

Keyword(s):

Abstract:

Analyzing Consistency Properties for Fun and Profit

Wojciech Golab, Xiaozhou Li, Mehul A. Shah

HP Laboratories
HPL-2011-6

data consistency, algorightms, key-value stores

Motivated by the increasing popularity of eventually consistent key-value stores as a commercial service,
we address two important problems related to the consistency properties in a history of operations on a
read/write register (i.e., the start time, finish time, argument, and response of every operation). First, we
consider how to detect a consistency violation as soon as one happens. To this end, we formulate a
specification for online verification algorithms, and we present such algorithms for several well-known
consistency properties. Second, we consider how to quantify the severity of the violations, if a history is
found to contain consistency violations. We investigate two quantities: one is the staleness of the reads, and
the other is the commonality of violations. For staleness, we further consider time-based staleness and
operation-count-based staleness. We present efficient algorithms that compute these quantities. We believe
that addressing these problems helps both key-value store providers and users adopt data consistency as an
important aspect of key-value store offerings.

External Posting Date: June 6, 2011 [Fulltext] Approved for External Publication
Internal Posting Date: June 6, 2011 [Fulltext]
To be published and presented at PODC 2011, San Jose, June 6-8, 2011.

Copyright PODC 2011.

Analyzing Consistency Properties for Fun and Prof t

Wojciech Golab
Hewlett-Packard Labs

Palo Alto, California, USA
wojciech.golab@hp.com

Xiaozhou (Steve) Li
Hewlett-Packard Labs

Palo Alto, California, USA
xiaozhou.li@hp.com

Mehul A. Shah
Hewlett-Packard Labs

Palo Alto, California, USA
mehul.shah@hp.com

HP Labs Technical Report HPL-2011-6

Abstract

Motivated by the increasing popularity of eventually consistent key-value stores as a commercial ser-
vice, we address two important problems related to the consistency properties in a history of operations
on a read/write register (i.e., the start time, f nish time, argument, and response of every operation). First,
we consider how to detect a consistency violation as soon as one happens. To this end, we formulate a
specif cation for online verif cation algorithms, and we present such algorithms for several well-known
consistency properties. Second, we consider how to quantify the severity of the violations, if a history
is found to contain consistency violations. We investigate two quantities: one is the staleness of the
reads, and the other is the commonality of violations. For staleness, we further consider time-based
staleness and operation-count-based staleness. We present eff cient algorithms that compute these quan-
tities. We believe that addressing these problems helps both key-value store providers and users adopt
data consistency as an important aspect of key-value store offerings.

1 Introduction

In recent years, large-scale key-value stores such as Amazon’s S3 [2] have become commercially popular.
A key-value store provides a simple get(key) and put(key,value) interface to the user. Providing strong con-
sistency properties for these operations has become an increasingly important goal [8, 16, 30]. However, the
implementations of many key-value stores are proprietary and, as such, opaque to the users. Consequently,
the users cannot reason about the implementations so as to be conf dent about their correctness. Instead,
they can only test the system empirically, and analyze the test results (e.g., traces of operations) to see if
it is delivering the promised level of consistency. To be useful, such consistency analysis should address
two important problems. One, the analysis should reveal consistency violations as soon as they happen so
that corrective actions can be taken (e.g., tuning the consistency level for future operations [3]). Two, the
analysis should quantify the severity of violations. If consistency is part of the Service Level Agreement
(SLA), and the severity of violations can be quantif ed in some way, then some proportional compensation,
monetary or otherwise, may be negotiated between the user and the service provider (hence the title of the
paper).

1

We model a key-value store by a collection of read/write registers where each key identif es a register
and the get/put requests translate into read/write operations on the appropriate register. Given a history
of operations (i.e., the start time, f nish time, argument, and response of every operation) on a read/write
register, how do we determine whether the history satisf es certain consistency properties such as atomicity
(i.e., linearizability) [18, 22]? The basic decision problem, which seeks only a yes/no answer, has been
addressed in the literature [5, 14, 23]. In this paper, we are interested in two questions beyond the decision
problem. First, how to detect a consistency violation as soon as it happens, rather than analyze the entire
history potentially long after the fact? Second, if the history is found to violate the desired consistency
property, how to quantify the severity of the violations? To our knowledge, these problems have not been
addressed in literature, mainly because (1) storage as a service is new, and (2) traditionally, stores avoid
inconsistency altogether rather than brief y sacrif ce consistency for better availability.

In this paper, after laying out the model and def nitions (Section 2), we present online consistency
verif cation algorithms for several well-known consistency properties, namely safety, regularity, atomicity,
and sequential consistency (Section 3). The distinctive feature of these algorithms is that they operate not
by processing the entire history at once, but rather by processing a history incrementally as events (i.e.,
start or f nish of an operation) occur, and reporting violations as they are detected. We note that our online
algorithms do not control what or when operations are to be issued: they merely analyze the histories
passively and report violations according to formal consistency property def nitions.

We then propose several ways to quantify the severity of atomicity violations in a history (Sections 4
and 5). The f rst quantity we consider is the maximum staleness of all the reads (Section 4). Staleness
attempts to capture how much older the value read is compared to the latest value written. We propose two
def nitions of “older than” in this context. One is based on the passage of time. The second is based on
the number of intervening writes, a notion that coincides precisely with the k-atomicity concept proposed
by Aiyer et al. [1]. We present algorithms that compute the maximum time-based staleness and, for special
cases, operation-count-based staleness.

The second quantity for evaluating the severity of violations is the commonality of violations. Def ning
this concept precisely is nontrivial as violations are not easily attributed to individual operations. Instead,
we def ne commonality as the minimum “proportion” of the history that must be removed in order to make
the history atomic (Section 5). To simplify the problem computationally, we do not consider the removal of
individual operations but rather of entire clusters—groups of operations that read or write the same value.
We give two formulations. In the unweighted formulation, we treat all clusters equally and try to remove the
smallest subset of clusters. We solve this problem using a greedy algorithm (Section 5.1). In the weighted
formulation, we weigh clusters according to their size (i.e., number of operations in the cluster), and we
try to remove a subset of clusters with minimum total weight. We solve this problem using a dynamic
programming algorithm (Section 5.2). Finally, we survey related work (Section 6) and conclude the paper
with a discussion of some open problems (Section 7). Due to space limitations, we defer all proofs of
correctness to the appendices.

2 Model

A collection of client machines interact with a key-value store via two interfaces: get(key) and put(key,value),
where key and value are uninterpreted strings. In order to determine whether the key-value store provides
certain consistency properties, a client machine can timestamp when it sends out a get/put request and when
it receives a response, and can record the value read or written. Since different client machines can access
the same key, the individual client histories are sent to a centralized monitor where the individual histories

2

are merged. Furthermore, since accesses to different keys are independent of each other, the monitor groups
operations by key and then examines whether each group satisf es the desired consistency properties. We
further assume that all client machines have well-synchronized clocks (often accomplished by time syn-
chronization protocols such as NTP), or have access to a global clock, so that client timestamps can be
considered to represent real time. See the technical report [15] for additional discussions on this scenario
and our assumptions.

We model a key-value store as a collection of read/write registers, each identif ed by a unique key. We
consider a collection of operations on such a register. Each operation, either a read or a write, has a start
time, f nish time, and value. The value of a write is the value written to the register and the value of a
read is the value obtained by the read. Note that the value of a write is known at the start of the write,
but the value of a read is known only at the f nish of the read. This distinction is important for online
verif cation of consistency properties (Section 3). We assume that all writes assign a distinct value. We
make this assumption for two reasons. First, in our particular application, all writes can be tagged with a
globally unique identif er, typically consisting of the local time of the client issuing the write followed by
the client’s identif er. Therefore, this assumption does not incur any loss of generality. Second, when the
values written are not unique, the decision problem of verifying consistency properties is NP-complete for
several well-known properties, in particular atomicity and sequential consistency [7, 14, 27].

We next def ne some terminology and notations. An eventis the start or f nish of a read or write oper-
ation. We assume that the system has the ability to pair up start/f nish events for the same operation. We
denote the start and f nish events of an operation op by |op and op| respectively, and the start and f nish
times of op by op.s and op.f respectively. The start of a read whose return value is not yet known is de-
noted by |r(?). We assume that all start and f nish times are unique. We say that operation op time-precedes
(or simply precedes) operation op

′, written as op < op
′, if op.f < op

′.s. We say that op time-succeeds(or
simply succeeds) op

′ iff op
′ time-precedes op. If neither op < op

′ nor op
′ < op, then we say op and op

′

are concurrentwith each other. A history is a collection of events that describes a collection of operations,
some of which may not have f nished. Without loss of generality, we assume that a history begins with an
artif cial pair of start/f nish events for a write that assigns the initial value of the register. For a read, its
dictating writeis the (unique) write that assigns the value obtained by the read. Typically, every read in a
history has a dictating write, otherwise either the history contains incomplete information or the system is
buggy. For a write, the set of reads that obtain the value written is called the dictated readsof the write. A
write can have any number of dictated reads (including zero). The time-precedence relation def nes a partial
order on the operations in a history H . A total order of the operations in H is called valid if it conforms to
the time-precedence partial order.

More discussions can be found in Appendix D.

3 Online verification of consistency properties

Determining whether a given history satisf es certain consistency properties such as atomicity has been
addressed in the literature [5, 14, 23]. However, known solutions are offline algorithms in the sense that
they analyze the entire history at once, even though a violation may occur in some short pref x of the
history. In this section, we investigate how to detect a violation as soon as one happens, and we present
eff cient algorithms that achieve this goal for three well-known consistency properties: safety, regularity,
and atomicity. We also discuss the complications associated with verifying sequential consistency in an
online manner.

3

3.1 Specifying online verification algorithms

Online verif cation algorithms work by inspecting the start event and f nish event of each operation one by
one, in time order, and determine on-the-f y whether a violation has happened. In contrast to an off ine
algorithm, which simply indicates whether a history satisf es some consistency property, we would like an
online algorithm to output more f ne-grained information. For example, if a history initially satisf es the
consistency property and then fails to satisfy it (after some long-enough pref x), then the output from the
online algorithm should be different from the case where violations occur from the beginning. From a
theoretical perspective, another attractive feature for an online algorithm is the ability to report meaningful
information for inf nitely long histories—a property that an off ine algorithm cannot satisfy because its
output summarizes upon termination the entire input history in one yes/no answer.

To meet the requirements discussed above, we def ne an online algorithm as one whose input is a
sequence of events H = 〈e1, . . . , en〉, and whose output is a sequence Γ = 〈γ1, . . . , γn〉, where γi ∈
{good, bad}. The output value γi provides information about the pref x 〈e1, . . . , ei〉 of H , which we denote
by Hi. For a given history H , we call H goodwith respect to a consistency property P (which is external to
our specif cation) if H satisf es P , and badwith respect to P otherwise. Intuitively, γi = bad indicates that
Hi is bad, and furthermore the consistency violation can be attributed in some way to the last event ei. An
output value γi = good indicates that ei does not introduce any additional consistency violations, but does
not say whether Hi is good or bad. This is because it is possible that a violation has occurred in some short
pref x of Hi, and no other violations have occurred since then. The above intuitive notion is captured by the
following formal specif cation for how a correct online verif cation algorithm should behave:

Specification 3.1Let H = 〈e1, . . . , en〉 be an input history for an online verification algorithm for some
consistency propertyP . Let Γ = 〈γ1, . . . , γn〉 be the sequence ofgood/bad output values produced by the
algorithm, one for each event inH. For anyi, let H̃i denote the history obtained by takingHi and removing
every eventej , where1 ≤ j < i, such thatγj = bad, along with its matching start/finish event. Then for
anyi such that1 ≤ i ≤ n, γi = good iff H̃i is good with respect toP .

It is easy to show that, for safety, regularity, atomicity, and sequential consistency, γi = bad only if
ei is the f nish event for a read. This is not because write operations cannot participate in violations, but
rather because only reads can reveal such violations, namely through their return values. For this reason
we adopt the convention in this section that violations are attributed to reads only. We also think of an
online algorithm as deciding for each read whether it has caused a violation with respect to the consistency
property under consideration. If so, the algorithm outputs bad when it processes the read’s f nish event, and
subsequently continues as if the offending read did not happen at all. We remark that this way of counting
violations, informally speaking, does not necessarily report the smallest possible set of violations. For
example, consider the history depicted in Figure 1, which is not atomic. An online verif cation algorithm
greedily considers r1(1) valid, and classif es r2(0) and r3(0) as violations. We could instead suppose that
w(1) takes effect before w(0), and attribute the violation to r1(1). Deciding which option is better at the
time when r1(1) f nishes would require seeing into the future. Thus, we cannot expect an online verif cation
algorithm to make the best decision on-the-f y.

For the properties of safety, regularity and atomicity, it is also straightforward to show that any online
verif cation algorithm ALG satisfying Specif cation 3.1 also has the following properties: (1) Validity: For
any good history H , the output vector Γ of ALG on H contains all good . (2) Completeness: For any bad
history H , the output vector Γ of ALG on H contains at least one bad . The same is not true for sequential
consistency (i.e., validity does not hold), and we comment on that in more detail in Section 3.6.

4

w(0)

w(1) (1)r (0)r r1 (0)2 3

Figure 1: Online verif cation of a non-atomic history.

3.2 Efficiency of online verification algorithms

A straightforward approach to devising an online verif cation algorithm is to simply apply an off ine algo-
rithm repeatedly on successively longer pref xes of the history. Assuming that the online algorithm discards
all reads that cause violations, it is correct in the sense of satisfying Specif cation 3.1, provided of course that
the off ine algorithm is correct. However, this approach may be ineff cient. For example, consider the atom-
icity verif cation algorithm of Gibbons and Korach [14] (simply referred to as the GK algorithm henceforth),
which runs in O(n log n) time on an n-operation history. If we use the GK algorithm for online checking,
then each stage of checking takes O(n′ log n′) time, where n′ is the length of the pref x, and altogether the
algorithm takes O(n2 log n) time.

The key to eff cient online verif cation lies in managing the bookkeeping information in various data
structures (e.g., zones [14], a value graph [23], or an operation graph [5]). Instead of throwing away and
reconstructing these data structures each time the history grows by one event, we modify the data struc-
tures and try to perform computation on them incrementally. Furthermore, to reduce the time and space
complexity of the computation we try to discard any information that is no longer needed. For example,
suppose that we are checking for atomicity. Consider two successive writes w(0)w(1). Upon the f nish of
w(1), we observe that reads starting after that time cannot return the value 0 without causing a violation.
(Recall our assumption that each write assigns a unique value.) Therefore, w(0) can be “wiped from the
books” once w(1) ends, if there are no ongoing reads at that time. This makes any future read returning 0
appear as though it lacks a dictating write, causing the algorithm to report a violation for that read. Another
observation is that a f nished read can always be discarded, as long as the constraints that the read places on
the order of writes are properly recorded. These ideas are explained in detail in the sections below.

3.3 Verifying safety

Safety is one of the weakest consistency properties. A history is safeiff there exists a valid total order on
the operations such that (1) a read not concurrent with any writes returns the value of the latest write before
it in the total order, and (2) a read concurrent with one or more writes may return an arbitrary value.

The online safety verif cation algorithm is presented in Algorithm 1. We use shorthands such as “ei =
|w(a)” to mean “event ei is the start of a write of value a” (line 3). The algorithm maintains a set of
values. These values are those that may be obtained by ongoing or future reads, and we call these values
allowable values. For each allowable value a, the algorithm maintains a variable w[a] that keeps track of
the start time and f nish time of w(a) (line 8). As a slight abuse of notation, we use square brackets to
denote variables and braces to denote operations; this convention is adopted throughout the rest of the paper.
We use “w[b] < w[a]” to mean the write of b precedes that of a (line 9). The algorithm maintains some
additional data structures: (1) I: the set of reads that can be ignored (because they are concurrent with some
writes), (2) R: the set of pending reads, and (3) nw : the number of pending writes. The algorithm creates
new allowable values as new writes are seen. However, the algorithm also discards old values (line 18) as
soon as those values are determined to be not allowable. The algorithm outputs bad when a read obtains a
value that is not in the set of allowable values (line 19).

5

Algorithm 1: Online safety verif cation
Input : sequence of events 〈e1, e2, . . . 〉
Output : sequence of good /bad values 〈γ1, γ2, . . . 〉
Init : I = R = ∅, nw = 0

1 upon event ei do
2 γi := good ;
3 if ei = |w(a) then
4 nw := nw + 1;
5 I := I ∪ R

6 else ifei = w(a)| then
7 nw := nw − 1;
8 create w[a]; w[a].(s, f) := w(a).(s, f);
9 foreach (b : w[b] < w[a]) do discard w[b] end

10 else ifei = |r(?) then
11 add r(?) to R;
12 if nw > 0 then add r(?) to I end
13 else ifei = r(a)| then
14 remove r(a) from R;
15 if r ∈ I then
16 remove r(a) from I

17 else
18 if ∃w[a] then ∀b, b 6= a: discard w[b]
19 elseγi := bad
20 end
21 end
22 end;
23 output γi

24 end

3.4 Verifying atomicity

We say that a history is atomic iff there exists a valid total order on the operations such that every read
returns the value of the latest write before it in the total order. Off ine verif cation of atomicity has been
addressed in the literature before [5, 14, 23]. The online algorithm presented in this section uses core ideas
from an off ine algorithm, and some additional ideas on discarding obsolete values. Fundamentally, it does
not matter which off ine algorithm we begin with, but in what follows, we adopt the GK algorithm [14]. This
is because the GK algorithm lends itself most conveniently to incremental computation. More discussion on
off ine algorithms can be found in the related work section (Section 6).

The GK algorithm works as follows. For a history, the set of operations that take the same value is called
a cluster. Let C(a) denote the cluster for value a. Let s̄(a) be the maximum start time of all the operations
in C(a), that is, s̄(a) = max{op.s : op ∈ C(a)}. Let f(a) be the minimum f nish time of all the operations
in C(a), that is, f(a) = min{op.f : op ∈ C(a)}. The zonefor a value a, denoted by Z(a), is the closed
interval of time between f(a) and s̄(a). If f(a) < s̄(a), this zone is called a forward zoneand spans from
f(a) to s̄(a). Otherwise, the zone is called a backward zoneand spans from s̄(a) to f(a). We use Z.l and

6

w(b)

t t’

w(a)
r

r
r

R

1

2

3

r4

r’

r

Figure 2: When to discard bookkeeping information.

Z.r to denote the left endpoint and right endpoint of zone Z . In other words, if Z(a) is a forward zone, then
Z(a).l = f(a) and Z(a).r = s̄(a). If Z(a) is a backward zone, then Z(a).l = s̄(a) and Z(a).r = f(a).

We write Z1 < Z2 iff Z1.r < Z2.l. We use
→

Z to denote a forward zone and
←

Z to denote a backward zone.
We say that two zones Z1 and Z2 conflictwith each other, denoted by Z1 6∼ Z2, iff they are both forward

zones and they overlap, or one is a forward zone and the other is a backward zone contained entirely in the
former forward zone. Two zones are compatiblewith each other, written as Z1 ∼ Z2, iff they do not
conf ict. According to this def nition, two backward zones never conf ict. Gibbons and Korach [14] show
that a history is atomic iff (1) every read has a dictating write, (2) no read precedes its dictating write, and
(3) all pairs of zones are compatible.

Our online algorithm is based on the GK algorithm, and has the ability to discard obsolete information.
The technique for identifying such information is based on the following observation, illustrated in Figure 2.
Consider a write w(a), which is succeeded by another write w(b). Let R be the set of ongoing reads when
w(b) f nishes. We observe that at the time when all the reads in R have f nished, no ongoing or future reads
can obtain the value a without causing a violation. To see this, let t be w(b)’s f nish time and t′ be the largest
f nish time of all the reads in R. Consider an ongoing read r at t′. This read does not belong to R because
at t′, all reads in R have f nished. Therefore, r starts after time t, yet at time t, value a has been superseded
by value b. Thus, r should not return a. Next, consider a read r′ that starts after t′. Since t < t′, by the
same argument, r′ should not return value a either. In other words, at time t′, we can discard all information
related to value a, and if subsequently a read returns a, we can immediately report a violation. Based on this
observation, we def ne the α set of valuea, denoted by α(a), to be the set of ongoing reads at the earliest
f nish time of all the writes that succeed w(a). For the example in Figure 2, α(a) = {r1, r2, r3}. In an
online algorithm, we can use a variable α[a] to keep track of which reads in α(a) are still ongoing, and once
this set becomes empty, value a can be discarded. Due to the nature of online algorithms, α(a) is initially
undef ned (because the algorithm has not seen any writes that succeed w(a)); for that period of time the α[a]
variable is nil (not ∅).

Clearly, how much space can be saved depends on the history. However, we observe that new writes
cause new variables to be created, but in the meantime, they increase the chances that old variables can be
discarded. Therefore, we expect that in long histories, space saving in practice is substantial.

Algorithm 2 implements the above ideas. The f nish event of a read is determined to be bad under
two circumstances: (1) when a read obtains a value not allowable (line 19), and (2) when an updated zone
conf icts with an existing, fully formed zone (line 24). In the latter case the algorithm undos the update
to the zone so that it can “pretend” that this bad event didn’t happen. In both cases, the present read is
removed from R and α-sets (lines 28 to 32), so the effect of the matching start event is also eliminated
(recall Specif cation 3.1). The rest of the algorithm mainly adds and removes the bookkeeping information
as new events arrive, following the ideas described above. For example, upon the start of a write (line 3), the
algorithm creates the corresponding data structures, leaving f of the new zone to be ∞ (i.e., “undef ned”)

7

process 1:

process 2:

w1 r 1

w2

(0) (1)

(1)

Figure 3: A sequentially consistent history that is not safe.

as no f nish event for that zone has been seen. As other events are seen, the algorithm initializes (line 12)
and updates (line 30) the α-sets accordingly so that old values can be discarded in a timely manner.

3.5 Verifying regularity

We say that a history is regular iff there exists a valid total order of the operations such that a read returns
the value of the latest write before it in the total order, except that a read concurrent with one or more writes
may return the value of one of the writes concurrent with the read. Online verif cation of regularity is similar
to verif cation of atomicity, except that we discard immediately any read that returns the value of some write
concurrent with the read. We omit the details due to space limitations.

3.6 Verifying sequential consistency

We say that a history is sequentially consistentiff there exists a total order on the operations such that (1)
the total order is consistent with process order (i.e., operations by the same process are placed in the same
order as they are issued), and (2) a read returns the value of the latest write before it in the total order. The
total order need not be valid (i.e., conform to the real-time partial order) as long as property (1) holds. In
order to def ne process order, we assume that each process issues one operation at a time.

Note that to verify sequential consistency, we need to know which process issues which operation in the
history, in contrast to the previous three consistency properties. In this section, we assume that the history
includes such information, and that we know in advance the full set of processes that may issue operations.
Both assumptions can be realized easily in practice.

Off ine verif cation of sequential consistency is NP-complete if writes can assign duplicate values [14,
27], but admits straightforward solutions if we assume that each write assigns a unique value. For example,
we can use an operation graph approach [5]. In particular, we can model each operation as a vertex in a
directed graph. We add edges to this graph in the following three steps: (1) op → op

′ if op and op
′ are

from the same process and op precedes op
′, (2) w(a) → r(a) for all values a, and (3) w(a) → w(b) if

w(a) → r(b), for all values a and b. It is easy to show that the history is sequentially consistent iff each read
has a dictating write and the resulting graph is a DAG.

Online verif cation of sequential consistency poses unique challenges owing to weaker constraints on the
total order of operations, which need not conform to the real-time partial order. The fundamental problem is
illustrated by the history depicted in Figure 3. This history violates safety, regularity, and atomicity because
the real-time partial order of operations forces r1(1) before w2(1) in any total ordering, meaning that r1(1)
precedes its dictating write (the superscripts denote the processes issuing the operations). On the other hand,
the history is sequentially consistent, and so in online verif cation we would like the algorithm to output a
sequence of good values for this particular input. (See the “Validity” property def ned in Section 3.1.) This
is problematic because when the online algorithm sees the pref x w1(0)r1(1), there is no dictating write for
r1(1) and so Specif cation 3.1 stipulates γ4 = bad.

8

We work around this problem by making the following simplifying assumption: in the real-time partial
order of operations, a read never precedes its dictating write. In practical terms, a key-value store can break
this assumption only if there is a software bug causing reads to return values that have not yet been written,
or if there is signif cant clock skew among servers, making a read appear to precede its dictating write when
events are collected at a centralized monitor. We ignore these possibilities as they are orthogonal to the core
problem of determining what consistency property a key-value store actually provides when it is designed
(correctly) to provide some weaker property such as eventual consistency.

Even with our simplifying assumption, we still face the problem that in online verif cation of sequential
consistency, timing information cannot be used to determine which operations can be discarded. Instead,
the following rule can be used to discard obsolete operations: As soon as there is an operation op(a) such
that each process has executed some operation that is downstream of op in the DAG (possibly op(a) itself),
then any operation upstream of op(a)’s dictating write (which can be op(a) itself if op(a) is a write) can
be discarded from the graph. This rule is correct because no ongoing or future reads can return a or any
value whose dictating write is upstream of op(a)’s dictating write. To see this, suppose otherwise, and
let b be the value returned by the read such that b’s dictating write is upstream of a’s. Then from the
above rules for adding edges, it is easy to construct a cycle involving w(b) and w(a), indicating a violation
of sequential consistency. The verif cation algorithm for sequential consistency that implements this rule
under our simplifying assumption is straightforward, and we omit the details due to space limitations.

4 Quantifying staleness

What can we do if we discover that a history contains consistency violations? We can try to quantify the
severity of the violations. In this paper we consider two quantities: staleness of reads and commonality
of violations. This section addresses the former, and the next section addresses the latter. Informally, the
staleness of a readquantif es the “distance” between the write operation that assigns the value returned by
the read, and the operation that writes the latest value (in some valid total order of the operations). We can
then def ne the staleness of a historyas the maximum staleness over all the reads in the history. In this
paper we consider two natural ways to formalize the notion of “distance”: (1) by measuring the passage
of time, and (2) by counting the number of intervening writes. We elaborate on these two approaches in
the subsections that follow. (Note: From here on, the algorithms that we consider are no longer online
algorithms.)

4.1 Time-based staleness

In this section, we discuss ∆-atomicity, a consistency property that we feel is appropriate for reasoning
about eventually consistent read/write storage systems. This property is a generalization of atomicity, and is
def ned for any non-negative real number ∆. Informally, ∆-atomicity allows a read to return either the value
of the latest write preceding it, or the value of the latest write as of “∆ time units ago.” Thus, if ∆ > 0,
∆-atomicity is strictly weaker than atomicity [22], and if ∆ = 0, it is identical to atomicity. We now give a
more precise def nition.

We f rst observe that some histories may contain the following “bad” reads: (1) a read obtains a value
that has never been written, and (2) a read precedes its own dictating write. We call a history simpleiff it
contains neither anomaly. For non-simple histories, we def ne their staleness to be ∞. It is straightforward
to check if a history is simple, and so in what follows we only consider simple histories.

For a simple history H , let H∆ be the history obtained from H by decreasing the start time of each

9

read by ∆ time units. We say that H is ∆-atomic iff H∆ is atomic. Therefore, given a history H and ∆,
checking if H is ∆-atomic is reduced to computing H∆ from H and checking if H∆ is atomic. (For ∆ = 0,
the reduction is trivial.) The following captures some useful properties of ∆-atomicity.

Fact 4.1 (1) Two compatible zones remain compatible if we decrease the start times of the reads in these
zones by arbitrary amounts. (2) For any simple historyH, there exists a∆ ≥ 0 such thatH is ∆-atomic.
(3) For any simple historyH and0 ≤ ∆ ≤ ∆′, if H is ∆-atomic then it is also∆′-atomic.

We state in the following lemma an alternative (and somewhat more intuitive) def nition of ∆-atomicity:

Lemma 4.2 A simple historyH is ∆-atomic iff there exists an assignment of a unique timestamp to each
operation such that: each timestamp is within the operation’s time interval, and a read with timestampt

obtains the value of the write with the greatest timestampt′ < t − δt for someδt such that0 ≤ δt ≤ ∆.

For the remainder of this section, we focus on the problem of computing for any simple history H

the smallest ∆ ≥ 0 that makes H ∆-atomic, and hence makes H∆ atomic. Since shifting the start times
of read operations (by increasing ∆) may break the assumption that start and f nish times are unique (see
Section 2), we must carefully handle corner cases where two zones share an endpoint. To that end, we adopt
the convention that two forward zones are compatible if they overlap at exactly one point, and a forward
zone is compatible with any backward zone that shares one or both endpoints with the forward zone.

To compute the optimal ∆, we propose a solution based on the GK algorithm for verifying atomicity [14]
(see Section 3.4). Given a simple history H , we f rst compute the set of zones Z . For each pair of distinct
zones Z1, Z2 ∈ Z , we assign a score χ(Z1, Z2) ≥ 0, which quantif es the severity of the conf ict between
Z1 and Z2, and has the property that χ(Z1, Z2) = χ(Z2, Z1). Intuitively, χ(Z1, Z2) is the minimum value
of ∆ that eliminates any conf ict between Z1 and Z2.

To understand how χ is computed, consider f rst the effect of decreasing the starting times of all reads
in H by ∆. For a zone that does not contain any reads, there is no effect. For a forward zone, which
necessarily contains at least one read, the right endpoint of the zone shifts to the left, up to the limit where
the forward zone collapses into a single point. Once this limit is reached, the zone becomes a backward
zone and behaves as we describe next. For any backward zone containing at least one read, the left endpoint
of the zone shifts to the left, up to the limit where the left endpoint coincides with the start of the dictating
write. Beyond this limit there is no effect. Thus, for large enough ∆, all zones become backward zones, and
there are no conf icts.

The score function χ(Z1, Z2) is def ned precisely as follows. Let Z1 ∩ Z2 denote the time interval
corresponding to the intersection of Z1 and Z2, and let |Z1 ∩ Z2| denote length of this intersection interval.

• If Z1 ∼ Z2, then χ(Z1, Z2) = 0.

• If Z1, Z2 are conf icting forward zones, then χ(Z1, Z2) = |Z1 ∩ Z2|. (Intuitively, to resolve the
conf ict we shift the right endpoint of the zone that f nishes earliest to the left, until either this zone
becomes a backward zone, or its right endpoint meets the left endpoint of the other zone.)

• If Z1 is a forward zone and Z2 is a conf icting backward zone that contains at least one read and whose
dictating write begins before Z1.l, then

χ(Z1, Z2) = min (Z1.r − Z2.r, Z2.l − Z1.l) .

(Intuitively, to resolve the conf ict we shift Z1.r and Z2.l to the left by the smallest amount ensuring
that Z1 no longer contains Z2.)

10

w(a)

w(b)

r(a)

r(b)

Z(a)

Z(b) r(c)w(c) Z(c)

Figure 4: A history that may or may not be 2-atomic.

• If Z1 is a forward zone and Z2 is a conf icting backward zone of any other kind, then χ(Z1, Z2) =
Z1.r − Z2.r. (Intuitively, to resolve the conf ict we shift Z1.r to the left until Z1 no longer contains
Z2. Shifting Z2.l does not help.)

It follows from the discussion above that increasing ∆ can only eliminate existing conf icts, and never
creates new ones. Consequently, choosing ∆ = max{χ(Z1, Z2) : Z1, Z2 ∈ Z} eliminates simultaneously
all conf icts among the zones in H∆, and ensures that H∆ is atomic. Furthermore, no smaller ∆ has the
latter property. These results are captured in Theorem 4.3 below.

Theorem 4.3 Let H be a simple history andZ be the set of zones corresponding to the clusters inH

(see Section 3.4). Define∆opt = max{χ(Z1, Z2) : Z1, Z2 ∈ Z}. ThenH∆opt is atomic. Furthermore,
∆opt = min {∆ : H∆ is atomic}.

Computing ∆opt is a straightforward exercise of tabulating the scores for all pairs of distinct zones and
taking the maximum of the scores.

4.2 Operation-count-based staleness

A different way to quantify the staleness of a read is to count how many writes intervene between the read
and its dictating write. For this purpose, Aiyer et al. [1] have def ned the notion of k-atomicity. A history
is called k-atomiciff there exists a valid total order of the operations such that every read obtains the value
of one of the k latest writes before it in the total order. By this def nition, ordinary atomicity is identical to
1-atomicity. We are not aware of any algorithm, online or off ine, that verif es whether a history is k-atomic,
for k > 1. In this section, we present the f rst 2-atomicity verif cation algorithm (an off ine algorithm), albeit
it only works for a special class of histories.

Our f rst attempt is to extend existing 1-atomicity verif cation algorithms to k > 1, but it is not obvious
to us how to do that. For example, consider the GK algorithm [14]. When k = 2, it is no longer suff cient to
just look at the zones as in the GK algorithm. To see this, consider the history depicted in Figure 4, where
the start time of w(b) is left unspecif ed. By the GK algorithm, this history is not atomic (because there are
overlapping forward zones), but whether or not it is 2-atomic depends on the start time of w(b). If w(b)
starts after w(a) f nishes, then the history is not 2-atomic, because w(a) is separated from r(a) by w(b) and
w(c). However, if w(b) starts before w(a) f nishes, then the history is 2-atomic, in which case the total order
would be w(b)w(a)r(b)w(c)r(a)r(c).

In what follows, we present an off ine 2-atomicity verif cation algorithm for nice histories. We call a
history nice if (1) it is simple (see Section 4.1), (2) each write has at least one dictated read, and (3) each
read succeeds its dictating write. We f rst observe that, for these histories, we can assume without loss of
generality that each write has exactly one dictated read, because otherwise, we can condense the history
by keeping, for each write, the dictated read that starts last and remove the other dictated reads. If we
can construct a k-atomic total order for the condensed history, then we can add back the removed reads
to the total order (by adding back the removed read somewhere between its dictated write and that write’s

11

surviving dictated read) while preserving k-atomicity. On the other hand, if the condensed history is not
2-atomic, then neither is the original history. Therefore, it suff ces to consider nice histories where each
write has exactly one dictated read.

Given a nice history, the algorithm’s overall strategy is to construct a total order by laying out the writes
from right to left in the total order, generally in the order of decreasing f nish times, but in the meantime
being mindful about the additional constraints imposed by previously placed writes. The full algorithm is
presented in Algorithm 3.

All operations start as “unpicked,” and the algorithm picks the operations from the history and puts them
into the total order, which is initially empty. When the algorithm starts, it picks a write w(a) with the largest
f nish time as the rightmost write in the total order. Once it picks w(a), it computes the set S, the set of
unpicked reads that succeed w(a) in the history. Note that those reads in S have to follow w(a) in the total
order, given that w(a) is the next write to be laid out. The algorithm then prepends w(a) and S to the total
order such that all the reads in S follow w(a) in the total order. Let R = S \ {r(a)}. If R is not empty, then
it imposes additional constraints on what the next write should be, because of the 2-atomicity requirement.
In particular, if |R| > 1, then it means that, in order to keep the 2-atomicity requirement, we have to lay out
multiple writes at the next step, an obviously impossible task. Hence, the algorithm outputs bad . If |R| = 1,
then the algorithm is obliged to lay out the dictating write for the lone read in R: there is no other choice.
If |R| = 0, then the algorithm is free to pick any unpicked write and it picks the one with the largest f nish
time. The intuition of picking such a write is that, compared to other choices, such a write forces the fewest
number of reads that have to be included in S, which in turn makes the algorithm more likely to continue.
The algorithm continues until all operations are picked.

5 Quantifying commonality

In some sense, the staleness notion that we consider in the previous section focuses on the worst violation
in a history. In this section, we consider how common violations are in a history. To this end, our f rst
attempt is to partition the operations in a history into two classes, “good” and “bad,” such that the removal
of bad operations makes the remaining sub-history atomic. Then we can compute the smallest subset of bad
operations and treat its size as the number of atomicity violations. However, classifying operations as good
or bad is problematic because atomicity violations are not easily attributed to specif c operations. Consider
for example the history w(a)w(b)r(a). On the one hand, r(a) is bad because it returns a value other than
the one most recently written. On the other hand, we can also blame w(b), which completes before r(a) but
does not appear to take effect. Thus, of the three operations that exhibit the atomicity violation, there are
two that, if removed individually, make the remaining sub-history atomic.

This example motivates a method of classifying operations as good or bad other than the one based on
individual operations. To that end, we propose to group operations by their values. In the terminology of
the GK algorithm [14], the set of operations that take the same value (i.e., a write plus zero or more reads)
is called a cluster. We propose to classify entire clusters as good or bad, and compute an optimal subset of
clusters whose removal makes the remaining sub-history atomic. There are two ways to def ne “optimal”
in this context. In the unweighted formulation, each cluster is counted equally, and we try to maximize the
number of clusters leftover. In the weighted formulation, we use the number of operations as the weight
of a cluster, and we try to maximize the total weight of the clusters leftover. In what follows, we present a
greedy algorithm for the former problem, and a dynamic programming algorithm for the latter. We note that
these algorithms are not online algorithms.

Our algorithms operate on simple histories, which are def ned in Section 3. Given an arbitrary history,

12

a preprocessing stage is used to obtain simple history—any cluster containing one or more reads but no
dictating write is removed, and any cluster where a read precedes its dictating write is removed. These steps
are necessary in the context of algorithms that select or discard entire clusters, and they are done identically
for the two algorithms we present.

5.1 The unweighted formulation

Let H be a simple history, and let ZH be the set of zones corresponding to the clusters of operations in H .
We call a set of zones compatibleif no two zones in this set conf ict with each other. Conf icts between
pairs of zones are def ned as in the GK algorithm [14], which is explained in Section 3.4. Our goal is to
f nd a maximum-size compatible subset of ZH , which yields an atomic sub-history with the largest possible
number of clusters. Our algorithm f rst picks all the backward zones, and discards any forward zones
that conf ict with any of the backward zones. The algorithm then selects a maximum compatible subset
of the remaining forward zones. The latter sub-problem can be solved optimally using another greedy
algorithm [17], which works as follows. It f rst sorts the remaining forward zones in increasing order of
their right endpoints. It then picks the f rst unpicked forward zone, removes any forward zones that conf ict
with the forward zone just picked, and repeats until there are no more unpicked forward zones. The running
time is dominated by the time needed to sort the operations and zones, and hence the algorithm can run in
O(n log n) time on an n-operation history. The full algorithm is shown in Algorithm 4. The correctness of
this algorithm is stated in Theorem 5.1.

Theorem 5.1 Given a historyH, Algorithm 4 outputs a maximum size subset of clusters that form an atomic
sub-history ofH.

5.2 The weighted formulation

Keeping a cluster containing only one operation sounds very different from keeping a cluster containing a
hundred operations, and yet in the previous section we do not favor one choice over the other. To account
for this disparity, we present a dynamic programming algorithm that identif es a subset of clusters to keep
that has the maximum total number of operations. Informally, this approach approximates a solution to the
more general problem of f nding the smallest subset of operations that must be removed in order to make a
history atomic.

Suppose there are m zones in the given history H . Def ne the weightof a zone Z , denoted by π(Z), to
be the number of operations in that zone. We order these zones in increasing order of their right endpoints
and denote them by Z1 to Zm. (These endpoints are unique as we assume that start/f nish times are unique.)
Let Π(i), where 1 ≤ i ≤ m, denote the maximum total weight of any compatible subset of {Z1, ..., Zi}.
We make the following observation about the connection between Π(i) and Π(i − 1). If Zi is a backward
zone, then it is always better to keep Zi than to discard it, because by the ordering of the zones, Zi does not
conf ict with any zones in {Z1, ..., Zi−1}. Therefore, Π(i) = Π(i − 1) + π(Zi). If Zi is a forward zone,
then the algorithm has to consider whether it is better to keep Zi or to discard it. If the algorithm discards
Zi, then Π(i) = Π(i − 1). However, if the algorithm keeps Zi, then the analysis is slightly more involved.

For any i, let f(i), where 1 ≤ f(i) < i, be the largest index such that Zf(i) precedes (hence does
not conf ict with) Zi, or 0 if all zones {Z1, ..., Zi−1} overlap with Zi. Also let L(i) = {ℓ : f(i) < ℓ <

i and Zℓ is a backward zone that does not conf ict with Zi}. We observe that, if the algorithm keeps forward

13

zone Zi, then
Π(i) = Π(f(i)) + π(Zi) +

∑

ℓ∈L(i)

π(Zℓ).

Therefore, for a forward zone Zi, the algorithm picks the max of the above quantity and Π(i − 1). The
complete idea is presented in Algorithm 5. The correctness of the algorithm is stated in Theorem 5.2.

Theorem 5.2 Given a historyH, Algorithm 5 outputs a subset of clusters with maximum total weight that
form an atomic sub-history ofH.

In terms of eff ciency, extracting the zones takes O(n log n) time (assuming that the operation endpoints
are initially unsorted), sorting the zones takes O(m log m) time, f nding f(i) takes O(log m) time, and
computing L(i) takes O(m) time. Therefore, this algorithm runs in O(n log n + m2) time.

6 Related work

Many consistency properties have been proposed before, and we focus on a few well-known ones in this
paper. Misra [23] is the f rst to consider what axioms a read/write register should abide by in order to provide
atomic behavior, although the term atomic is not coined there. Lamport [22] f rst coins the term atomic; the
same paper proposes safety and regularity. Herlihy and Wing [18] extend the notion to general data types
and def ne the concept of linearizability. For read/write registers, atomicity and linearizability are equivalent
def nitions. Lamport [21] proposes sequential consistency.

In the literature, several notions have been proposed to allow an operation or transaction to violate
stringent consistency properties, up to a certain limit [1, 20, 26, 28]. The ∆-atomicity property considered in
this paper is different from those proposed before, and is motivated by the desire to have a simple number that
relates a non-atomic history to a similar atomic one. Yu and Vahdat [32] propose a continuous consistency
model that includes a time-based staleness concept similar in spirit to ours, but def ned with respect to
database replicas rather than individual operations.

To the best of our knowledge, all existing consistency verif cation algorithms [5, 14, 23] are off ine
algorithms. Misra [23] presents an elegant algorithm for verifying whether a history is atomic. Given a
history, Misra’s algorithm def nes a “before” relation on the values (of the operations) that appear in the
history as follows: (1) a before a if r(a) < w(a) (i.e., a read precedes its dictating write) or there is a
r(a) but not w(a), (2) a before b if there exist two operations op(a), op ′(b) such that op(a) < op

′(b),
and (3) a before c if a before b and b before c. A history is atomic iff the “before” relation is irref exive,
anti-symmetric, and transitive. Misra’s algorithm can also be viewed as constructing a directed graph called
the value graph, where each vertex represents a value, and an edge a → b exists iff a at some point appears
before b (i.e., there exist op(a), op(b) such that op(a) < op(b). Then a history is atomic iff (1) it is simple,
and (2) its value graph is a DAG.

Despite the apparent dissimilarity, Misra’s algorithm and the GK algorithm have an inherent connection.
It is not hard to show that, in Misra’s algorithm, for simple histories, if the value graph contains a cycle, then
the smallest cycle is of length 2 (i.e., there exist two values a, b such that a → b and b → a). Therefore,
it suff ces to examine, for each pair of values a, b, whether there are operations that take these two values
that appear before each other. And this interpretation translates directly into the GK algorithm’s approach
of inspecting zone pairs (see Section 3.4). However, similar to the GK algorithm, for verifying 2-atomicity,
it is insuff cient to examine the value graph in Misra algorithm: it is not hard to construct two histories, one
2-atomic but the other not, that share the same value graph.

14

Anderson et al. [5] propose off ine verif cation algorithms for safety, regularity, and atomicity, and test
the Pahoehoe key-value store [4] using a benchmark similar to YCSB [9]. It is found that consistency
violations increase with the contention of accesses to the same key, and that for benign workloads, Pahoehoe
provides atomicity most of the time.

The complexity of verif cation has been investigated for several consistency properties [7, 14, 27]. Tay-
lor [27] shows that verifying sequential consistency is NP-Complete. Gibbons and Korach [14] show that,
in general, verifying sequential consistency (VSC) and verifying linearizability (VL) are both NP-Complete
problems. They also consider several variants of the problem and show that, for most variants, VSC remains
NP-Complete yet VL admits eff cient algorithms for some variants. Cantin et al. [7] show that verifying
memory coherence, which is equivalent to VSC for one memory location, is still NP-Complete. However,
as we discussed in Section 3.6, if write values are unique, then VSC on a single memory location is solvable
easily in polynomial time.

In recent years, key-value stores such as Amazon’s S3 [2] have become popular storage choices for
large-scale Internet applications. According to Brewer’s CAP principle [6], among consistency, availability,
and partition-tolerance, only two of these three properties can be attained simultaneously. Since partition-
tolerance is a must for modern Internet applications, most key-value stores favor availability over consis-
tency. For example, Amazon’s S3 [2] and Dynamo [10] only promise eventual consistency [29]. However,
more recently, data consistency is becoming a more important consideration, and various key-value stores
have proposed ways to provide consistency properties stronger than just eventual consistency [8, 16, 30].
Finally, sometimes data consistency is indispensable, even when an application favors availability. For ex-
ample, the creation of a bucket in Amazon’s S3 [2] is an atomic operation so that no two users can create
two buckets of the same name. For such an operation, data consistency is critical and hence in Amazon,
availability can be sacrif ced if need be. Consequently, many cloud systems are starting to provide atomic
primitives that applications can use to implement strong consistency.

Wada et al. [31] investigate the consistency properties provided by commercial storage systems and made
several useful observations. However, the consistency properties they investigated are the client-centric
properties such as read-your-write or monotonic-read, which are easy to check. In contrast, the consistency
properties we consider in this paper are the data-centric ones and are stronger and harder to verify. Fekete
et al. [11] investigate how often integrity violations are produced by varying degrees of isolation in database
systems, but those violations are easy to verify.

On the surface, the k-atomicity verif cation problem is somewhat similar to the graph bandwidth problem
(problem GT40 of Garey and Johnson [13]). For general graphs, if k is part of the input, then the problem is
NP-Complete [12, 24], but if k is f xed, then the problem admits a polynomial-time solution [25]. However,
for interval graphs, even if k is part of the input, the problem is polynomial-time solvable [19]: the 2-
atomicity algorithm presented in Section 4.2 is similar in spirit to the algorithm therein.

7 Concluding remarks

In this paper, we have addressed several problems related to the verif cation of consistency properties in
histories of read/write register operations. In particular, we have considered how to perform consistency
verif cation in an online manner. In addition, we have proposed several ways to quantify the severity of
violations in case a history is found to contain consistency violations. We have also presented algorithms
for computing those quantities. In practice, the online verif cation algorithms enable systems to monitor the
consistency provided in real time so that corrective actions can be taken as soon as violations are detected.
Quantifying the severity of violations enables customers and service providers to negotiate compensations

15

proportional to the severity of violations. On the other hand, we have not addressed several problems in
their full generality, such as the k-atomicity verif cation problem. We hope to address them in future work.

Acknowledgments

We are thankful to the anonymous referees for their feedback, and to Dr. Ram Swaminathan of HP Labs for
his careful proofreading of this paper.

References

[1] A. Aiyer, L. Alvisi, and R. A. Bazzi. One the availability of non-strict quorum systems. In Proceedings
of the 19th International Symposium on Distributed Computing (DISC), pages 48–62, September 2005.

[2] Amazon’s Simple Storage Service. Available at http://aws.amazon.com/s3 .

[3] Amazon’s SimpleDB. Available at http://aws.amazon.com/simpledb .

[4] E. Anderson, X. Li, A. Merchant, M. A. Shah, K. Smathers, J. Tucek, M. Uysal, and J. J. Wylie.
Eff cient eventual consistency in Pahoehoe, an erasure-coded key-blob archive. In Proceedings of the
2010 IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pages 181–
190, January 2010.

[5] E. Anderson, X. Li, M. A. Shah, J. Tucek, and J. Wylie. What consistency does your key-value
store actually provide? In Proceedings of the Sixth Workshop on Hot Topics in System Dependability
(HotDep), October 2010.

[6] E. Brewer. Towards robust distributed systems, 2000. Available at http://www.cs.berkeley.
edu/ ˜ brewer/cs262b-2004/PODC-keynote.pdf .

[7] J. F. Cantin, M. H. Lipasti, and J. E. Smith. The complexity of verifying memory coherence and
consistency. IEEE Transactions on Parallel and Distributed Systems, 16(7):663–671, July 2005.

[8] Cassandra. Available at http://incubator.apache.org/cassandra/ .

[9] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking cloud serving
systems with YCSB. In ACM Symposium on Cloud Computing (SoCC), pages 143–154, June 2010.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available key-value store. In Proceedings of
the 21st ACM Symposium on Operating System Principles (SOSP), pages 205–220, October 2007.

[11] A. Fekete, S. N. Goldrei, and J. P. Asejo. Quantifying isolation anomalies. In Proceedings of the 35th
International Conference on Very Large Data Bases (VLDB), pages 467–478, August 2009.

[12] M. R. Garey, R. L. Graham, D. S. Johnson, and D. E. Knuth. Complexity results for bandwidth
minimization. SIAM Journal on Applied Mathematics, 34(3):477–495, May 1978.

[13] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, NY, 1979.

16

[14] P. Gibbons and E. Korach. Testing shared memories. SIAM Journal on Computing, 26:1208–1244,
August 1997.

[15] W. Golab, X. Li, and M. A. Shah. Analyzing consistency properties for fun and prof t. Technical
Report HPL-2011-6, Hewlett-Packard Laboratories, 2011. Available at http://www.hpl.hp.
com/techreports/2011/HPL-2011-6.pdf .

[16] Google Storage for Developers. Available at http://code.google.com/apis/storage .

[17] U. I. Gupta, D. T. Lee, and J. Y.-T. Leung. Eff cient algorithms for interval graphs and circular-arc
graphs. Networks, 12:459–467, Winter 1982.

[18] M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems, 12(3):463–492, July 1990.

[19] D. J. Kleitman and R. V. Vohra. Computing the bandwidth of interval graphs. SIAM Journal on
Discrete Mathematics, 3(3):373–375, August 1990.

[20] N. Krishnakumar and A. J. Bernstein. Bounded ignorance in replicated systems. In Proceedings of the
Tenth ACM Symposium on Principles of Database Systems (PODS), pages 63–74, May 1991.

[21] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.
IEEE Transactions on Computers, C-28(9):690–691, September 1979.

[22] L. Lamport. On interprocess communication, Part I: Basic formalism and Part II: Algorithms. Dis-
tributed Computing, 1(2):77–101, June 1986.

[23] J. Misra. Axioms for memory access in asynchronous hardware systems. ACM Transactions on
Programming Languages and Systems, 8(1):142–153, January 1986.

[24] C. H. Papadimitriou. The NP-completeness of the bandwidth minimization problem. Computing,
16(3):263–270, September 1976.

[25] J. Saxe. Dynamic-programming algorithms for recognizing small-bandwidth graphs in polynomial
time. SIAM Journal on Algebraic and Discrete Methods, 1(4):363–369, December 1980.

[26] A. Singla, U. Ramachandran, and J. Hodgins. Temporal notions of synchronization and consistency
in Beehive. In Proceedings of the Ninth ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pages 211–220, June 1997.

[27] R. N. Taylor. Complexity of analyzing the synchronization structure of concurrent progreams. Acta
Informatica, 19(1):57–84, April 1983.

[28] F. J. Torres-Rojas, M. Ahamad, and M. Raynal. Timed consistency for shared distributed objects.
In Proceedings of the 18th ACM Symposium on Principles of Distributed Computing (PODC), pages
163–172, May 1999.

[29] W. Vogels. Eventually consistent. Communications of the ACM, 52(1):40–44, January 2009.

[30] Voldemort. Available at http://project-voldemort.com/ .

17

[31] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu. Data consistency properties and the trade-offs in
commercial cloud storages: the consumers’ perspective. In Proceedings of the Fifth Biennial Confer-
ence on Innovative Data Systems Research (CIDR), January 2011.

[32] H. Yu and A. Vahdat. Design and evaluation of a conit-based continuous consistency model for repli-
cated services. ACM Transactions on Computer Systems, 20(3):239–282, August 2002.

18

A Correctness proofs for Section 3

Theorem A.1 The safety verification algorithm in Figure 1 satisfies Specification 3.1 with respect to the
safety property.

Proof sketch:We note that the online safety verif cation algorithm (simply referred to as ALG in this proof)
only outputs bad for the f nish events of reads, and that neither the start nor the f nish event of a read causes
changes of the data structures used by ALG to determine whether other events are good or bad. In particular,
the start/f nish event of a read only affects I (which is used to keep track of which reads should be ignored)
and R (which is used to keep track of which reads are ongoing). Neither I nor R plays a role in determining
whether other reads are good or bad. Therefore, the last output of ALG on a history H is the same as the
last output of ALG on H̃ , where H̃ is the history with all the bad events (i.e., those events that cause ALG
to output bad) removed. Therefore, it suff ces to show that on a history H whose length (|H| − 1)-pref x is
good (i.e., ALG outputs good for all the f rst |H| − 1 events), ALG outputs good iff H is good (i.e., iff the
last event of H is good).

We next argue that ALG produces exactly the same last output as a correct off ine safety verif cation
algorithm (which doesn’t discard any information), that is, ALG reports a violation iff H’s last event is bad.
Suppose ALG outputs bad. The cause can only be that the last event is the f nish of a read r(a) and w[a]
does not exist. This can be because either w(a) has not started or w[a] is once created but is later discarded.
In the f rst case, H is not safe because there is a read that precedes its dictated write. In the second case, H

is not safe because of the three operations w(a), w(b), and r(a), appear in sequence in the history (recall
that, by the def nition of safety and by ALG, r(a) is not concurrent with any writes).

On the other hand, if ALG outputs good, then we can simulate the running of ALG and generate a total
order of the operations that satisf es the safety property. In particular, we generate the total order as follows:
(1) when ALG discards some writes, we add these discarded writes to the total order, in arbitrary order, (2)
after processing the f nish event of a read, we add the read to the total order. It is not hard to show that a
total order generated this way satisf es the safety property. Therefore, ALG satisf es Specif cation 3.1. �

Here we give a brief remark on the eff ciency of this algorithm. Let Λr denote the maximum number of
concurrent reads at any time and let Λw be the maximum number of concurrent writes at any time. Then we
observe that, in terms of space eff ciency, |R| ≤ Λr and |w[∗]| ≤ Λw. The processing time of each event
is dominated by set membership testing, which runs in O(log max(Λr,Λw)) time. Therefore, as long as
Λr and Λw are not high, this algorithm is eff cient. Otherwise, w[∗] can be implemented eff ciently using
hashing.

Theorem A.2 The online atomicity verification algorithm in Figure 2 satisfies Specification 3.1 with respect
to the atomicity property.

Proof sketch:The proof is similar in structure to the previous proof. To see that a bad event do not alter the
algorithm’s data structures beyond the processing of the event, note that we undo the updates to the zone
variables when the latest read causes the zones to conf ict with each other. Therefore, when given a history
with bad events, ALG reports the bad events, but continues as if the bad events never happen.

To see the equivalence of ALG to the GK algorithm, simply note that, in the case where ALG reports
a violation because of the absence of w[a], or in the case where ALG reports violation when two zones
conf ict, the GK algorithm would have detected a conf ict too. Furthermore, these are the only two cases
where the GK algorithm would have detected a conf ict. Therefore, ALG is equivalent to GK for the output

19

of the last event. Therefore, ALG satisf es Specif cation 3.1. �

B Proofs for Section 4

B.1 Proofs for Section 4.1

Proof of Fact 4.1: (1) Decreasing the start times of reads can only shrink a forward zone by moving its right
endpoint (potentially turning a forward zone into a backward zone), or stretch a backward zone by moving
its left endpoint. This can only eliminate conf icts between two zones; it cannot create new conf icts. (2)
Decreasing the start times of reads by a suff ciently large amount forces all zones to become backward
zones. By the GK algorithm, backward zones do not conf ict with each other. (3) Follows from (1) and the
def nition of ∆-atomicity. �

Proof of Lemma 4.2:First, suppose that H is ∆-atomic. Then by def nition, H∆ is atomic. Therefore, there
exists a valid total order on the operations in H∆ such that a read obtains the value of the latest write that
precedes it in the total order. Then there exists some assignment of timestamps to operations in H∆, such
that the timestamp for each operation is a time value between the operation’s start and f nish, and such that
the ordering of operations by increasing timestamp is identical to the above total order. It remains to relate
the timestamps just def ned for H∆ to the timestamps for H referred to by Lemma 4.2. If a read in H∆ has
a timestamp less than ∆ time units after its start, then the timestamp of this read in H is its start time in H .
Otherwise, the read’s timestamp in H is the same as its timestamp in H∆. The timestamp of a write in H is
also the same as its timestamp in H∆. It is easy to verify that the timestamps proposed for operations in H

have the desired properties.
Conversely, suppose that there is an assignment of timestamps for operations in H as described in

Lemma 4.2. It follows easily that if we shift the left endpoints of all read operations by ∆ then the resulting
history is atomic. In other words, H∆ is atomic, and hence H is ∆-atomic. �

Proof of Theorem 4.3: By Fact 4.1, all pairs of zones in H∆opt are compatible, and so H∆opt is atomic.
Furthermore, for any ∆ < ∆opt, there is some pair of zones in H∆ that conf ict, making H∆ not atomic.
Thus, ∆opt is the smallest possible. �

B.2 Proofs for Section 4.2

The intuitive understanding of the algorithm (simply referred to as ALG for the sake of conciseness) is that
ALG places the writes from right to left. When there are no other constraints, it picks a write w(a) that
f nishes last among the currently unpicked writes. Once ALG lays out w(a), it computes the set of reads R

that should follow the write in this total order. Note that this is the “best” place to put those reads in R, given
that w(a) is the next write to be laid out. However, if R is not empty, then it imposes additional constraints
on what the next write should be laid out, because of the 2-atomicity requirement. In particular, if |R| > 1,
then it means that, in order to keep the 2-atomicity requirement, we have to lay out multiple writes at the
next place, an obviously impossible task. Hence, ALG gives up. If |R| = 1, then ALG is obliged to lay out
the dictating write for the lone read in R. There is no other option. If |R| = 0, then ALG is free to pick
any unpicked write and it picks the one with the largest f nish time. The intuition of picking such a write is
that, compared to other choices, such a write forces fewer number of reads that has to follow it in the total

20

order, potentially reducing the rw-distance (i.e., the number of writes between a write and its dictated read)
for other values. To establish the correctness of the algorithm in Figure 3, we f rst establish the following
key lemma, which holds for arbitrary k.

Lemma B.1 If a nice history isk-atomic, then there exists ak-atomic total order where the last write in the
total order is the write that finishes last among all the writes in the history.

Proof: Let w(a) be the write that f nishes last among all the writes in the history. Let T be a k-atomic total
order for the history. We f rst observe that w(a) is one of the last k writes in the total order, otherwise the
rw-distance of value a is > k, violating the k-atomicity def nition. If w(a) is the last write in T , then we
are done. Otherwise, let W be the sequence of writes that follow w(a) in the total order. We claim that we
can swap W and w(a), and repack the reads (i.e., adjust the placement of the reads, see Section 4.2 for the
def nition of a packedtotal order) accordingly, and the new total order T ′ will remain k-atomic.

To see this, note that repacking only affects those reads that are placed to the right of w(a) in T . Among
these reads, the repacking may increase the rw-distance for those values in W , but will only decreasing or
maintain the rw-distance for other values, because w(a) f nishes last among all the writes. For the former
set of values, since their writes all appear in the last k writes, the repacking of their reads, no matter where
they end up, will not violate k-atomicity. �

We next prove the correctness of the algorithm.

Theorem B.2 The 2-atomicity verification algorithm in Figure 3 generates a 2-atomic total order iff the
given nice history is 2-atomic.

Proof: For the sake of conciseness, we call our algorithm ALG. If ALG produces a total order, then the total
order is 2-atomic, because ALG observes all constraints. The non-trivial part is to show that if the history is
2-atomic, then ALG will indeed generate a total order.

We prove this by contradiction. Suppose the given history is 2-atomic but ALG reports a violation
somewhere during its execution. Since the history is 2-atomic, there exists a 2-atomic total order. Suppose
ALG makes the f rst crucial mistake when it lays out w(a), namely, there are no 2-atomic total orders that
end with w(a)W , where W is the sequence of writes previously laid out by ALG, but there are 2-atomic total
orders that end with W . Such a w(a) exists because if ALG has been correct so far and reports a violation
next, then it can only be because |R| > 1 or there are unpicked writes that succeed a picked write. In either
case, there is no way to extend the partial layout to a 2-atomic total order, contradicting the assumption that
there are 2-atomic total orders that end with W .

If W = ∅ (i.e., ALG is wrong from the beginning), then by Lemma B.1, there is a 2-atomic total order
that lays out w(a) f rst. A contradiction. If W 6= ∅, then let w(b) be the f rst write in W . Consider the R

set computed after laying out w(b). Since ALG continues after laying out w(b), we know that |R| = ∅ and
there are no unpicked writes that succeed w(b). Therefore, there are no constraints on what to lay out next.
In other words, ALG starts afresh for all unpicked operations. By Lemma B.1, there exists a 2-atomic total
order that lays out w(a) next. A contradiction again. �

C Proofs for Section 5

Proof: (of Theorem 5.1) Consider the conf ict graph for the history where a vertex represents a zone and
an edge between two vertices means the two zones conf ict with each other. The problem of identifying a

21

maximum-size compatible subset zones is equivalent to f nding a maximum independent set in this graph.
Let F be the forward vertices (i.e., vertices for forward zones), B be the backward vertices (i.e., vertices for
backward zones), F1 be those vertices in F that have neighbors in B, F2 be those vertices in F that do not
have neighbors in B, B1 be those vertices in B that have neighbors in F (or more precisely, in F1), and B2

be those vertices in B that do not have neighbors in F .
We note that vertices in B are independent because backward zones do not conf ict with each other. Also

note that for any vertex b in B1, the neighbors of b in F1 form a clique, because they are all forward zones
that contain zone b and hence overlap with each other. We claim that the algorithm presented in Figure 4,
called ALG, keeps the maximum number of zones. Clearly, this claim is true for B2 because ALG keeps all
of B2. For B1 ∪ F1, no algorithm can keep more than |B1| zones, because of the clique observation above
and the pigeon-hole principle. Therefore, by keeping all of B1, ALG also keeps the maximum number of
zones for B1∪F1. Finally, for F2, since ALG does not pick any zones from F1, ALG is free to pick as many
zones from F2 as possible provided they do not conf ict with each other. ALG does exactly this by using an
optimal algorithm to pick the maximum-size compatible subset of F2. Therefore, ALG is optimal for F2 as
well, and in summary, optimal overall. �

D Dealing with failures and missing information

The history constructed by a monitor from notif cations issued by clients may contain various anomalies that
either preclude the use of known consistency verif cation algorithms, or else confound the results of such
algorithms. In this section we identify these anomalies and discuss workarounds.

Suppose that at some time t, the monitor materializes a history H based on the execution fragments
observed so far, which may be missing certain events. Our goal is to show how the monitor can convert H

into a simple history H ′ (see Section 4.1 for the def nition of simple histories) that represents well the events
occurring in H . A simple history has a special structure that meets the preconditions of most consistency
verif cation algorithms. By modifying H to form H ′, we inevitably risk introducing of false negatives or
false positives in the verif cation process, which examines H ′ in order to deduce properties of H . Our
strategy will be to construct H ′ in such a way that we introduce false positives only. That is, we ensure that
if H ′ violates a consistency property (i.e., the verif cation algorithm produces a negative outcome) then H

does as well. This is reasonable because in general H only represents partial information about the read and
write operations applied during an execution of the system, and so we cannot deduce from H alone that this
collection of operations satisf es some consistency property. We can only identify features in H proving that
a consistency property is violated even if H is an incomplete view of the big picture.

We now describe in detail the construction of H ′ from H . A common occurrence is that H contains start
events without matching f nish events, because the f nish notif cation had not yet been issued by a client by
time t. Similarly, H may contain a f nish event without an start, because the start notif cation reached the
monitor before the monitor began collecting data. We can obtain a simple history H from H ′ as explained
below.

If a read start in H is missing a matching f nish, we simply discard it because it provides no useful
information. If a write start is missing a f nish, we discard it if no read in H returns the value written,
otherwise we complete it with a f nish with timestamp t. In other words, in the f rst case we guess that the
write did not take effect, and in the second case we guess that it did. If a read or a write has a f nish but not
a start, we would like to reconstruct the start event if possible. Although there is nothing in our model that
makes this possible, we can easily modify the system to make this possible by attaching redundant data to a

22

f nish notif cation, namely the timestamp of the corresponding start and its argument, if any. Finally, some
start/f nish pair may be missing from H entirely. If the missing operation is a read, then there is no way to
detect this at the monitor. However, if the dictating write for a read is missing, then we wish to avoid a false
negative. To that end, we remove any read operation that lacks a dictating write. It is easy to verify that the
construction of H ′ from H described above yields a simple history.

23

Algorithm 2: Online atomicity verif cation
Input : sequence of events 〈e1, e2, . . . 〉
Output : sequence of good /bad values 〈γ1, γ2, . . . 〉
Init : R = ∅; no w[·], Z[·], or α[·] variables

1 upon event ei do
2 γi := good ;
3 if ei = |w(a) then
4 create w[a], Z[a], α[a];
5 w[a].(s, f) := (w(a).s,∞);
6 Z[a].(f, s̄) := (∞, w(a).s);
7 α[a] := nil
8 else ifei = w(a)| then
9 w[a].f := w(a).f ;

10 Z[a].f := min(Z[a].f , w(a).f);
11 foreach (b : w[b] < w[a] ∧ α[b] = nil) do
12 α[b] := R ;
13 if α[b] = ∅ then discard w[b], Z[b], α[b] end
14 end
15 else ifei = |r(?) then
16 add r(?) to R

17 else ifei = r(a)| then
18 if 6 ∃ w[a] then
19 γi := bad
20 else
21 Z[a].s̄ := max(Z[a].s̄, r(a).s);
22 Z[a].f := min(Z[a].f , r(a).f);
23 if (∃b : Z[b].f 6= ∞∧ Z[a] 6∼ Z[b]) then
24 γi := bad ;
25 undo updates to Z[a] for ei

26 end
27 end;
28 remove r(a) from R ;
29 foreach (b : r(a) ∈ α[b]) do
30 remove r(a) from α[b] ;
31 if α[b] = ∅ then discard w[b], Z[b], α[b] end
32 end
33 end;
34 output γi

35 end

24

Algorithm 3: Off ine 2-atomicity verif cation
Input : condensed nice history H

Output : whether or not H is 2-atomic
Init : R = S = ∅; none of the operations are picked

1 while ∃ unpicked writes do
2 if |R| > 1 then output bad
3 else
4 if |R| = 1 then
5 w(a) := dictating write for the lone r(a) ∈ R

6 else
7 w(a) := unpicked write with largest f nish time
8 end
9 if ∃ unpicked w(b) : w(a) < w(b) then

10 output bad
11 end
12 S := {unpicked reads r : w(a) < r};
13 // r(a) may or may not be in S

14 pick w(a) and S, prepend them to the total order;
15 // order of reads in S is unimportant
16 R := S \ {r(a)}

17 end
18 end;
19 output good

Algorithm 4: Max subset of compatible clusters
Input : simple history H

Output : maximum size subset of compatible clusters in H

1 C := set of clusters for operations in H;
2 Z := set of zones corresponding to C;
3 R := subset of clusters in C with backward zones;

4 foreach
→

Z(a)∈ Z : (∃
←

Z(b)∈ Z : Z(a) 6∼ Z(b)) do
5 remove C(a) from C
6 end;
7 R′ := max compatible subset of C with forward zones;
8 // a standard greedy algorithm can compute R′

9 R := R ∪ R′;
10 output R

25

Algorithm 5: Compatible clusters with max total weight
Input : simple history H

Output : subset of compatible clusters in H with maximum total number of operations
1 Π[0] := 0;
2 R[0] := ∅;
3 Z1:m := zones in H sorted by increasing right endpoints;
4 C1:m := clusters corresponding to Z1:m;
5 for i := 1 to m do

6 if
→

Zi then
7 if (∃j : 1 ≤ j < i ∧ Zj < Zi) then
8 f := max of such j

9 else
10 f := 0
11 end;

12 L := {ℓ : f < ℓ < i∧
←

Zℓ ∧Zℓ ∼ Zi};
13 Π[i] := max{Π[i − 1],Π[f] + π(Zi) +

∑
ℓ∈L π(Zℓ)};

14 if Π[i] = Π[i − 1] then
15 R[i] := R[i − 1]
16 else
17 R[i] := R[f] ∪ {Ci} ∪ {Cl : l ∈ L}
18 end
19 else
20 Π[i] := Π[i − 1] + π(Zi);
21 R[i] := R[i − 1] ∪ {Ci}

22 end
23 end;
24 output R

26

