm describes how to determine whether or not separating tangents exist
for a particular value ofi . As one candidate for the tangent, we joinu1 and l n. As the other
candidate, we joinl1 and um. We now adjust these candidates to check whether they are

14

feasible. Since the two tangents are treated in the same fashion, we limit the rest of the dis-
cussion to just one of them, say the one joiningu1 and l n. The following procedure adjusts
the candidate to obtain a separating tangent if one exists.

15

Begin
i1 = i = 1;
j1 = j = n;
done= FALSE;
while doneis FALSEdo

done= TRUE;
if ui is to the right ofl j then

no tangent exists; halt;
end
find leastk in i1, i1 + 1, . . . ,m such that
uk is below the line (ui , l j);
if suchk existsthen

i1 = i = k;
done= FALSE;

end
elsei1 = m;
find greatestk in j1, j1 − 1, . . . , 1 such that
l j is above the line (ui , l j).
if suchk existsthen

j1 = j = k;
done= FALSE;

end
else j1 = 1;

end
report (ui , l j) as a separating tangent.

end

Step (1) of the the compression algorithm can also be implemented inO(n) time, using the
methods of Imai and Iri[9] and Suri[10]. Howev er, we will not describe such an implementa-
tion here, since it is considerably more complex, and involves the maintenance of the convex
hull of the upper and lower envelopes of the tunnel.

For functions in higher dimensions, we build a tunnel in each of the dimensions, and find the
greatest numberi of vertices for which a separating tangent exists in each of the tunnels. The
first segment in the piecewise linear approximation is obtained by picking one separating tan-
gent from each tunnel and composing them to form a single line in the higher dimensional
space. We then cut off the firsti vertices of each of the tunnels and repeat the procedure.

16

REFERENCES

1. C. Rosenberg,A lossy image compression algorithm based on non-uniform sampling and interpolation of
image intensity surfaces.M.S. Thesis, Dept. of Electrical Engineering and Computer Science, Mass. Inst.
of Tech., 1990.

2. E. Walach, E. Karnin, "A fractal based approach to image compression," Proc. of Int. Conf. on Acoustics,
Speech and Signal Processing, pp. 529-533, 1986.

3. J. Sklansky, and V. Gonzalez, "Fast polygonal approximation of digital curves," Pattern Recognition, Vol.
12, pp. 327-331, 1980.

4. J. Roberge , "A data reduction algorithm for plain curves," Computer Vision, Graphics and Image Pro-
cessing, Vol. 29, pp. 168-195, 1985.

5. M. Ishijama , S. B. Shin, G. H. Hostetter, and J. Sklansky, "Scan-along polygonal approximation for data
compression of electrocardiograms," IEEE Trans. on Biomedical Eng., Vol. BME-30, No. 11, pp.
723-729, 1983.

6. I. Ihm, and B. Naylor, "Piecewise linear approximations of digitized curves with applications,"Scientific
Visualization of Phyical Phenomena, pp. 545-568, N.M Patrilakis, editor, Springer-Verlag, New York,
1991.

7. G. T. Toussaint, "On the complexity of approximating polygonal curves in the plane," In Proc. of the
IASTED International Symposium on Robotics and Automation, pp. 59-62, 1985.

8. H. Imai, and M. Iri, "An optimal algorithm for approximating a piecewise linear function," Journal of In-
formation Processing, Vol. 9, No. 3, pp. 159-162, 1986.

9. H. Imai, and M. Iri, "Computational geometric methods for polygonal approximations of a curve," Com-
puter Vision, Graphics and Image Processing, Vol. 36, pp.31-41, 1986.

10. S. Suri, "On some link distance problems in a simple polygon," IEEE Trans. on Robotics and Automa-
tion, vol 6, No.1, pp. 108-113, 1988.

11. B. K. Natarajan , "On piece-wise linear approximations to curves," SIAM Conference on Geometric De-
sign, 1991.

12. K. Konstantinides and B. K. Natarajan, "An architecture for lossy signal compression,"VLSI Signal Pro-
cessing V, K. Yao et al. Editors, pp. 237-246, IEEE Press, 1992.

13. D. G. Daut, R. W. Fries, J. W. Modestino, "Two-dimensional DPCM image coding based on a assumed
stochastic image model," IEEE Trans. Commun., Vol. COM-29, pp. 1365-1374, 1981.

17

18

Fig. 7: Image compression results at 32 dB PSNR.

Left to right, top to bottom: a) Decompressed image using optimal wav eform compression. Compression ratio =

10.65,ε =0.04. b) Error image. c) Optimal compressor’s output samples, shown as white pixels. d) Decom-

pressed image using suboptimal wav eform compression. Compression ratio = 7.78,ε =0.04. e) Error image. f)

Suboptimal compressor’s output samples. g) JPEG decompressed image. Compression ratio = 20.23. h) Error

image. i) Original image.

A

B

u1

u2

u6

u3

u4

u5

l1

l2

l3

l4

l5

l6

Fig. A1: The separating tangents for the first four vertices of the error tunnel.

B

Fig. A2: The error tunnel after cutting by tangentB.

19

