

Keyword(s):

Abstract:

To be published in IGCC 2011: 2nd International Green Computing Conference.



Minimizing Data Center SLA Violations and Power Consumption via Hybrid
Resource Provisioning
Yuan Chen, Daniel Gmach, Martin Arlitt, Manish Marwah, Anshul Gandhi

HP Laboratories
HPL-2011-81

data center; power management; performance management; resource allocation

This paper presents a novel approach to correctly allocate resources in data centers, such that SLA
violations and energy consumption are minimized. Our approach first analyzes historical workload traces to
identify long-term patterns that establish a "base" workload. It then employs two techniques to dynamically
allocate capacity: predictive provisioning handles the estimated base workload at coarse time scales (e.g.,
hours or days) and reactive provisioning handles any excess workload at finer time scales (e.g., minutes).
The combination of predictive and reactive provisioning achieves a significant improvement in meeting
SLAs, conserving energy, and reducing provisioning costs. We implement and evaluate our approach using
traces from four production systems. The results show that our approach can provide up to 35% savings in
power consumption and reduce SLA violations by as much as 21% compared to existing

External Posting Date: June 21, 2011 [Fulltext] Approved for External Publication
Internal Posting Date: June 21, 2011 [Fulltext]

Copyright IGCC 2011: 2nd International Green Computing Conference.

1

Minimizing Data Center SLA Violations and Power Consumption via
Hybrid Resource Provisioning

Anshul Gandhi

Carnegie Mellon University
Pittsburgh, PA, US

anshulg@cs.cmu.edu

Yuan Chen, Daniel Gmach, Martin Arlitt, Manish Marwah
HP Labs

Palo Alto, CA, US
{firstname.lastname}@hp.com

Abstract—This paper presents a novel approach to correctly
allocate resources in data centers, such that SLA violations and
energy consumption are minimized. Our approach first
analyzes historical workload traces to identify long-term
patterns that establish a “base” workload. It then employs two
techniques to dynamically allocate capacity: predictive
provisioning handles the estimated base workload at coarse
time scales (e.g., hours or days) and reactive provisioning
handles any excess workload at finer time scales (e.g., minutes).
The combination of predictive and reactive provisioning
achieves a significant improvement in meeting SLAs,
conserving energy, and reducing provisioning costs. We
implement and evaluate our approach using traces from four
production systems. The results show that our approach can
provide up to 35% savings in power consumption and reduce
SLA violations by as much as 21% compared to existing
techniques, while avoiding frequent power cycling of servers.

Keywords-data center; power management; performance
management; resource allocation

I. INTRODUCTION
Data centers are very expensive to operate due to the

power and cooling requirements of IT equipment. The EPA
predicts that energy consumption in data centers will exceed
100 billion kWh in 2011, at an estimated cost of $7.4 billion
[10]. Rising energy costs, regulatory requirements and social
concerns over green house gas emissions amplify the
importance of energy efficiency. However, energy efficiency
is for naught if the data center cannot deliver IT services
according to predefined SLA or QoS goals, as SLA
violations result in lost business revenue. For example,
Amazon found that every additional 100ms of latency costs
them a 1% loss in sales, and Google observed that an extra
500ms in search page generation time reduced traffic by 20%
[2]. Today, SLA violations are often avoided by over-
provisioning IT resources. This results in excessive energy
consumption. Thus, an important question in data center
resource management is how to correctly provision IT
equipment, such that SLA requirements are met while
minimizing energy consumption.

The correct provisioning of resources is a difficult task
due to variations in workload demands. Most data center
workload demands are very bursty in nature and often vary
significantly during the course of a single day. Figure 1
shows a 24-hour workload demand trace for three real-world
traces: an SAP enterprise application, a multi-tier business
application called VDR, and a web application. The demands

have been normalized by the maximum demand in each
trace. The key observation is that the workload demand
varies a lot. For example, the SAP trace demand varies from
a minimum of almost 0 to a maximum of approximately 0.8.
Further, for most traces, we find that the maximum demand
is typically 4─5 times higher than the corresponding mean
value, suggesting huge variations across the trace time-
series. Also, for all traces, the 90%ile value is much higher
than the mean value, suggesting that demand values are
highly variable and well spread out. Thus, workload
demands typically have significant variability. This makes it
difficult to provision resources appropriately. A single size
(static provisioning) cannot fit all, and will result in either
over-provisioning or under-provisioning.

The solution we propose in this paper is based on three
important observations. First, many workloads in data
centers (e.g., Web servers) typically exhibit periodic patterns
(i.e., daily, weekly and/or seasonal cycles). Figure 2 plots the
time-series and the periodogram for five days of demand
traces collected from the SAP, VDR and Web applications,
respectively. The peak at 24 hours in the periodogram
indicates that these traces have a strong daily pattern (period
of 24 hours). If we can identify these patterns in the
workload, we can then adjust the resource allocation
accordingly and hence improve the accuracy of resource
provisioning and reduce power consumption. However,
demand patterns are statistical in nature and there will be
deviations from historical patterns due to unforeseen factors
such as flash crowds, service outages, and holidays. Though
the volume of such fluctuations is small compared to the
total demand, ignoring them completely can result in
significant SLA violations. Finally, provisioning is not free;
there are various associated costs and risks. Frequent
provisioning incurs both performance and energy penalties.
For example, turning servers on can take a significant
amount of time (up to several minutes) and consume a lot of
power (close to peak power consumption) [12]. Frequent
power cycling of servers causes “wear and tear”, which
could result in server failure and service outage(s) [8].

Based on the above observations, we propose a hybrid
provisioning approach that dynamically provisions IT
resources at multiple time scales. Our main contributions are:
1. A novel approach that combines predictive and reactive

control to provision IT resources: predictive control
provisions the base workload at coarse time scales (e.g.,
hours) and reactive control handles any excess demand at
finer time scales (e.g., minutes). The coordinated
management of these two approaches achieves a 978-1-4577-1221-0/11/$26.00 ©2011 IEEE

2

significant improvement in meeting SLAs, conserving
energy and reducing provisioning costs.

2. A novel analysis technique—“workload discretization”,
that determines the “base” workload demand for a
service. In particular, we propose a dynamic
programming algorithm that can accurately capture the
demand while minimizing costs and risks from a
provisioning perspective.

3. We implement our server provisioning system and
validate our solution through both trace driven
simulations and real implementation. The experimental
results show that our hybrid approach out-performs other
provisioning solutions when considering SLA violations,
power consumption, and provisioning cost.
The rest of the paper is organized as follows. Section II

presents our hybrid provisioning approach and describes our
workload discretization technique. Section III discusses our
analytical and experimental evaluation. Section IV reviews
related work and finally Section V concludes the paper and
discusses future directions.

II. HYBRID PROVISIONING
We now present our Hybrid Provisioning solution. As

discussed in the introduction, workload demands often have
predictable patterns in them. However, there can be
significant deviations from these patterns due to the bursty
nature of data center workload demands. Excess workload
demand or a sudden spike in demand can cause performance
problems. Also, there is a cost and risk assoicated with
provisioing changes, and thus, we want to avoid frequent
provisioning changes. Based on these observations, we
propose a Hybrid Provisioning solution, which combines
predictive provisioning with reactive provisioning. The
intuition behind our approach is that we capture periodic and
sustained workload patterns from historical data, which we

refer to as the base workload and then proactively (and
predictively) provision for them. At run time, the deviation
between the actual and predicted base workloads, which we
refer to as the noise workload, is handled by reactive
provisioning, which is invoked each time the request rate
exceeds our prediction. Our solution also takes into account
the costs and risks associated with provisioning.
A. Overview of Our Approach

Figure 3 depicts the conceptual architecture of our
solution. We begin with an overview of how it operates.
1. A base workload forecaster analyzes historical workload

traces (Figure 3(a)) and identifies the patterns that form
the base workload. We represent the patterns in a
workload by discretizing it into consecutive, disjoint time
intervals with a single representative demand value (e.g.,
mean or 90th percentile demand) in each interval (Figure
3(b)).

2. A predictive controller proactively estimates and
allocates the proper amount of capacity (e.g., the number
of servers) needed to handle the base workload. For
example, given the base demand (e.g., time varying
request rate in Figure 3(b)), it generates the capacity
allocation (e.g., number of servers in Figure 3(c)).

3. A reactive controller handles excess demand by adding
additional capacity at short time scales (e.g., # of servers
in Figure 3(d)), in response to excess workload that is
beyond the base workload, i.e., the difference between
the actual workload and forecasted base workload.

4. A coordinator dispatches workload requests to servers
and also communicates with the predictive and reactive
controllers to provide information about incoming
demand. When the actual workload (e.g., requests in
Figure 3(e)) arrives, the dispatcher assigns the portion of
the workload not exceeding the base workload (e.g.,

Figure 1. Workload demand during a single day for (a) the SAP trace; (b) the VDR trace; and (c) the Web trace.
(a) SAP (b) VDR (c) Web

Figure 2. Time-series and periodogram for (a) the SAP trace; (b) the VDR trace; and (c) the Web trace.
 (a) SAP (b) VDR (c) Web

3

requests in Figure 3(f)) to resource pool 1 and any excess
workload (e.g., requests in Figure 3(g)) to resource pool.

B. Base Workload Forecaster
The base workload forecaster first performs a periodicity

analysis of the workload demand to reveal the length of a
pattern or a sequence of patterns that appear periodically. We
use Fast Fourier Transform (FFT) to find the periodogram of
the time-series data [5] from historical data. From this, we
derive the periods of the most prominent patterns. For
example, the periodograms from Figure 2 reveal that our
traces have a strong daily pattern (period of 24 hours). The
base workload forecaster runs periodically (e.g., once a day).
It divides the historical data into daily demands and forecasts
the demand for the next day. For workload forecast, we can
just take the average of the mean historical daily demand.
Advanced forecast techniques can be used, but are out of the
scope of this paper [13]. Next, we identify and discretize
patterns in the forecasted workload demand. Our goal is to
represent the daily pattern in workloads by discretizing their
demands into consecutive, disjoint time-intervals with a
single representative demand value in each interval. We
propose a dynamic programming algorithm to find a small
number of time intervals and representative demand for each,
such that the deviation from actual demand is minimized.
Keeping the number of intervals small is important, as more
intervals imply more frequent provisioning changes and thus
higher risks and costs. This is one of the key contributions of
our work. We now formally define discretization.

Workload discretization: Given the demand time-series X
on the domain [s, t], a time-series Y on the same domain is a
workload characterization of X if [s, t] can be partitioned
into n successive disjoint time intervals, {[s, t1],[t1, t2],...,[tn-1,
t]}, such that X(j)= ri, for all j in the ith interval, [ti-1, ti].

Note that, by definition, any time-series, X, is a
discretization of itself. For our purposes, we set s=0 and
t=period of workload. In the follow discussion, we assume a
period of 24 hours, based on our periodicity analysis.

The idea behind discretization is two-fold. First, we want
to accurately capture the demand. To achieve this, the
representative values, ri, for each interval, [ti-1, ti], should be

as close as possible to the actual demand values of the time-
series in the interval [ti-1, ti]. We determine the demand
estimation error incurred by discretization, which we define
as the percentage of the area between the original time-series
and the discretized time-series with respect to the area under
the original time-series. Second, provisioning of IT resources
is not free [8]. For this reason, we want to avoid having too
many intervals and hence too many changes to the system, as
this is not practical and can lead to many problems (e.g.,
performance loss, wear and tear of servers, system
instability, etc.). In summary, we want to minimize the error
introduced by discretization and the number of intervals in
the discretization. We propose a dynamic programming (DP)
solution to discretize the time-series such that we reduce
both. ∑ ቂ෌ ሺܺሺݐሻെݎ௜ሻଶ௧೔௧ୀ௧೔షభ ቃ ൅ ݂ሺ݊ሻ௡௜ୀଵ (1)
Equation (1) is the objective function we want to minimize,
where X is the time-series and f(n) is a cost function of the
number of changes or intervals, n. The goal of Equation (1)
is to simultaneously minimize the workload representation
error and the number of changes. In some cases, one might
prefer to minimize the square of the number of changes (or
some other function of the number of changes). For this
paper, we set ݂ሺ݊ሻ ൌ ܿ כ ݊ , where c is a normalization
constant which we discuss later. The objective function
expresses the goal as minimizing the normalized number of
changes and the representation error. The Mean-squared
error is used to quantify the workload representation error.
Note that in the most general case, both the number of
changes and the representational error could be formulated as
utility functions. We use DP to minimize the objective
function given in Equation (1). Minimizing the Mean-
squared error for a given partition results in setting ri to be
the mean of the time-series values on that partition. That is: ݉݅݊. ∑ ሺܺሺݐሻെݎ௜ሻଶ௧೔௧೔షభ ֜ ௗ௬ௗ௥೔ ∑ ሺܺሺݐሻെݎ௜ሻଶ௧೔௧೔షభ ൌ 0 ֜ ௜ݎ ൌ ∑ ௑ሺ௧ሻ೟೔೟೔షభ௧೔ି௧೔షభାଵ (2).

Thus, we only need to partition the time-series domain,
[t0=0, tn=24hrs], to optimize the objective function. Let us
assume that we have the optimal partition of the domain [t0,
tn], and it is {[t0, t1], [t1, t2],...,[tn-1, tn]}. Now, consider the
optimal solution for the domain [t0, tn-1]. We claim that this is
simply {[t0, t1], [t1, t2],...,[tn-2, tn-1]}. This is because if the
optimal solution for the domain [t0, tn-1] was different, then
we could simply append the partition [tn-1, tn] to it, and that
should give us a solution for the domain [t0, tn] with a lower
objective function value than {[t0, t1],[t1, t2],...,[tn-1, tn]},
which is a contradiction. Thus, the optimal solution for the
domain [t0, tn] contains the optimal solution for the domain
[t0, tn-1]. Therefore, we have the optimal substructure
property for this problem, and DP will result in an optimal
solution. Note that even in the case of highly irregular traffic
where no patterns can be found, the DP solution will still
output a workload characterization. In particular, the
workload characterization will simply be a single value, e.g.,
the mean or desired percentile of the observed demand, over

Figure 3. Hybrid provisioning.

additional
resource

historical workload demand traces

amount of
resource

forecasted
base
workload

actual workload

workload not
exceeding
base workload

excess
workload

Base Workload
Forecaster

CoordinatorPredictive
Controller

Reactive
Controller

Resource Pool 1 Resource Pool 2

historical workload demand traces

(a)

(b)

(c) (d)

(e)

(f)
(g)

4

the entire domain [t0, tn]. Therefore, the DP solution is robust
to irregularities in the demand pattern.

We now mention a rule of thumb to pick the
normalization constant c. The single interval approach with
Mean as the representative value gives our objective function
a value of: ܸܽݎ ൌ ∑ ሾܺሺݐሻ െ ሺܺሻሿଶ௧೙௧ୀ௧బ݊ܽ݁ܯ (3),
where Var is the variance of the time-series under
consideration, X. By allowing a finite number of changes,
say z, we want to ensure that we can reduce the
representation error in our objective function by at least
Var/2. Further, this new objective function must be smaller
than Var. Thus, we want: ܸܽ2ݎ ൅ ܿ כ ݖ ൏ ֜ ݎܸܽ ܿ ൏ ሺ2/ݎܸܽ כ ሻݖ

Thus, for example, setting z=2 results in c<Var/4. For
simplicity, we set c=Var/4 in our dynamic programming
solutions. In general, a larger value of z may result in a
smaller representation error at the cost of an increase in the
number of changes, whereas a smaller value of z may result
in a larger representation error at the cost of a decrease in the
number of changes. The choice of z in a real data center will
depend on how often the system administrator is willing to
power cycle the servers. We expect a power cycling fre-
quency of once every 4─6 hours to be acceptable. Thus, z<5
should be an acceptable value for a 24 hour demand trace.

Figure 4 plots the discretization results of a real SAP
application trace using various approaches, including a single
representative value of 90th percentile (90%ile), multiple
intervals with 3 hour partitions and using mean (Mean/3hrs),
a K-means clustering algorithm (K-means), and our approach
(DP) with c=Var/4, which corresponds to z=2. The results
show that our approach achieves a lower estimation error
than Mean/3hr and K-means with fewer intervals. The single
interval with 90%ile significantly overestimates the demand
with an estimation error of 137%.
C. Predictive Controller

The predictive controller is responsible for handling the
base workload. It receives the predicted base workload
pattern (i.e., the output of discretization) from the base
workload forecaster and then proactively estimates and
allocates the proper amount of capacity required to handle
the base workload. In particular, the controller uses a
queueing performance model to determine how much
capacity will be allocated to ensure that the SLA
requirements are met for the forecasted demand without
consuming excessive power [5].

We assume that a certain mean response time target
(SLA requirement), t0, in seconds, is given. Recall that our
goal is to minimize power consumption while ensuring that
we meet the mean response time target. We use an M/G/1/PS
queueing model to estimate the number of servers needed.
Assuming that demand follows a Poisson distribution with a
mean request rate λ requests/sec, we have: ଵభೞିഊೖ ൏ ,௢ (4)ݐ

where s is the mean job size in seconds, and k is the number
of servers. From Equation (4), we derive: ݇ ൌ ቜ ఒభೞି భ೟బቝ (5).

Equation (5) estimates the number of servers needed to
ensure that the mean response time target is met. While the
assumptions behind Equation (5) may not be the best for
real-world data center workloads, they provide a good
approximation, as we will see in Section III. Though
important, performance and capacity modeling is not the
focus of this paper. Note that the capacity allocated by the
predictive controller is not affected by actual demand and
will not change until a new base workload forecast arrives.
D. Reactive Controller

A reactive controller is invoked each time the actual
workload demand is higher than the base workload, to
provide additional resources for the excess workload
demand. Since the reactive controller is not invoked when
the actual demand is lower than the base workload forecast,
the impact of over-provisioning is minimized if the
predictive provisioning captures the base demand well. The
results in Section III show that this hybrid approach works
very well in practice.

We use a simple feedback approach with a fixed
monitoring interval length to estimate the amount of noise in
the workload. For example, if the monitoring interval length
is ten minutes, then we estimate the noise (workload demand
above the predicted base demand) in the next ten minute
interval to be the same as the noise in the current ten minute
interval [6]. While more sophisticated approaches, such as
ARMA or moving window [9], can be used for noise
estimation, we find that a simple feedback based approach is
very efficient and works well in practice for noise estimation.
Note that errors in noise estimation will only affect the noise
provisioning; the base workload demand will not be affected.

Figure 4. Comparision of different discretization techniques to determine the base workload.
(a) 90%ile (b) Mean/3hrs (c) K-means (d) Our Approach (DP)

5

E. Coordinator
We logically divide the server pool into two partitions.

One handles the base workload and is managed by the
predictive controller. The other handles the noise (excess)
workload and is managed by the reactive controller. These
two server farms can (and probably will) physically co-exist.
The coordinator forwards incoming requests to either the
server farm dedicated to the base workload or the server farm
dedicated to the noise (excess) workload, based on the
predicted base demand and the actual demand. A simple
scheme for dispatching requests is to load-balance the
incoming requests among all servers irrespective of which
server farm they belong to. Under this scheme, all jobs are
treated equally. However, one can imagine a more
sophisticated dispatching scheme which allows certain
important jobs to receive preferential service over other jobs
by dispatching the important jobs to the (more robust) base
workload server farm. For example, e-commerce sites such
as Amazon or eBay may want to prioritize shopping requests
over browsing requests. In such cases, shopping requests can
be dispatched to the server farm that handles the base
workload. This server farm is less likely to incur
provisioning changes and can thus provide uninterrupted
service. The less important browsing requests can be
dispatched to either the base workload server farm, if there is
available capacity, or to the noise workload server farm.
Compared to load balancing scheduling, our solution isolates
the base workload from the noise workload, providing
stronger performance guarantees for the base workload.

III. EVALUATION
We obtain workload demand traces from three real

applications used in HP data centers and the World Cup
1998 demand trace. We use the four traces to validate our
solution via trace driven analysis and implementation on a
real test bed. We begin by describing the workload traces
and the provisioning policies used for evaluation.
1. SAP is a five-week-long workload demand trace of an

SAP enterprise application that was hosted in an HP data
center. The trace captures average CPU and memory
usage as recorded every 5 minutes.

2. VDR is a ten-day-long trace containing arrival rate and
system utilization data recorded every 5 minutes from a
high-availability, multi-tier business-critical HP appli-
cation serving both external customers and HP users on
six continents.

3. Web 2.0 is eight days worth of system utilization data
from a popular HP Web service application with more
than 85 million registered users in 22 countries located in
multiple data centers.

4. WorldCup98 is a demand trace obtained from the Internet
Traffic Archives [28].
The first three traces exhibit prominent daily patterns but

also vary significantly during the course of a single day. The
WorldCup98 trace is less predictable, with peak demands
influenced by factors such as the outcome of matches, which
are difficult to predict.

We compare different provisioning policies that allocate
capacity (i.e., number of servers) for a Web server farm

during the course of a single day. The Predictive policy
provisions servers for day 8 based on the 90%ile demand
values for the past seven days. We consider four
provisioning intervals for the predictive policy: 24 hours, 6
hours, 1 hour and variable length intervals. For example, the
Predictive/1hr approach considers the corresponding 1 hour
demand trace portions from each of the past 7 days and uses
the 90%ile demand of these portions as the representative
demand value for that hour of day 8. The Predictive/var
approach uses variable intervals from our workload
discretization technique. The Reactive approach uses a
feedback approach to estimate demand online and allocates
capacity accordingly every 10 minutes. We study two hybrid
approaches: the Hybrid/fixed policy does predictive
provisioning every hour and invokes reactive provisioning
each time the predictive provisioning underestimates
demand; and the Hybrid/var approach that combines
predictive provisioning with variable intervals and reactive
provisioning as described in Section II. We choose the
90%ile demand for all predictive approaches since the
90%ile provides a good tradeoff between resource
consumption and quality.
A. Trace-based Analysis

This section evaluates our hybrid approach for various
workload traces via analysis using the following metrics:
percentage of SLA violations, total power consumption, and
the number of provisioning changes. If the actual demand for
a 5-minute interval exceeds the allocated capacity, then that
interval is under-provisioned and is counted as an SLA
violation. Power consumption of a server is estimated based
on its average CPU utilization, and power at idle and fully
utilized states as Pidle + (Pmax - Pidle)*u, where u is the CPU
utilization, Pidle and Pmax are the observed server power at
idle and fully utilized states respectively. Finally, we track
the number of provisioning changes, i.e., number of times we
change the server farm capacity, throughout the target day.

Figure 5 shows the SLA violations, power consumption
and number of provisioning changes for the SAP trace. First,
among the four predictive approaches, using variable
intervals achieves the best balance of performance and
power. The percentage of violations is comparable to the
Predictive/24hrs approach, but the power consumption is
30% less. The power consumption of Predictive/var is
similar to that of Predictive/6hrs and Predictive/1hr, but the
performance is much better and the number of provisioning
changes is smaller. This demonstrates that our workload
discretization technique can effectively improve the accuracy
of provisioning.

Second, our Hybrid/var approach out-performs all
predictive approaches. Compared to the Predictive-1hr and
Predictive/6hrs, our hybrid approach reduces SLA violations
from 12% to 5.6% while consuming the same amount of
power. Compared to Predictive/var, Hybrid/var reduces SLA
violations from 7.3% to 5.6%. These reductions are a result
of the integration of reactive provisioning to handle demand
exceeding the predicted base demand.

Third, both hybrid approaches perform significantly
better than the Reactive approach in terms of meeting SLA

6

requirements. Also the hybrid approaches incur fewer
changes than the reactive approach. The Reactive approach
has the highest percentage of violations. There are two
reasons for this. (1) The workload is highly variable and
abrupt changes in short intervals are difficult to track. (2) It
takes time to turn on a server, creating a backlog of requests
that the reactive controller has to handle when ramping up
capacity. Between the two hybrid approaches, our
Hybrid/var approach outperforms Hybrid/fixed. In particular,
by using variable intervals for predictive provisioning,
Hybrid/var reduces SLA violations from 10.1% to 5.6% and
the number of changes from 43 to 14, without affecting
power consumption. This further shows the value of our DP
based workload discretization algorithm.

In summary, compared to purely predictive and reactive
approaches, our Hybrid/var approach achieves better
performance and conserves power. The Hybrid/var approach
consumes 27% less power than the Predictive/24hour
approach, which has similar performance. Compared to the
Reactive approach, the Hybrid/var reduces SLA violations
from 50% to 5.6%. Hybrid/var outperforms a hybrid
approach with fixed provisioning intervals in terms of SLA
violations and power consumption. Finally, Hybrid/var
incurs 14 changes, less than one every hour, which is
considered acceptable in practice.

To further understand how these different approaches
allocate resources in response to workload demand changes,
we show time series of the demand, the number of SLA

violations per hour, the power consumption and the number
of active servers in Figure 6. We see that the Reactive policy
makes many provisioning changes and incurs many
violations, since a change in provisioning is triggered by
either an under-provisioning or an over-provisioning in the
previous interval. The figure shows that our Hybrid/var
approach captures most of the incoming workload demand.
Thus, only a few changes are triggered by the reactive part of
our approach. However, there are instances when the reactive
controller is invoked, for example, around 2am─3am. This
again justifies that a hybrid approach is required to handle
real-world workload traces.

We conduct a similar analysis study for the Web, VDR
and WordCup98 traces and achieve similar results. The
Predictive/var approach that uses our workload discretization
is still among the best of all four predictive approaches.
Importantly, our Hybrid/var approach provides the best
tradeoff between SLA violations, power consumption and
the number of provisioning changes among all policies.
B. Experimental Results on a Real Testbed

To further verify that our solution is superior to existing
approaches and ensure that we have a practical and robust
solution, we implement a prototype system and
experimentally evaluate our policy against other policies
using the real workload traces described above.

We implement a single-tier server farm application,
which dynamically provisions servers and processes user
requests. Our test bed includes 10 blade servers. Each server
has two Intel Xeon E5535 quad-core processors running at
2.66 GHz, and 16GB of memory. One server was used as a

Figure 6. Time-series for the demand, SLA violations, power
consumption and the number of servers for the SAP trace.

Figure 5. Trace-based analysis results for the SAP trace.

7

front-end load generator running httperf [18], which replays
the workload demand traces in the form of cgi requests.
Another server was employed as a proxy/load-balancer,
which distributes jobs and requests among the remaining
eight Apache Web servers. We scale the workload demand
from real traces suitably to match our server farm capacity,
since most of the traces were collected from production
systems running thousands of servers. Business logic
processing in enterprise and Web applications is often the
bottleneck and the workloads are often processor intensive.
Thus, we use LINPACK [17], a multi-threaded CPU bound
program, to simulate the request or job processing in real
applications. By adjusting the LINPACK job sizes, we
model the variability of service times in real applications
[11]. We use the blade servers’ built-in management
processor to turn servers on and off remotely and
programmatically, and to obtain power consumption
readings. We collect response times from httperf logs.

We evaluate four different polices: Predictive Mean/1hr,
Predictive 90%ile/1hr, Reactive and our hybrid approach,
Hybrid/var. The predictive provisioning policies use the
corresponding 1 hour demand trace portions from the past
days (Mean and 90%ile respectively) to predict the demand
for the hour of the target day. Reactive invokes the reactive
controller every 10 minutes and employs a feedback model
that provisions servers for the next 10 minutes. For all
policies and a given response time target, the number of
active back-end servers is determined by the performance
model described in Section II.C.

Figure 7 shows our experimental results of performance,
power consumption and number of provision changes for the
Web trace. The performance is the average response time
normalized by the target response time, and the power
consumption is normalized by the power consumption of our
hybrid approach. We see that the Predictive Mean/1hr does
not provision sufficient capacity for the workload demand
while the Predictive 90%ile/1hr tends to over-provision
capacity. The Reactive policy misses its response time target
due to the lag in booting additional servers. By contrast, our
Hybrid/var policy meets its response time target, while
keeping power consumption low. In particular, our
Hybrid/var policy provides a 35% savings in power
consumption when compared to the Predictive 90%ile/1hr
and lowers response time by as much as 41% when
compared to the Predictive Mean1/hr.

Figure 8 shows our experimental results for the VDR
trace. Again, we see that the Predictive Mean1/hr and

Reactive policies fail to meet the target mean response time.
Further, the Reactive policy incurs a lot of provisioning
changes. Both Hybrid/var and Predictive 90%ile/1hr succeed
in meeting the response time target but our approach uses
slightly lower power. Note that Predictive 90%ile/1hr
significantly over-provisions resource for the Web trace
(Figure 7), which indicates that its performance really
depends on the characteristics of the workload. By contrast,
our approach works well for both traces.

In summary, we conclude that our Hybrid approach out-
performs other provisioning approaches such as the
predictive and reactive policies, and combinations of both
with fixed intervals, when considering performance, power
consumption, and number of provisioning changes.

IV. RELATED WORK
Existing server provisioning solutions can be broadly

classified into predictive and reactive solutions. Predictive
provisioning assumes there is a predictable and stable pattern
in demand and allocates capacity typically at the time-scale
of hours or days based on the pattern. Castellanos et al.
exploit the predictability in business applications’ demand to
improve the effectiveness of resource management [6]. With
the adoption of virtualization technology, server
consolidation has emerged as a promising technique to
improve resource utilization and reduce power consumption
[21],[25]. Though these approaches can be effective to a
certain extent, choosing the proper provisioning size is still a
very difficult task. Our workload discretization technique can
help with this. However, large, unpredicted demand surges
could cause severe SLA violations.

Reactive provisioning, on the other hand, allocates
resources in short intervals (e.g., every few minutes) in
response to workload changes. One approach is to use
reactive control loops that are based on feedback control
[1],[20],[24]. Others use reactive provisioning strategies for
resource allocation and power management in virtualized
environments. Typically, these dynamically allocate CPU
shares to virtual machines and/or migrate VMs across
physical servers at runtime [19],[27]. Purely reactive policies
can potentially react quickly to changes in workload demand,
but issues such as unpredictability, instability and high
provisioning costs limit their use in practice.

There are several approaches that combine predictive and
reactive control [4],[14],[23]. While these approaches share
some features with our hybrid approach, they differ in
several aspects. First, our approach aims to optimize the

Figure 7. Experimental results for the Web trace. Figure 8. Experimental results for the VDR trace.

8

performance, power consumption and provisioning cost
simultaneously. The provisioning cost is particularly
important to consider as it can significantly impact the
performance and power consumption. Second, we propose
and apply a novel workload analysis technique, workload
discretization, to determine provisioning intervals with
variable lengths whereas predictive provisioning in other
approaches uses simple fixed intervals. Third, our results
show that our approach outperforms these other approaches.

Numerous studies have examined workload demand
traces. Characterization studies of interactive workloads such
as web or media servers indicate that demands are highly
variable, although daily and weekly patterns are common
[3],[7]. Rolia et al. find similar patterns in business
application workloads [22]. A lot of research has been
conducted to predict future workload demands [26] [16] [13]
[15]. What distinguishes our work from others is the idea of
workload discretization and the incorporation of the
provisioning cost in our workload analysis, which is
important from a capacity planning and resource
provisioning perspective.

V. CONCLUSION AND FUTURE WORK
It is a challenging task to correctly provision IT resources

in data centers to meet SLA requirements while minimizing
power consumption. In this paper, we propose a hybrid
approach that proactively allocates resources for the
predictable demand pattern and leverages a reactive
controller to deal with excess demand. In particular, we
develop a novel workload discretization technique to
accurately determine workload demand patterns. We
demonstrate via experimentation that by using the proposed
workload discretization technique and combining predictive
and reactive control, our approach successfully meets SLA
requirements, is more power efficient than existing
approaches, and avoids unnecessary provisioning changes.

In the future, we plan to incorporate dynamic CPU
frequency scaling and power states into our approach.
Further, we plan to validate our hybrid provisioning
approach on larger test beds and with multi-tier applications.
We are also interested in applying our workload
discretization technique to other capacity planning and
resource provisioning problems, including workload
consolidation in virtualized environments.

REFERENCES
[1] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar S.

Krishnakumar, D. P. Pazel, J. Pershing, B. Rochwerger, “Océano-
SLA Based Management of a Computing Utility”, in Proc. of
IEEE/IFIP Int. Symposium on Integrated Network Management,
Seattle, WA, USA, pg. 855─868, 2001.

[2] G. Linden, “Make data useful,” http://glinden.blogspot.com, 2006.
[3] M. Arlitt, C. Williamson,”Web Server Workload Characterization:

The Search for Invariants”, in Proc. of ACM SIGMETRICS,
Philadelphia, PA, USA, pg. 126─137, 1996.

[4] M. Bennani, D. Menasce, ”Resource Allocation for Autonomic Data
Centers using Analytic Performance Models”, in Proc. Int. Conf. on
Automatic Computing. IEEE Computer Society, Washington, DC,
USA, pg. 229─240, 2005.

[5] D. Brillinger, “Time series: data analysis and theory”, Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001.

[6] M. Castellanos, F. Casati, M. Shan, U. Dayal, “iBOM: A Platform for
Intelligent Business Operation Management”, in Proc. of Int. Conf.
on Data Engineering (ICDE), Tokyo, Japan, pg. 1084─1095, 2005.

[7] L. Cherkasova, M. Gupta, “Characterizing Locality, Evolution, and
Life Span of Accesses in Enterprise Media Server Workloads”, in
Proc. Workshop on Network and Operating Systems Support for
Digital Audio and Video, New York, NY, USA, pg. 33─42, 2002.

[8] A. Coskun, R. Strong, D. Tullsen, S. Rosing, “Evaluating the impact
of job scheduling and power management on processor lifetime for
chip multiprocessors”, in Proc. of ACM SIGMETRICS, Seattle, WA,
USA, pg. 169─180, 2009.

[9] P. Dinda, D. O’ Hallaron, ”Host Load Prediction Using Linear
Models”, in Cluster Computing, Vol. 3, No. 4, pg. 265─280, 2000.

[10] “Report to congress on server and data center energy efficiency,
public law,” U.S. Environmental Protection Agency, ENERGY
STAR Program, 2007.

[11] A. Gandhi, M. Harchol-Balter, R. Das, C. Lefurgy, “Optimal Power
Allocation in Server Farms”, in Proc. of ACM SIGMETRICS 2009,
Seattle, USA, 2009.

[12] A. Gandhi, M. Harchol-Balter, I. Adan, ”Server farms with setup
costs”, Performance Evaluation, Vol. 67, pg. 1123─1138, 2010.

[13] D. Gmach, J. Rolia, L. Cherkasova, A. Kemper, ”Capacity Manage-
ment and Demand Prediction for Next Generation Data Centers”, in
Proc. of IEEE Int. Conf. on Web Services, Salt Lake City, Utah,
USA, pg. 43─50, 2007.

[14] D. Gmach, S. Krompass, A. Scholz, M. Wimmer, A. Kemper,
“Adaptive Quality of Service Management for Enterprise Services”,
in ACM Transactions on the Web, Vol. 2, No. 1, 2008.

[15] J. Hellerstein, F. Zhang, P. Shahabuddin, “A Statistical Approach to
Predictive Detection”, in Computer Networks, Vol. 35, No. 1, 2001.

[16] P. Hoogenboom, J. Lepreau, ”Computer System Performance
Problem Detection using Time Series Models”, in Proc. of Summer
USENIX Conference, pg. 15─32, 1993.

[17] Intel, Intel Math Kernel Library 10.0, LINPACK,
http://software.intel.com/en-us/intel-mkl/.

[18] D. Mosberger, T. Jin, “httperf-A Tool for Measuring Web Server
Performance”, in Proc. of ACM Sigmetrics Performance Evaluation
Review, Vol. 26, pg. 31─37, 1998.

[19] P. Padala, K. Hou, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A.
Merchant, K. Shin, “Automated control of multiple virtualized
resources”, in Proc. of EuroSys, Nuremberg, Germany, 2009.

[20] S. Ranjan, J. Rolia, H. Fu, E. Knightly, ”QoS-Driven Server
Migration for Internet Data Centers”, in Proc. of IEEE Int. Workshop
on Quality of Service. Miami Beach, FL, USA, pg. 3─12, 2002.

[21] J. Rolia, A. Andrzejak, M. Arlitt, ”Automating Enterprise Application
Placement in Resource Utilities”, in Proc. of IFIP/IEEE Int.
Workshop on Distributed Systems: Operations and Management.
Heidelberg, Germany, pg. 118─129, 2003.

[22] J. Rolia, X. Zhu, M. Arlitt, A. Andrzejak, ”Statistical Service
Assurances for Applications in Utility Grid Environments”, in
Performance Evaluation, Vol. 58, No. 2+3, pg., 319─339, 2004.

[23] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, “Dynamic
Provisioning of Multi-tier Internet Applications”, in Proc. of IEEE
Int. Conf. on Autnomic Computing, June 2005.

[24] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, A. Tantawi, “An
Analytical Model for Multi-tier Internet Services and its
Applications”, in ACM Transactions on the Web, Vol. 1, No. 1, 2007.

[25] A. Verma, G. Dasgupta, T. Nayak, P. De, R. Kothari, “Server
Workload Analysis for Power Minimization using Consolidation”, in
Proc. of USENIX Annual Technical Conference, 2009.

[26] R. Vilalta, C. V. Apte, J. L. Hellerstein, S. Ma, S. M. Weiss,
”Predictive Algorithms in the Management of Computer Systems”, in
IBM Systems Journal, Vol. 41, No. 3, pg. 461─474, 2002.

[27] J. Xu, M. Zhao, J. Fortes, R. Carpenter, M. Yousif, ”Autonomic
resource management in virtualized data centers using fuzzy logic-
based approaches”, in Cluster Computing Journal, Vol. 11, No. 3, pg.
213─227, 2008.

[28] The internet traffic archives: WorldCup98. Available at
http://ita.ee.lbl.gov/html/contrib/WorldCup.html.

