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Abstract—This paper presents a novel approach to correctly 
allocate resources in data centers, such that SLA violations and 
energy consumption are minimized. Our approach first 
analyzes historical workload traces to identify long-term 
patterns that establish a “base” workload. It then employs two 
techniques to dynamically allocate capacity: predictive 
provisioning handles the estimated base workload at coarse 
time scales (e.g., hours or days) and reactive provisioning 
handles any excess workload at finer time scales (e.g., minutes). 
The combination of predictive and reactive provisioning 
achieves a significant improvement in meeting SLAs, 
conserving energy, and reducing provisioning costs. We 
implement and evaluate our approach using traces from four 
production systems. The results show that our approach can 
provide up to 35% savings in power consumption and reduce 
SLA violations by as much as 21% compared to existing 
techniques, while avoiding frequent power cycling of servers. 

Keywords-data center; power management; performance 
management; resource allocation 

I.  INTRODUCTION 
Data centers are very expensive to operate due to the 

power and cooling requirements of IT equipment. The EPA 
predicts that energy consumption in data centers will exceed 
100 billion kWh in 2011, at an estimated cost of $7.4 billion 
[10]. Rising energy costs, regulatory requirements and social 
concerns over green house gas emissions amplify the 
importance of energy efficiency. However, energy efficiency 
is for naught if the data center cannot deliver IT services 
according to predefined SLA or QoS goals, as SLA 
violations result in lost business revenue. For example, 
Amazon found that every additional 100ms of latency costs 
them a 1% loss in sales, and Google observed that an extra 
500ms in search page generation time reduced traffic by 20% 
[2]. Today, SLA violations are often avoided by over-
provisioning IT resources. This results in excessive energy 
consumption. Thus, an important question in data center 
resource management is how to correctly provision IT 
equipment, such that SLA requirements are met while 
minimizing energy consumption.  

The correct provisioning of resources is a difficult task 
due to variations in workload demands. Most data center 
workload demands are very bursty in nature and often vary 
significantly during the course of a single day. Figure 1 
shows a 24-hour workload demand trace for three real-world 
traces: an SAP enterprise application, a multi-tier business 
application called VDR, and a web application. The demands 

have been normalized by the maximum demand in each 
trace. The key observation is that the workload demand 
varies a lot. For example, the SAP trace demand varies from 
a minimum of almost 0 to a maximum of approximately 0.8. 
Further, for most traces, we find that the maximum demand 
is typically 4─5 times higher than the corresponding mean 
value, suggesting huge variations across the trace time-
series. Also, for all traces, the 90%ile value is much higher 
than the mean value, suggesting that demand values are 
highly variable and well spread out. Thus, workload 
demands typically have significant variability. This makes it 
difficult to provision resources appropriately. A single size 
(static provisioning) cannot fit all, and will result in either 
over-provisioning or under-provisioning.  

The solution we propose in this paper is based on three 
important observations. First, many workloads in data 
centers (e.g., Web servers) typically exhibit periodic patterns 
(i.e., daily, weekly and/or seasonal cycles). Figure 2 plots the 
time-series and the periodogram for five days of demand 
traces collected from the SAP, VDR and Web applications, 
respectively. The peak at 24 hours in the periodogram 
indicates that these traces have a strong daily pattern (period 
of 24 hours). If we can identify these patterns in the 
workload, we can then adjust the resource allocation 
accordingly and hence improve the accuracy of resource 
provisioning and reduce power consumption. However, 
demand patterns are statistical in nature and there will be 
deviations from historical patterns due to unforeseen factors 
such as flash crowds, service outages, and holidays. Though 
the volume of such fluctuations is small compared to the 
total demand, ignoring them completely can result in 
significant SLA violations. Finally, provisioning is not free; 
there are various associated costs and risks. Frequent 
provisioning incurs both performance and energy penalties. 
For example, turning servers on can take a significant 
amount of time (up to several minutes) and consume a lot of 
power (close to peak power consumption) [12]. Frequent 
power cycling of servers causes “wear and tear”, which 
could result in server failure and service outage(s) [8].  

Based on the above observations, we propose a hybrid 
provisioning approach that dynamically provisions IT 
resources at multiple time scales. Our main contributions are: 
1. A novel approach that combines predictive and reactive 

control to provision IT resources: predictive control 
provisions the base workload at coarse time scales (e.g., 
hours) and reactive control handles any excess demand at 
finer time scales (e.g., minutes). The coordinated 
management of these two approaches achieves a 978-1-4577-1221-0/11/$26.00 ©2011 IEEE
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significant improvement in meeting SLAs, conserving 
energy and reducing provisioning costs. 

2. A novel analysis technique—“workload discretization”, 
that determines the “base” workload demand for a 
service. In particular, we propose a dynamic 
programming algorithm that can accurately capture the 
demand while minimizing costs and risks from a 
provisioning perspective.  

3. We implement our server provisioning system and 
validate our solution through both trace driven 
simulations and real implementation. The experimental 
results show that our hybrid approach out-performs other 
provisioning solutions when considering SLA violations, 
power consumption, and provisioning cost.  
The rest of the paper is organized as follows. Section II 

presents our hybrid provisioning approach and describes our 
workload discretization technique. Section III discusses our 
analytical and experimental evaluation. Section IV reviews 
related work and finally Section V concludes the paper and 
discusses future directions. 

II. HYBRID PROVISIONING 
We now present our Hybrid Provisioning solution. As 

discussed in the introduction, workload demands often have  
predictable patterns in them. However, there can be 
significant deviations from these patterns due to the bursty 
nature of data center workload demands. Excess workload 
demand or a sudden spike in demand can cause performance 
problems. Also, there is a cost and risk assoicated with 
provisioing changes, and thus, we want to avoid frequent 
provisioning changes. Based on these observations, we 
propose a Hybrid Provisioning solution, which combines 
predictive provisioning with reactive provisioning. The 
intuition behind our approach is that we capture periodic and 
sustained workload patterns from historical data, which we 

refer to as the base workload and then proactively (and 
predictively) provision for them. At run time, the deviation 
between the actual and predicted base workloads, which we 
refer to as the noise workload, is handled by reactive 
provisioning, which is invoked each time the request rate 
exceeds our prediction. Our solution also takes into account 
the costs and risks associated with provisioning. 
A. Overview of Our Approach 

Figure 3 depicts the conceptual architecture of our 
solution. We begin with an overview of how it operates.  
1. A base workload forecaster analyzes historical workload 

traces (Figure 3(a)) and identifies the patterns that form 
the base workload. We represent the patterns in a 
workload by discretizing it into consecutive, disjoint time 
intervals with a single representative demand value (e.g., 
mean or 90th percentile demand) in each interval (Figure 
3(b)).  

2. A predictive controller proactively estimates and 
allocates the proper amount of capacity (e.g., the number 
of servers) needed to handle the base workload. For 
example, given the base demand (e.g., time varying 
request rate in Figure 3(b)), it generates the capacity 
allocation (e.g., number of servers in Figure 3(c)).   

3. A reactive controller handles excess demand by adding 
additional capacity at short time scales (e.g., # of servers 
in Figure 3(d)), in response to excess workload that is 
beyond the base workload, i.e., the difference between 
the actual workload and forecasted base workload.  

4. A coordinator dispatches workload requests to servers 
and also communicates with the predictive and reactive 
controllers to provide information about incoming 
demand. When the actual workload (e.g., requests in 
Figure 3(e)) arrives, the dispatcher assigns the portion of 
the workload not exceeding the base workload (e.g., 

Figure 1.  Workload demand during a single day for (a) the SAP trace; (b) the VDR trace; and (c) the Web trace. 
(a) SAP     (b) VDR       (c) Web 

Figure 2.  Time-series and periodogram for (a) the SAP trace; (b) the VDR trace; and (c) the Web trace. 
 (a) SAP  (b) VDR (c) Web 
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requests in Figure 3(f)) to resource pool 1 and any excess 
workload (e.g., requests in Figure 3(g)) to resource pool. 

B. Base Workload Forecaster 
The base workload forecaster first performs a periodicity 

analysis of the workload demand to reveal the length of a 
pattern or a sequence of patterns that appear periodically. We 
use Fast Fourier Transform (FFT) to find the periodogram of 
the time-series data [5] from historical data. From this, we 
derive the periods of the most prominent patterns. For 
example, the periodograms from Figure 2 reveal that our 
traces have a strong daily pattern (period of 24 hours). The 
base workload forecaster runs periodically (e.g., once a day). 
It divides the historical data into daily demands and forecasts 
the demand for the next day. For workload forecast, we can 
just take the average of the mean historical daily demand. 
Advanced forecast techniques can be used, but are out of the 
scope of this paper [13].  Next, we identify and discretize 
patterns in the forecasted workload demand. Our goal is to 
represent the daily pattern in workloads by discretizing their 
demands into consecutive, disjoint time-intervals with a 
single representative demand value in each interval. We 
propose a dynamic programming algorithm to find a small 
number of time intervals and representative demand for each, 
such that the deviation from actual demand is minimized. 
Keeping the number of intervals small is important, as more 
intervals imply more frequent provisioning changes and thus 
higher risks and costs. This is one of the key contributions of 
our work. We now formally define discretization. 

Workload discretization: Given the demand time-series X 
on the domain [s, t], a time-series Y on the same domain is a 
workload characterization of X if [s, t] can be partitioned 
into n successive disjoint time intervals, {[s, t1],[t1, t2],...,[tn-1, 
t]}, such that X(j)= ri, for all j in the ith interval, [ti-1, ti].  

Note that, by definition, any time-series, X, is a 
discretization of itself. For our purposes, we set s=0 and 
t=period of workload. In the follow discussion, we assume a 
period of 24 hours, based on our periodicity analysis.  

The idea behind discretization is two-fold. First, we want 
to accurately capture the demand. To achieve this, the 
representative values, ri, for each interval, [ti-1, ti], should be 

as close as possible to the actual demand values of the time-
series in the interval [ti-1, ti]. We determine the demand 
estimation error incurred by discretization, which we define 
as the percentage of the area between the original time-series 
and the discretized time-series with respect to the area under 
the original time-series. Second, provisioning of IT resources 
is not free [8]. For this reason, we want to avoid having too 
many intervals and hence too many changes to the system, as 
this is not practical and can lead to many problems (e.g., 
performance loss, wear and tear of servers, system 
instability, etc.). In summary, we want to minimize the error 
introduced by discretization and the number of intervals in 
the discretization. We propose a dynamic programming (DP) 
solution to discretize the time-series such that we reduce 
both. ∑ ቂ෌ ሺܺሺݐሻെݎ௜ሻଶ௧೔௧ୀ௧೔షభ ቃ ൅ ݂ሺ݊ሻ௡௜ୀଵ   (1) 
Equation (1) is the objective function we want to minimize, 
where X is the time-series and f(n) is a cost function of the 
number of changes or intervals, n. The goal of Equation (1) 
is to simultaneously minimize the workload representation 
error and the number of changes. In some cases, one might 
prefer to minimize the square of the number of changes (or 
some other function of the number of changes). For this 
paper, we set  ݂ሺ݊ሻ ൌ ܿ כ ݊ , where c is a normalization 
constant which we discuss later. The objective function 
expresses the goal as minimizing the normalized number of 
changes and the representation error. The Mean-squared 
error is used to quantify the workload representation error. 
Note that in the most general case, both the number of 
changes and the representational error could be formulated as 
utility functions. We use DP to minimize the objective 
function given in Equation (1). Minimizing the Mean-
squared error for a given partition results in setting ri to be 
the mean of the time-series values on that partition. That is: ݉݅݊. ∑ ሺܺሺݐሻെݎ௜ሻଶ௧೔௧೔షభ   ֜  ௗ௬ௗ௥೔ ∑ ሺܺሺݐሻെݎ௜ሻଶ௧೔௧೔షభ ൌ 0  ֜ ௜ݎ ൌ ∑ ௑ሺ௧ሻ೟೔೟೔షభ௧೔ି௧೔షభାଵ  (2). 

Thus, we only need to partition the time-series domain, 
[t0=0, tn=24hrs], to optimize the objective function. Let us 
assume that we have the optimal partition of the domain [t0, 
tn], and it is {[t0, t1], [t1, t2],...,[tn-1, tn]}. Now, consider the 
optimal solution for the domain [t0, tn-1]. We claim that this is 
simply {[t0, t1], [t1, t2],...,[tn-2, tn-1]}. This is because if the 
optimal solution for the domain [t0, tn-1] was different, then 
we could simply append the partition [tn-1, tn] to it, and that 
should give us a solution for the domain [t0, tn] with a lower 
objective function value than {[t0, t1],[t1, t2],...,[tn-1, tn]}, 
which is a contradiction. Thus, the optimal solution for the 
domain [t0, tn] contains the optimal solution for the domain 
[t0, tn-1]. Therefore, we have the optimal substructure 
property for this problem, and DP will result in an optimal 
solution. Note that even in the case of highly irregular traffic 
where no patterns can be found, the DP solution will still 
output a workload characterization. In particular, the 
workload characterization will simply be a single value, e.g., 
the mean or desired percentile of the observed demand, over 

 
Figure 3.  Hybrid provisioning. 
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the entire domain [t0, tn]. Therefore, the DP solution is robust 
to irregularities in the demand pattern. 

We now mention a rule of thumb to pick the 
normalization constant c. The single interval approach with 
Mean as the representative value gives our objective function 
a value of: ܸܽݎ ൌ ∑ ሾܺሺݐሻ െ ሺܺሻሿଶ௧೙௧ୀ௧బ݊ܽ݁ܯ   (3), 
where Var is the variance of the time-series under 
consideration, X. By allowing a finite number of changes, 
say z, we want to ensure that we can reduce the 
representation error in our objective function by at least 
Var/2. Further, this new objective function must be smaller 
than Var. Thus, we want: ܸܽ2ݎ ൅ ܿ כ ݖ ൏ ֜    ݎܸܽ    ܿ ൏ ሺ2/ݎܸܽ כ  ሻݖ

Thus, for example, setting z=2 results in c<Var/4. For 
simplicity, we set c=Var/4 in our dynamic programming 
solutions. In general, a larger value of z may result in a 
smaller representation error at the cost of an increase in the 
number of changes, whereas a smaller value of z may result 
in a larger representation error at the cost of a decrease in the 
number of changes. The choice of z in a real data center will 
depend on how often the system administrator is willing to 
power cycle the servers. We expect a power cycling fre-
quency of once every 4─6 hours to be acceptable. Thus, z<5 
should be an acceptable value for a 24 hour demand trace.  

Figure 4 plots the discretization results of a real SAP 
application trace using various approaches, including a single 
representative value of 90th percentile (90%ile), multiple 
intervals with 3 hour partitions and using mean (Mean/3hrs),  
a K-means clustering algorithm (K-means), and our approach 
(DP) with c=Var/4, which corresponds to z=2. The results 
show that our approach achieves a lower estimation error 
than Mean/3hr and K-means with fewer intervals. The single 
interval with 90%ile significantly overestimates the demand 
with an estimation error of 137%. 
C. Predictive Controller 

The predictive controller is responsible for handling the 
base workload. It receives the predicted base workload 
pattern (i.e., the output of discretization) from the base 
workload forecaster and then proactively estimates and 
allocates the proper amount of capacity required to handle 
the base workload. In particular, the controller uses a 
queueing performance model to determine how much 
capacity will be allocated to ensure that the SLA 
requirements are met for the forecasted demand without 
consuming excessive power [5].    

We assume that a certain mean response time target 
(SLA requirement), t0, in seconds, is given. Recall that our 
goal is to minimize power consumption while ensuring that 
we meet the mean response time target. We use an M/G/1/PS 
queueing model to estimate the number of servers needed. 
Assuming that demand follows a Poisson distribution with a 
mean request rate λ requests/sec, we have: ଵభೞିഊೖ ൏  ,௢  (4)ݐ

where s is the mean job size in seconds, and k is the number 
of servers. From Equation (4), we derive: ݇ ൌ  ቜ ఒభೞି భ೟బቝ  (5). 

Equation (5) estimates the number of servers needed to 
ensure that the mean response time target is met. While the 
assumptions behind Equation (5) may not be the best for 
real-world data center workloads, they provide a good 
approximation, as we will see in Section III. Though 
important, performance and capacity modeling is not the 
focus of this paper. Note that the capacity allocated by the 
predictive controller is not affected by actual demand and 
will not change until a new base workload forecast arrives. 
D. Reactive Controller 

A reactive controller is invoked each time the actual 
workload demand is higher than the base workload, to 
provide additional resources for the excess workload 
demand. Since the reactive controller is not invoked when 
the actual demand is lower than the base workload forecast, 
the impact of over-provisioning is minimized if the 
predictive provisioning captures the base demand well. The 
results in Section III show that this hybrid approach works 
very well in practice.  

We use a simple feedback approach with a fixed 
monitoring interval length to estimate the amount of noise in 
the workload. For example, if the monitoring interval length 
is ten minutes, then we estimate the noise (workload demand 
above the predicted base demand) in the next ten minute 
interval to be the same as the noise in the current ten minute 
interval [6]. While more sophisticated approaches, such as 
ARMA or moving window [9], can be used for noise 
estimation, we find that a simple feedback based approach is 
very efficient and works well in practice for noise estimation. 
Note that errors in noise estimation will only affect the noise 
provisioning; the base workload demand will not be affected. 

Figure 4.  Comparision of different discretization techniques to determine the base workload. 
(a) 90%ile (b) Mean/3hrs (c) K-means (d) Our Approach (DP) 
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E. Coordinator 
We logically divide the server pool into two partitions. 

One handles the base workload and is managed by the 
predictive controller. The other handles the noise (excess) 
workload and is managed by the reactive controller. These 
two server farms can (and probably will) physically co-exist. 
The coordinator forwards incoming requests to either the 
server farm dedicated to the base workload or the server farm 
dedicated to the noise (excess) workload, based on the 
predicted base demand and the actual demand. A simple 
scheme for dispatching requests is to load-balance the 
incoming requests among all servers irrespective of which 
server farm they belong to. Under this scheme, all jobs are 
treated equally. However, one can imagine a more 
sophisticated dispatching scheme which allows certain 
important jobs to receive preferential service over other jobs 
by dispatching the important jobs to the (more robust) base 
workload server farm. For example, e-commerce sites such 
as Amazon or eBay may want to prioritize shopping requests 
over browsing requests. In such cases, shopping requests can 
be dispatched to the server farm that handles the base 
workload. This server farm is less likely to incur 
provisioning changes and can thus provide uninterrupted 
service. The less important browsing requests can be 
dispatched to either the base workload server farm, if there is 
available capacity, or to the noise workload server farm. 
Compared to load balancing scheduling, our solution isolates 
the base workload from the noise workload, providing 
stronger performance guarantees for the base workload. 

III. EVALUATION 
We obtain workload demand traces from three real 

applications used in HP data centers and the World Cup 
1998 demand trace. We use the four traces to validate our 
solution via trace driven analysis and implementation on a 
real test bed. We begin by describing the workload traces 
and the provisioning policies used for evaluation.  
1. SAP is a five-week-long workload demand trace of an 

SAP enterprise application that was hosted in an HP data 
center. The trace captures average CPU and memory 
usage as recorded every 5 minutes. 

2. VDR is a ten-day-long trace containing arrival rate and 
system utilization data recorded every 5 minutes from a 
high-availability, multi-tier business-critical HP appli-
cation serving both external customers and HP users on 
six continents. 

3. Web 2.0 is eight days worth of system utilization data 
from a popular HP Web service application with more 
than 85 million registered users in 22 countries located in 
multiple data centers. 

4. WorldCup98 is a demand trace obtained from the Internet 
Traffic Archives [28].  
The first three traces exhibit prominent daily patterns but 

also vary significantly during the course of a single day. The 
WorldCup98 trace is less predictable, with peak demands 
influenced by factors such as the outcome of matches, which 
are difficult to predict. 

We compare different provisioning policies that allocate 
capacity (i.e., number of servers) for a Web server farm 

during the course of a single day.  The Predictive policy 
provisions servers for day 8 based on the 90%ile demand 
values for the past seven days. We consider four 
provisioning intervals for the predictive policy: 24 hours, 6 
hours, 1 hour and variable length intervals. For example, the 
Predictive/1hr approach considers the corresponding 1 hour 
demand trace portions from each of the past 7 days and uses 
the 90%ile demand of these portions as the representative 
demand value for that hour of day 8. The Predictive/var 
approach uses variable intervals from our workload 
discretization technique. The Reactive approach uses a 
feedback approach to estimate demand online and allocates 
capacity accordingly every 10 minutes. We study two hybrid 
approaches: the Hybrid/fixed policy does predictive 
provisioning every hour and invokes reactive provisioning 
each time the predictive provisioning underestimates 
demand; and the Hybrid/var approach that combines 
predictive provisioning with variable intervals and reactive 
provisioning as described in Section II. We choose the 
90%ile demand for all predictive approaches since the 
90%ile provides a good tradeoff between resource 
consumption and quality. 
A. Trace-based Analysis 

This section evaluates our hybrid approach for various 
workload traces via analysis using the following metrics: 
percentage of SLA violations, total power consumption, and 
the number of provisioning changes. If the actual demand for 
a 5-minute interval exceeds the allocated capacity, then that 
interval is under-provisioned and is counted as an SLA 
violation. Power consumption of a server is estimated based 
on its average CPU utilization, and  power at idle and fully 
utilized states as Pidle + (Pmax - Pidle)*u, where u is the CPU 
utilization, Pidle and Pmax are the observed server power at 
idle and fully utilized states respectively. Finally, we track 
the number of provisioning changes, i.e., number of times we 
change the server farm capacity, throughout the target day. 

Figure 5 shows the SLA violations, power consumption 
and number of provisioning changes for the SAP trace. First, 
among the four predictive approaches, using variable 
intervals achieves the best balance of performance and 
power. The percentage of violations is comparable to the 
Predictive/24hrs approach, but the power consumption is 
30% less. The power consumption of Predictive/var is 
similar to that of Predictive/6hrs and Predictive/1hr, but the 
performance is much better and the number of provisioning 
changes is smaller. This demonstrates that our workload 
discretization technique can effectively improve the accuracy 
of provisioning.  

Second, our Hybrid/var approach out-performs all 
predictive approaches. Compared to the Predictive-1hr and 
Predictive/6hrs, our hybrid approach reduces SLA violations 
from 12% to 5.6% while consuming the same amount of 
power. Compared to Predictive/var, Hybrid/var reduces SLA 
violations from 7.3% to 5.6%. These reductions are a result 
of the integration of reactive provisioning to handle demand 
exceeding the predicted base demand.  

Third, both hybrid approaches perform significantly 
better than the Reactive approach in terms of meeting SLA 
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requirements. Also the hybrid approaches incur fewer 
changes than the reactive approach. The Reactive approach 
has the highest percentage of violations. There are two 
reasons for this. (1) The workload is highly variable and 
abrupt changes in short intervals are difficult to track. (2) It 
takes time to turn on a server, creating a backlog of requests 
that the reactive controller has to handle when ramping up 
capacity. Between the two hybrid approaches, our 
Hybrid/var approach outperforms Hybrid/fixed. In particular, 
by using variable intervals for predictive provisioning, 
Hybrid/var reduces SLA violations from 10.1% to 5.6% and 
the number of changes from 43 to 14, without affecting 
power consumption. This further shows the value of our DP 
based workload discretization algorithm. 

In summary, compared to purely predictive and reactive 
approaches, our Hybrid/var approach achieves better 
performance and conserves power. The Hybrid/var approach 
consumes 27% less power than the Predictive/24hour 
approach, which has similar performance. Compared to the 
Reactive approach, the Hybrid/var reduces SLA violations 
from 50% to 5.6%. Hybrid/var outperforms a hybrid 
approach with fixed provisioning intervals in terms of SLA 
violations and power consumption. Finally, Hybrid/var 
incurs 14 changes, less than one every hour, which is 
considered acceptable in practice.  

To further understand how these different approaches 
allocate resources in response to workload demand changes, 
we show time series of the demand, the number of SLA 

violations per hour, the power consumption and the number 
of active servers in Figure 6. We see that the Reactive policy 
makes many provisioning changes and incurs many 
violations, since a change in provisioning is triggered by 
either an under-provisioning or an over-provisioning in the 
previous interval. The figure shows that our Hybrid/var 
approach captures most of the incoming workload demand. 
Thus, only a few changes are triggered by the reactive part of 
our approach. However, there are instances when the reactive 
controller is invoked, for example, around 2am─3am. This 
again justifies that a hybrid approach is required to handle 
real-world workload traces. 

We conduct a similar analysis study for the Web, VDR 
and WordCup98 traces and achieve similar results. The 
Predictive/var approach that uses our workload discretization 
is still among the best of all four predictive approaches. 
Importantly, our Hybrid/var approach provides the best 
tradeoff between SLA violations, power consumption and 
the number of provisioning changes among all policies.  
B. Experimental Results on a Real Testbed 

To further verify that our solution is superior to existing 
approaches and ensure that we have a practical and robust 
solution, we implement a prototype system and 
experimentally evaluate our policy against other policies 
using the real workload traces described above.  

We implement a single-tier server farm application, 
which dynamically provisions servers and processes user 
requests. Our test bed includes 10 blade servers. Each server 
has two Intel Xeon E5535 quad-core processors running at 
2.66 GHz, and 16GB of memory. One server was used as a 

Figure 6.  Time-series for the demand, SLA violations, power 
consumption and the number of servers for the SAP trace. 

Figure 5.  Trace-based analysis results for the SAP trace. 
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front-end load generator running httperf [18], which replays 
the workload demand traces in the form of cgi requests.  
Another server was employed as a proxy/load-balancer, 
which distributes jobs and requests among the remaining 
eight Apache Web servers.  We scale the workload demand 
from real traces suitably to match our server farm capacity, 
since most of the traces were collected from production 
systems running thousands of servers. Business logic 
processing in enterprise and Web applications is often the 
bottleneck and the workloads are often processor intensive. 
Thus, we use LINPACK [17], a multi-threaded CPU bound 
program, to simulate the request or job processing in real 
applications. By adjusting the LINPACK job sizes, we 
model the variability of service times in real applications 
[11]. We use the blade servers’ built-in management 
processor to turn servers on and off remotely and 
programmatically, and to obtain power consumption 
readings. We collect response times from httperf logs. 

We evaluate four different polices: Predictive Mean/1hr, 
Predictive 90%ile/1hr, Reactive and our hybrid approach, 
Hybrid/var. The predictive provisioning policies use the 
corresponding 1 hour demand trace portions from the past 
days (Mean and 90%ile respectively) to predict the demand 
for the hour of the target day. Reactive invokes the reactive 
controller every 10 minutes and employs a feedback model 
that provisions servers for the next 10 minutes. For all 
policies and a given response time target, the number of 
active back-end servers is determined by the performance 
model described in Section II.C.  

Figure 7 shows our experimental results of performance, 
power consumption and number of provision changes for the 
Web trace. The performance is the average response time 
normalized by the target response time, and the power 
consumption is normalized by the power consumption of our 
hybrid approach. We see that the Predictive Mean/1hr does 
not provision sufficient capacity for the workload demand 
while the Predictive 90%ile/1hr tends to over-provision 
capacity. The Reactive policy misses its response time target 
due to the lag in booting additional servers. By contrast, our 
Hybrid/var policy meets its response time target, while 
keeping power consumption low. In particular, our 
Hybrid/var policy provides a 35% savings in power 
consumption when compared to the Predictive 90%ile/1hr 
and lowers response time by as much as 41% when 
compared to the Predictive Mean1/hr.  

Figure 8 shows our experimental results for the VDR 
trace. Again, we see that the Predictive Mean1/hr and 

Reactive policies fail to meet the target mean response time. 
Further, the Reactive policy incurs a lot of provisioning 
changes. Both Hybrid/var and Predictive 90%ile/1hr succeed 
in meeting the response time target but our approach uses 
slightly lower power. Note that Predictive 90%ile/1hr 
significantly over-provisions resource for the Web trace 
(Figure 7), which indicates that its performance really 
depends on the characteristics of the workload. By contrast, 
our approach works well for both traces.  

In summary, we conclude that our Hybrid approach out-
performs other provisioning approaches such as the 
predictive and reactive policies, and combinations of both 
with fixed intervals, when considering performance, power 
consumption, and number of provisioning changes.  

IV. RELATED WORK 
Existing server provisioning solutions can be broadly 

classified into predictive and reactive solutions. Predictive 
provisioning assumes there is a predictable and stable pattern 
in demand and allocates capacity typically at the time-scale 
of hours or days based on the pattern. Castellanos et al. 
exploit the predictability in business applications’ demand to 
improve the effectiveness of resource management [6]. With 
the adoption of virtualization technology, server 
consolidation has emerged as a promising technique to 
improve resource utilization and reduce power consumption 
[21],[25]. Though these approaches can be effective to a 
certain extent, choosing the proper provisioning size is still a 
very difficult task. Our workload discretization technique can 
help with this. However, large, unpredicted demand surges 
could cause severe SLA violations. 

Reactive provisioning, on the other hand, allocates 
resources in short intervals (e.g., every few minutes) in 
response to workload changes. One approach is to use 
reactive control loops that are based on feedback control 
[1],[20],[24]. Others use reactive provisioning strategies for 
resource allocation and power management in virtualized 
environments. Typically, these dynamically allocate CPU 
shares to virtual machines and/or migrate VMs across 
physical servers at runtime [19],[27]. Purely reactive policies 
can potentially react quickly to changes in workload demand, 
but issues such as unpredictability, instability and high 
provisioning costs limit their use in practice.  

There are several approaches that combine predictive and 
reactive control [4],[14],[23]. While these approaches share 
some features with our hybrid approach, they differ in 
several aspects. First, our approach aims to optimize the 

Figure 7.  Experimental results for the Web trace. Figure 8.  Experimental results for the VDR trace. 
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performance, power consumption and provisioning cost 
simultaneously. The provisioning cost is particularly 
important to consider as it can significantly impact the 
performance and power consumption. Second, we propose 
and apply a novel workload analysis technique, workload 
discretization, to determine provisioning intervals with 
variable lengths whereas predictive provisioning in other 
approaches uses simple fixed intervals. Third, our results 
show that our approach outperforms these other approaches. 

Numerous studies have examined workload demand 
traces. Characterization studies of interactive workloads such 
as web or media servers indicate that demands are highly 
variable, although daily and weekly patterns are common 
[3],[7]. Rolia et al. find similar patterns in business 
application workloads [22]. A lot of research has been 
conducted to predict future workload demands [26] [16] [13] 
[15]. What distinguishes our work from others is the idea of 
workload discretization and the incorporation of the 
provisioning cost in our workload analysis, which is 
important from a capacity planning and resource 
provisioning perspective.  

V. CONCLUSION AND FUTURE WORK 
It is a challenging task to correctly provision IT resources 

in data centers to meet SLA requirements while minimizing 
power consumption. In this paper, we propose a hybrid 
approach that proactively allocates resources for the 
predictable demand pattern and leverages a reactive 
controller to deal with excess demand. In particular, we 
develop a novel workload discretization technique to 
accurately determine workload demand patterns. We 
demonstrate via experimentation that by using the proposed 
workload discretization technique and combining predictive 
and reactive control, our approach successfully meets SLA 
requirements, is more power efficient than existing 
approaches, and avoids unnecessary provisioning changes. 

In the future, we plan to incorporate dynamic CPU 
frequency scaling and power states into our approach. 
Further, we plan to validate our hybrid provisioning 
approach on larger test beds and with multi-tier applications. 
We are also interested in applying our workload 
discretization technique to other capacity planning and 
resource provisioning problems, including workload 
consolidation in virtualized environments.  
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