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ABSTRACT

MapReduce and Hadoop represent an economically com-
pelling alternative for efficient large scale data processing
and advanced analytics in the enterprise. A key challenge
in shared MapReduce clusters is the ability to automati-
cally tailor and control resource allocations to different ap-
plications for achieving their performance goals. Currently,
there is no job scheduler for MapReduce environments that
given a job completion deadline, could allocate the appro-
priate amount of resources to the job so that it meets the
required Service Level Objective (SLO). In this work, we
propose a framework, called ARIA, to address this prob-
lem. It comprises of three inter-related components. First,
for a production job that is routinely executed on a new
dataset, we build a job profile that compactly summarizes
critical performance characteristics of the underlying appli-
cation during the map and reduce stages. Second, we design
a MapReduce performance model, that for a given job (with
a known profile) and its SLO (soft deadline), estimates the
amount of resources required for job completion within the
deadline. Finally, we implement a novel SLO-based sched-
uler in Hadoop that determines job ordering and the amount
of resources to allocate for meeting the job deadlines.

We validate our approach using a set of realistic applica-
tions. The new scheduler effectively meets the jobs’ SLOs
until the job demands exceed the cluster resources. The re-
sults of the extensive simulation study are validated through
detailed experiments on a 66-node Hadoop cluster.
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1. INTRODUCTION

Many enterprises, financial institutions and government
organizations are experiencing a paradigm shift towards large-
scale data intensive computing. Analyzing large amount of
unstructured data is a high priority task for many compa-
nies. The steep increase in volume of information being pro-
duced often exceeds the capabilities of existing commercial
databases. Moreover, the performance of physical storage is
not keeping up with improvements in network speeds. All
these factors are driving interest in alternatives that can pro-
pose a better paradigm for dealing with these requirements.
MapReduce [3] and its open-source implementation Hadoop
present a new, popular alternative: it offers an efficient dis-
tributed computing platform for handling large volumes of
data and mining petabytes of unstructured information. To
exploit and tame the power of information explosion, many
companies! are piloting the use of Hadoop for large scale
data processing. It is increasingly being used across the
enterprise for advanced data analytics and enabling new ap-
plications associated with data retention, regulatory compli-
ance, e-discovery and litigation issues.

In the enterprise setting, users would benefit from shar-
ing Hadoop clusters and consolidating diverse applications
over the same datasets. Originally, Hadoop employed a sim-
ple FIFO scheduling policy. Designed with a primary goal
of minimizing the makespan of large, routinely executed
batch workloads, the simple FIFO scheduler is quite effi-
cient. However, job management using this policy is very
inflexible: once long, production jobs are scheduled in the
MapReduce cluster the later submitted short, interactive ad-
hoc queries must wait until the earlier jobs finish, which can
make their outcomes less relevant. The Hadoop Fair Sched-
uler (HFS) [21] solves this problem by enforcing some fair-
ness among the jobs and guaranteeing that each job at least
gets a predefined minimum of allocated slots. While this ap-
proach allows sharing the cluster among multiple users and
their applications, HF'S does not provide any support or con-
trol of allocated resources in order to achieve the application
performance goals and service level objectives (SLOs).

In MapReduce environments, many production jobs are
run periodically on new data. For example, Facebook, Ya-
hoo!, and eBay process terabytes of data and event logs per
day on their Hadoop clusters for spam detection, business
intelligence and different types of optimization. For users
who require service guarantees, a performance question to
be answered is the following: given a MapReduce job J with
input dataset D, how many map/reduce slots need to be al-
located to this job over time so that it finishes within (soft)
deadline 77

! “Powered by” Hadoop, http://wiki.apache.org/hadoop/PoweredBy



Currently, there is no job scheduler for MapReduce envi-
ronments that given a job completion deadline, could esti-
mate and allocate the appropriate number of map and re-
duce slots to the job so that it meets the required dead-
line. In this work, we design a framework, called ARIA
(Automated Resource Inference and Allocation), to address
this problem. It is based on three inter-related components.

e For a production job that is routinely executed on a
new dataset, we build a job profile that reflects critical
performance characteristics of the underlying applica-
tion during map, shuffle, sort, and reduce phases.

o We design a MapReduce performance model, that for a
given job (with a known profile), the amount of input
data for processing and a specified soft deadline (job’s
SLO), estimates the amount of map and reduce slots
required for the job completion within the deadline.

e We implement a novel SLO-scheduler in Hadoop that
determines job ordering and the amount of resources
that need to be allocated for meeting the job’s SLOs.
The job ordering is based on the EDF policy (Earli-
est Deadline First). For resource allocation, the new
scheduler relies on the designed performance model to
suggest the appropriate number of map and reduce
slots for meeting the job deadlines. The resource allo-
cations are dynamically recomputed during the job’s
execution and adjusted if necessary.

We validate our approach using a diverse set of realistic ap-
plications. The application profiles are stable and the pre-
dicted completion times are within 15% of the measured
times in the testbed. The new scheduler effectively meets
the jobs’ SLOs until the job demands exceed the cluster re-
sources. The results of our simulation study are validated
through experiments on a 66-node Hadoop cluster?.

This paper is organized as follows. Section 2 introduces
profiling of MapReduce jobs. Section 3 establishes perfor-
mance bounds on job completion time. The initial evalua-
tion of introduced concepts is done in Section 4. We design
an SLO-based performance model for MapReduce jobs in
Section 5. Section 6 outlines the ARIA implementation.
We evaluate the efficiency of the new scheduler in Section 7.
Section 8 describes the related work. Finally, we summarize
the results and outline future work.

2. JOB EXECUTIONS AND JOB PROFILE

The amount of allocated resources may drastically impact
the job progress over time. In this section, we discuss differ-
ent executions of the same MapReduce job as a function of
the allocated map and reduce slots. Our goal is to extract a
single job profile that uniquely captures critical performance
characteristics of the job execution in different stages.

2.1 Job Executions

MapReduce jobs are distributed and executed across mul-
tiple machines: the map stage is partitioned into map tasks
and the reduce stage is partitioned into reduce tasks.

Each map task processes a logical split of the input data
that generally resides on a distributed file system. The map
task applies the user-defined map function on each record
and buffers the resulting output. This intermediate data is
hash-partitioned for the different reduce tasks and written
to the local hard disk of the worker executing the map task.

The reduce stage consists of three phases: shuffle, sort and
reduce phase. In the shuffie phase, the reduce tasks fetch the

21t is a representative cluster size for many enterprises. The Hadoop
‘World 2010 survey reported the average cluster size as 66 nodes.

intermediate data files from map tasks, thus following the
“pull” model. In the sort phase, the intermediate files from
all the map tasks are sorted. An external merge sort is
used in case the intermediate data does not fit in memory.
After all the intermediate data is shuffled, a final pass is
made to merge all these sorted files. Thus, the shuffle and
sort phases are interleaved. Finally, in the reduce phase, the
sorted intermediate data (in the form of a key and all its
corresponding values) is passed to the user-defined reduce
function. The output from the reduce function is generally
written back to the distributed file system.

Job scheduling in Hadoop is performed by the job mas-
ter, which manages a number of worker nodes in the cluster.
Each worker has a fixed number of map and reduce slots,
which can run tasks. The number of map and reduce slots
is statically configured (typically to one or two per core).
The workers periodically send heartbeats to the master to
reporting the number of free slots and the progress of the
tasks that they are currently running. Based on the avail-
ability of free slots and the rules of the scheduling policy, the
master assigns map and reduce tasks to slots in the cluster.

Let us demonstrate different executions of the same job
using the sort benchmark [13], which involves the use of iden-
tity map/reduce function (i.e., the entire input of map tasks
is shuffled to reduce tasks and written as output). First, we
run the sort benchmark with 8GB input on 64 machines®,
each configured with a single map and a single reduce slot,
i.e., with 64 map and 64 reduce slots overall.
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Figure 1: Sorting with 64 map and 64 reduce slots.

Figure 1 shows the progress of the map and reduce tasks
over time (on the x-axis) vs the 64 map slots and 64 reduce
slots (on the y-axis). Since the file blocksize is 128MB, there
are 8GB/128MB = 64 input splits. As each split is processed
by a different map task, the job consists of 64 map tasks.
This job execution results in single map and reduce wave.
We split each reduce task into its constituent shuffle, sort
and reduce phases (we show the sort phase duration that is
complementary to the shuffle phase). As seen in the figure,
a part of the shuffle phase overlaps with the map stage.

Next, we run the sort benchmark with 8GB input on the
same testbed, except this time, we provide it with a fewer
resources: 16 map slots and 22 reduce slots. As shown in
Figure 2, since the number of map tasks is greater than the
number of provided map slots, the map stage proceeds in
multiple rounds of slot assignment, viz. 4 waves ([64/16])
and the reduce stage proceeds in 3 waves ([64/22]).

As observed from Figures 1 and 2, it is difficult to predict
the completion time of the same job when different amount
of resources are given to the job. In the next section, we

3Details of our testbed can be found in Section 4.1.
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Figure 2: Sorting with 16 map and 22 reduce slots.

introduce a job profile that can be used for prediction of the
job completion time as a function of assigned resources.

2.2  Job Profile

Our goal is to create a compact job profile that is com-
prised of performance invariants which are independent on
the amount of resources assigned to the job over time and
that reflects all phases of a given job: map, shuffle, sort,
and reduce phases. This information can be obtained from
the counters at the job master during the job’s execution or
parsed from the logs. More details can be found in Section 6.

The map stage consists of a number of map tasks. To
compactly characterize the task duration distribution and
other invariant properties, we extract the following metrics:
(Mmin, Mavg, Mmaz, AvgSizeﬁ(/}pm7 Selectivityar ), where

® M,in — the minimum map task duration. M., serves
as an estimate for the beginning of the shuffle phase
since it starts when the first map task completes.

e M,,g — the average duration of map tasks to summa-
rize the duration of a map wave.

® M0 —the maximum duration of map tasks. It is used
as a worst time estimate for a map wave completion.

o AvgSize??™ - the average amount of input data per
map task. We use it to estimate the number of map
tasks to be spawned for processing a new dataset.

e Selectivityn — the ratio of the map output size to the
map input size. It is used to estimate the amount of
intermediate data produced by the map stage.

As described earlier, the reduce stage consists of the
shuffle/sort and reduce phases.

The shuffle/sort phase begins only after the first map
task has completed. The shuffle phase (of any reduce wave)
completes when the entire map stage is complete and all
the intermediate data generated by the map tasks has been
shuffled to the reduce tasks and has been sorted. Since the
shuffle and sort phases are interleaved, we do not consider
the sort phase separately and include it in the shuffle phase.
After shuffle/sort completes, the reduce phase is performed.
Thus the profiles of shuffle and reduce phases are represented
by the average and maximum of their tasks durations. Note,
that the measured shuffle durations include networking la-
tencies for the data transfers that reflect typical networking
delays and contention specific to the cluster.

The shuffle phase of the first reduce wave may be signif-
icantly different from the shuffle phase that belongs to the
next reduce waves (illustrated in Figure 2). This happens
because the shuffle phase of the first reduce wave overlaps
with the entire map stage and depends on the number of
map waves and their durations. Therefore, we collect two
sets of measurements: (Shl, ,Shl,...) for shuffle phase of the

avg? mazx
first reduce wave (called, first shuffle) and (Shi¥h, ShidP,)
for shuffle phase of the other waves (called, typical shuffle).
Since we are looking for the performance invariants that are
independent of the amount of allocated resources to the job,
we characterize a shuffle phase of the first reduce wave in a
special way and include only the non-overlapping portions
of the first shuffle in (Sh(lwg and Shl,,). Thus the job

profile in the shuffle phase is characterized by two pairs of
measurements: (Shl,q, Shh,a., Shatly, Shiths).

The reduce phase begins only after the shuffle phase is
complete. The profile of the reduce phase is represented by:
(Ravgs Rmaz, Selectivityr) : the average and mazimum of the
reduce tasks durations and the reduce selectivity, denoted
as Selectivityr, which is defined as the ratio of the reduce

output size to its input.

3. ESTIMATING JOB COMPLETION TIME

In this section, we design a MapReduce performance model
that is based on i) the job profile and #) the performance
bounds of completion time of different job phases. This
model can be used for predicting the job completion time as
a function of the input dataset size and allocated resources.

3.1 Theoretical Bounds

First, we establish the performance bounds for a makespan
(a completion time) of a given set of n tasks that is processed
by k servers (or by k slots in MapReduce environments).

Let Th, T, ..., T, be the duration of n tasks of a given job.
Let k£ be the number of slots that can each execute one task
at a time. The assignment of tasks to slots is done using a
simple, online, greedy algorithm, i.e., assign each task to the
slot with the earliest finishing time.

Let p= (357, T3)/n and X\ = max; {T;} be the mean and
mazimum duration of the n tasks respectively.

Makespan Theorem: The makespan of the greedy task
assignment is at least n- u/k and at most (n—1)-u/k+ . *

The lower bound is trivial, as the best case is when all
n tasks are equally distributed among the & slots (or the
overall amount of work n - i is processed as fast as possible
by k slots). Thus, the overall makespan is at least n - u/k.

For the upper bound, let us consider the worst case sce-
nario, i.e., the longest task T' € {T1,T>,...,T,} with du-
ration A is the last processed task. In this case, the time
elapsed before the final task T is scheduled is at most the
following: (377" T;)/k < (n—1)- p/k. Thus, the makespan
of the overall assignment is at most (n — 1) - p/k + X. °H

The difference between lower and upper bounds repre-
sents the range of possible job completion times due to non-
determinism and scheduling. These bounds are particularly
useful when A < n - p/k, ie., when the duration of the
longest task is small as compared to the total makespan.

3.2 Completion Time Estimates of a MapReduce
Job

Let us consider job J with a given profile either built from
executing this job in a staging environment or extracted

4T‘ightcr lower and upper bounds can be defined for some special
cases, e.g., if n < k then lower and upper bounds are equal to A, or
lower bound can be defined as maz(n - u/k, \). However, this would
complicate the general computation. Typically, for multiple waves,
the proposed bounds are tight. Since our MapReduce model actively
uses Makespan Theorem, we chose to use a simpler version of the
lower and upper bounds.

5
?Similar ideas were explored in the classic papers on scheduling, e.g.,
to characterize makespan bounds [5].



from past job executions. Let J be executed with a new
dataset that is partitioned into Nj; map tasks and N3 re-
duce tasks. Let Sj; and Sj be the number of map and
reduce slots allocated to job J respectively.

Let Mavg and Mpae be the average and maximum du-
rations of map tasks (defined by the job J profile). Then,
by Makespan Theorem, the lower and upper bounds on the
duration of the entire map stage (denoted as T%% and T,7
respectively) are estimated as follows:

Tﬁ?w = N1{4 ' Mavg/s}{{ (1)

TP = (Niy — 1) - Mavg/Sis + Minas (2)

The reduce stage consists of shuffle (which includes the inter-
leaved sort phase) and reduce phases. Similarly, Makespan
Theorem can be directly applied to compute the lower and
upper bounds of completion times for reduce phase (T%¥v,
TyP) since we have measurements for average and maximum
task durations in the reduce phase, the numbers of reduce
tasks N7 and allocated reduce slots Sz. 6

The subtlety lies in estimating the duration of the shuffle
phase. We distinguish the non-overlapping portion of the
first shuffle and the task durations in the typical shuffle (see
Section 2 for definitions). The portion of the typical shuffle
phase in the remaining reduce waves is computed as follows:

J
Tl = (G 1) sty Q
R

N -1
Tgﬁ = < B 7
Sk
Finally, we can put together the formulae for the lower and
upper bounds of the overall completion time of job J:

1) - Shi¥h + Shitr, (4)

T5™" = Ta7" + Shave + Tsh" + T (5)
T57 = T3f + Shmaw + Tsi + T (6)

T'% and T7? represent optimistic and pessimistic predic-
tions of the job J completion time. In Section 4, we compare
whether the prediction that is based on the average value be-
tween the lower and upper bounds tends to be closer to the
measured duration. Therefore, we define:

77" = (Thf +T5™")/2. (7)

Note that we can re-write Eq. 5 for T5" by replacing its
parts with more detailed Eq. 1 and Eq. 3 and similar equa-
tions for sort and reduce phases as it is shown below:

NZ-(Sh'¥2 £ Raug)

Tlow _ Nj\]/['Ma’Ug avg 1 typ 8
J = 7 + 7 + Shg,g—Shyyh (8)
Sy Sg

This presentation allows us to express the estimates for com-
pletion time in a simplified form shown below:

N Ni

l l 1 1
= Ay S g SR ch ()
M R
whete AP = Maug, BY" = (Kl + Raug), and Clp =
Shyg — Shi¥?. Eq. 9 provides an explicit expression of a

job completion time as a function of map and reduce slots
allocated to job J for processing its map and reduce tasks,
i.e., as a function of (N3, N3) and (S3;, S3).

The equations for T7” and T'7"¢ can be written similarly.

SFor simplicity of explanation, we omit the normalization step of
measured durations in job profile with respect to Angize;\:}put

Selectivityps .

and

4. INITIAL EVALUATION OF APPROACH

In this section, we perform a set of initial performance
experiments to justify and validate the proposed modeling
approach based on application profiling. We use a moti-
vating example WikiTrends for these experiments and later
evaluate five other applications in Section 7.

4.1 Experimental Testbed

We perform our experiments on 66 HP DL145 GL3 ma-
chines. Each machine has four AMD 2.39MHz cores, 8 GB
RAM and two 160GB hard disks. The machines are set up in
two racks and interconnected with gigabit Ethernet. This is
a well-balanced configuration with disk I/O being a primary
bottleneck. We used Hadoop 0.20.2 with two machines as
the JobTracker and the NameNode, and remaining 64 ma-
chines as workers. Each worker is configured with four map
and four reduce slots (unless explicitly specified otherwise).
The file system blocksize is set to 64MB. The replication
level is set to 3. Speculative execution is disabled as it did
not lead to significant improvements in our experiments.

In order to validate our model, we use the data from the
Trending Topics (TT)”: Wikipedia article traffic logs that
were collected (and compressed) every hour in September
and October 2010. We group these hourly logs according to
the month. Our MapReduce application, called WikiTrends,
counts the number of times each article has been visited
according to the given input dataset, which is very similar
to the job that is run periodically by TT.

4.2 Stability of Job Profiles

In our first set of experiments, we investigate whether the
job profiles for a given job are stable across different input
datasets and across different executions on the same dataset.
To this end, we execute our MapReduce job on the Septem-
ber and October datasets and with variable number of map
and reduce slots. The job profiles for the map and reduce
stage are summarized in Table 1. The job “Month,,,” de-
notes the MapReduce job run on the logs of the given month
with x number of map slots and y number of reduce slots
allocated to it. Table 1 shows that the map stage of the job
profile is stable across different job executions and different
datasets used as input data.

Map Task duration Avg Input -
Job Min [ Ave | Max | Size in MB | Selectivity
Septase,256 94 144 186 59.85 10.07
Octase,256 86 142 193 58.44 9.98
Septes, 128 94 133 170 59.85 10.07
Octes,128 71 132 171 58.44 9.98
Job Shuffle/Sort Reduce
Avg Max Avg | Max | Selectivity
12 20
Sept2567256 o1 152 16 33 0.37
13 34
OCt256’255 o3 156 17 35 0.36
10 25
Septea, 128 ) 159 15 139 0.37
11 26
OCt547128 o3 153 15 109 0.36

Table 1: Map and Reduce profiles of four jobs.

Table 1 also shows the job profiles for tasks in shuffle/sort
and reduce phases. The shuffle statistics include two sets
of data: the average and maximum duration of the non-
overlapping portion of the first and typical shuffle waves. We
performed the experiment 10 times and observed less than

7http ://trendingtopics.org
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Figure 3: Comparison of predicted and measured job
completion times across different job executions and
datasets.

5% variation. The average metric values are very consistent
across different job instances (these values are most critical
for our model). The maximum values show more variance.
To avoid the outliers and to improve the robustness of the
measured maximum durations we can use instead the mean
of a few top values. From these measurements, we conclude
that job profiles across different input datasets and across
different executions of the same job are indeed similar.

4.3 Prediction of Job Completion Times

In our second set of experiments, we try to predict the
job completion times when the job is executed on a different
dataset and with different numbers of map and reduce slots.

We build a job profile from the job executed on the Septem-
ber logs with 256 map and 256 reduce slots. Using this job
profile and applying formulae described in Section 3, we pre-
dict job completion times of the following job configurations:

e September logs: 64 map and 128 reduce slots;
e October logs: 256 map and 256 reduce slots;
e October logs: 64 map and 128 reduce slots.

The results are summarized in Figure 3. We observe that
the relative error between the predicted average time T7"7
and the measured job completion time is less than 10% in
all these cases, and hence, the predictions based on 779 are
well suited for ensuring the job SLOs.

S. ESTIMATING RESOURCES FOR A GIVEN

DEADLINE

In this section, we design an efficient procedure to estimate
the minimum number of map and reduce slots that need to
allocated to a job so that it completes within a given (soft)
deadline.

5.1 SLO-based Performance Model

When users plan the execution of their MapReduce appli-
cations, they often have some service level objectives (SLOs)
that the job should complete within time 7. In order to
support the job SLOs, we need to be able to answer a com-
plementary performance question: given a MapReduce job
J with input dataset D, what is the minimum number of
map and reduce slots that need to be allocated to this job
that it finishes within 77

There are a few design choices for answering this question:

o T is targeted as a lower bound of the job completion
time. Typically, this leads to the least amount of re-
sources that are allocated to the job for finishing within

deadline T'. The lower bound corresponds to “ideal”
computation under allocated resources and is rarely
achievable in real environments.

e T is targeted as an upper bound of the job completion
time. This would lead to a more aggressive resource
allocations and might result in a job completion time
that is much smaller (better) than T because worst
case scenarios are also rare in production settings.

e T is targeted as the average between lower and up-
per bounds on the job completion time. This solution
might provide a balanced resource allocation that is
closer for achieving the job completion time T'.

The allocations of map and reduce slots to job J (with a
known profile) for meeting soft deadline T' are found using
a variation of Eq. 9 introduced in Section 3, where AY™,
BYv, and C¥™ are defined.

low N v low N 7 low
Af -ﬁﬂ% .S—IJJ::T*CJ (10)
Let us use a simplified form of this equation shown below:

a b
242-p 11
m+r (11)

where m is the number of map slots, r is the number of
reduce slots allocated to the job J, and a, b and D represent
the corresponding constants (expressions) from Eq. 10. This
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Figure 4: Lagrange curve

equation yields a hyperbola if m and r are the variables.
All integral points on this hyperbola are possible allocations
of map and reduce slots which result in meeting the same
SLO deadline T. As shown in Figure 4 (left), the allocation
could use the maximum number of map slots and very few
reduce slots (shown as point A) or very few map slots and
the maximum number of reduce slots (shown as point B).
These different resource allocations lead to different amount
of resources used (as a combined sum of allocated map and
reduce slots) shown Figure 4 (right). There is a point where
the sum of the map and reduce slots is minimized (shown
as point C). We will show how to calculate this minima on
the curve using Lagrange’s multipliers, since we would like
to conserve the map and reduce slots allocated to job J.
We wish to minimize f(m,r) =m+r over % + 2 =D.
WesetAzm—‘,—r—&—)\%—i—)\g—D.
Differentiating A partially with respect to m, r and A and
equating to zero, we get

oA a
om T A2 =0 (12)
oA b

oA a b

™m0 (14)

Solving these equations simultaneously, we get

_Yaatvh) o VbVatvh) g
D ’ D
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Figure 5: Slot allocations and job completion times based on minimum resource allocation based on different bounds.

These values are the optimal values of map and reduce slots
such that the number of slots used is minimized while meet-
ing the deadline. In practice, these values have to be inte-
gral. Hence, we round up the values found by these equa-
tions and use them as an approximation.

5.2 Initial Evaluation of SLO-based Model

In this section, we perform an initial set of performance
experiments to validate the SLO-based model introduced in
Section 5.1. We aim to evaluate the accuracy of resource
allocations recommended by the model for completing the
job within a given deadline T'. For validation we use the
WikiTrends application (see Section 4.1 for more details).

The WikiTrends application consists of 71 map and 64 re-
duce tasks. We configure one map and reduce slot on each
machine. We vary the SLO (deadline) for the job through
4, 5, 6 and 7 minutes. Using the lower, average and upper
bound as the target SLO, we compute the minimum num-
ber of map and reduce slot allocations as shown in the table
in Figure 5. Using these map and reduce slot allocations,
we execute the WikiTrends application and measure the job
completion times as shown in Figure 5. The model based
on the lower bound suggests insufficient resource allocations:
the job executions with these allocations missed their dead-
lines. The model based on the upper bound aims to over
provision resources (since it aims to “match” the worst case
scenario). While all the job executions meet the deadlines,
the measured job completion times are quite lower than the
target SLO. We observe that the average bound based allo-
cations result in job completion times which are closest to
the given deadlines: within 7% of the SLO.

6. ARIA IMPLEMENTATION

Our goal is to propose a novel SLO-scheduler for Map-
Reduce environments that supports a new API: a job can
be submitted with a desirable job completion deadline. The
scheduler will then estimate and allocate the appropriate
number of map and reduce slots to the job so that it meets
the required deadline. To accomplish this goal we designed
and implemented a framework, called ARIA, to address this
problem. The implementation consists of the following five
interacting components shown in Figure 6:

Slot Estimator

Job Profiler

Profile
Database

SLO Scheduler

Slot Allocator

Figure 6: ARIA implementation.

1. Job Profiler: It collects the job profile information
for the currently running or finished jobs. We use the
Hadoop counters which are sent from the workers to
the master along with each heartbeat to build the pro-
file. This profile information can also be gleaned from
the logs in the HDFS output directory or on the job
master after the job is completed. The job profile is
then stored persistently in the profile database.

2. Profile Database: We use a MySQL database to
store the past profiles of the jobs. The profiles are iden-
tified by the (user, job name) which can be specified
by the application.

3. Slot Estimator: Given the past profile of the job and
the deadline, the slot estimator calculates the mini-
mum number of map and reduce slots that need to be
allocated to the job in order to meet its SLO. Essen-
tially, it uses the Lagrange’s method to find the minima
on the allocation curve introduced in Section 5.1.

4. Slot Allocator: Using the slots calculated from the
slot estimator, the slot allocator assigns tasks to jobs
such that the job is always below the allocated thresh-
olds by keeping track of the number of running map
and reduce tasks. In case there are spare slots, they
can be allocated based on the additional policy. There
could be different classes of jobs: jobs with/without
deadlines. We envision that jobs with deadlines will
have higher priorities for cluster resources than jobs
without deadlines. However, once jobs with deadlines
are allocated their required minimums for meeting the
SLOs, the remaining slots can be distributed to the
other job classes.

5. SLO-Scheduler: This is the central component that
co-ordinates events between all the other components.
Hadoop provides support for a pluggable scheduler.
The scheduler makes global decisions of ordering the
jobs and allocating the slots across the jobs. The
scheduler listens for events like job submissions, worker
heartbeats, etc. When a heartbeat containing the num-
ber of free slots is received from the workers, the sched-
uler returns a list of tasks to be assigned to it.

The SLO-scheduler has to answer two inter-related ques-
tions: which job should the slots be allocated and how many
slots should be allocated to the job? The scheduler executes
the Earliest Deadline First algorithm (EDF) for job order-
ing to maximize the utility function of all the users. The
second (more challenging) question is answered using the
Lagrange computation discussed in Section 5. The detailed
slot allocation schema is shown in Algorithm 1.

As shown in Algorithm 1, it consists of two parts: 1) when
a job is added, and 2) when a heartbeat is received from a
worker. Whenever a job is added, we fetch its profile from
the database and compute the minimum number of map and



Algorithm 1 Earliest deadline first algorithm

1: When job j is added:

2: Fetch Profile; from database
3: Compute minimum number of map and reduce slots
(mj, ;) using Lagrange’s multiplier method

4: When a heartbeat is received from node n:

5: Sort jobs in order of earliest deadline

6: for each slot s in free map/reduce slots on node n do

7 for each job j in jobs do

8 if RunningMaps; < m; and s is map slot then

9 if job j has unlaunched map task ¢ with data on
node n then

10: Launch map task ¢ with local data on node n

11: else if j has unlaunched map task ¢ then

12: Launch map task ¢ on node n

13: end if

14: end if

15: if FinishedMaps; > 0 and s is reduce slot and
RunningReduces; < r; then

16: if job j has unlaunched reduce task ¢t then

17: Launch reduce task ¢t on node n

18: end if

19: end if

20:  end for

21: end for

22: for each task T finished slots by node n do

23:  Recompute (mj,r;) based on the current time, cur-
rent progress and deadline of job j

24: end for

reduce slots required to complete the job within its specified
deadline using the Lagrange’s multiplier method discussed
earlier in Section 5.1.

Workers periodically send a heartbeat to the master re-
porting their health, the progress of their running tasks and
the number of free map and reduce slots. In response, the
master returns a list of tasks to be assigned to the worker.
The master tracks the number of running and finished map
and reduce tasks for each job. For each free slot and each
job, if the number of running maps is lesser than the number
of map slots we want to assign it, a new task is launched.
As shown in Lines 9 - 13, preference is given to tasks that
have data local to the worker node. Finally, if at least one
map has finished, reduce tasks are launched as required.

In some cases, the amount of slots available for allocation
is less than required minima for job J and then J is allocated
only a fraction of required resources. As time progresses, the
resource allocations are recomputed during the job’s execu-
tion and adjusted if necessary as shown in Lines 22-24 (this
is a very powerful feature of the scheduler that can increase
resource allocation if the job execution progress is behind the
targeted and expected one). Whenever a worker reports a
completed task, we decrement Nj; or N7 in the SLO-based
model and recompute the minimum number of slots.

7. EVALUATION

In this section, we evaluate the efficiency of the new SLO-
scheduler using a set of realistic workloads. First, we moti-
vate our evaluation approach by a detailed analysis of the
simulation results. Then we validate the simulation results
by performing similar experiments in the 66-node Hadoop
cluster.

7.1 Workload

Our experimental workload consists of a set of represen-
tative applications that are run concurrently. We can run
the same application with different input datasets of varying
sizes. A particular application reading from a particular set
of inputs is called an application instance. Each application
instance can be allocated varying number of map and reduce
slots resulting in different job executions. The applications
used in our experiments are as follows:

1. Word count: This application computes the occur-
rence frequency of each word in the Wikipedia article
history dataset. We use three datasets of sizes: 32GB,
40GB and 43GB.

2. Sort: This applications sorts a set of records that
is randomly generated. The application uses identity
map and identity reduce functions as the MapReduce
framework does the sorting. We consider three in-
stances of Sort: 8GB, 64GB and 96GB.

3. Bayesian classification: We use a step from the ex-
ample of Bayesian classification trainer in Mahout®.
The mapper that extracts features from the input cor-
pus and outputs the labels along with a normalized
count of the labels. The reduce performs a simple ad-
dition of the counts and is also used as the combiner.
The input dataset is the same Wikipedia article history
dataset, except the chunks split at page boundaries.

4. TF-IDF: The Term Frequency - Inverse Document
Frequency application is often used in information re-
trieval and text mining. It is a statistical measure to
evaluate how important a word is to a document. We
used the TF-IDF example from Mahout and used the
same Wikipedia articles history dataset.

5. WikiTrends: This application is described in detail
in Section 4.1, since it is used in the initial evaluation.

6. Twitter: This application uses the 25GB twitter dataset
created by [12] containing an edge-list of twitter userids.
Each edge (i,7) means that user i follows user j. The
Twitter application counts the number of asymmetric
links in the dataset, that is, (i,5) € E, but (j,1) ¢ E.
We use three instance processing 15GB, 20GB and
25GB respectively.

7.2 Simulation

We implement a discrete event simulator in order to un-
derstand the efficacy of our scheduling and resource alloca-
tion algorithm. We do not simulate details of worker nodes
(their hard disks or network packet transfers) as it is done
in MRPerf [19], because we use job profiles to represent job
latencies during different phases of MapReduce processing
in the cluster. We concentrate on simulating the job master
decisions and the task/slot allocations across multiple jobs.

We maintain data structures similar to the Hadoop job
master such as the job queue: a priority queue of jobs sorted
by the earliest deadline first. Since the slot allocation algo-
rithm makes a new decision when a map or reduce task com-
pletes, we simulate the jobs at the task level. The simulator
maintains priority queues for seven event types: job arrivals
and departures, map and reduce task arrivals and depar-
tures, and a timer event (used for accounting purposes).

8http ://http://mahout .apache.org/
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Figure 7: Cluster load over time in the simulations with Yahoo! workload: a) map slots, b) reduce slots.

In the simulations (and later in the testbed evaluations),
we will assess the quality of scheduling and resource alloca-
tions decisions by observing the following metric. Let the
execution consist of a given set of n jobs J1, Ja, ..., J, with
corresponding deadlines D1, D2, ..., Dy, and known job pro-
files. Let these jobs be completed at times 141,75, ..., Ty,
and let © be the set of all jobs whose deadline has been
exceeded. Then we compute the following utility function:

ZTJ*D(]

Dy
Jeo
This function denotes the the sum of the relative deadlines
exceeded. We are interested in minimizing this value.

We perform simulations with two different workloads de-
noted as Wi and Ws.

Workload Wi represents a mix of the six realistic appli-
cations with different input dataset sizes as introduced and
described in Section 7.1. We refer to W, as the testbed work-
load. Tt aims to simulate the workload that we use for SLO-
scheduler evaluation in our 66-node Hadoop testbed.

Workload W> (called Yahoo! workload) represents a mix
of MapReduce jobs that is based on the analysis of the M45
Yahoo! cluster [10], and that is generated as follows:

e The job consists of the number of map and reduce tasks
defined by the distributions N (154, 558) and N (19, 145)
respectively, where N (u, o) is the normal distribution
with mean p and standard deviation o.

e Map task durations are defined by N(100,20) and re-
duce task durations are from N (300, 30), because re-
duce tasks are usually longer than map tasks since they
perform shuffle, sort and reduce. (The study in [10] did
not report the statistics for individual map and reduce
task durations, so we chose them as described above).

e The job deadline (which is relative to the job com-
pletion time) is set to be uniformly distributed in the
interval [Ty, 3-T], where T is the completion time of
job J given all the cluster resources.

The job deadlines in W; and Ws are generated similarly.
Table 2 provides the summary of W7 and Wa.

Set App Number of Map task | Reduce task

map tasks duration duration
Bayes 54, 68, 72 436s 33s
Sort 256, 512, 1024 9s 53s
Wi TF-IDF 768 11s 66s
Twitter 294, 192, 390 59s 65s
Wikitrends 71, 720, 740 179s 79s
WordCount 507, 640, 676 56s 21s

W2 Yahoo! N (154, 558) N (100, 20) N (300, 30)

Table 2: Simulation workloads W7 and Wa.

To understand the effectiveness of resource allocation by
the SLO-scheduler and the quality of its decisions we aim to
create varying load conditions. However, instead of spawn-
ing jobs with an inter-arrival distribution, we spawn a new
job so as to keep the load in the cluster below a certain
threshold. Since our goal is to evaluate the efficiency of the

SLO-scheduler decisions, we would like to generate the ar-
rival of jobs that have realistic chances of completing in time.
If the cluster does not have enough resources for processing
of the newly arrived job then the scheduler might fail to al-
locate sufficient resources, and the job might not be able to
meet its deadline. However, in this case, it is not the sched-
uler’s fault. Moreover, as we will demonstrate later, there is
a drastic difference between the peak and average load mea-
sured in the simulated cluster over time, which provides an
additional motivation to design a job arrival process driven
by the load threshold. We define the load as the sum of the
percentage of running map and reduce tasks compared to
the total cluster capacity. We spawn a new job whenever its
minimum pair computed by the Lagrange method combined
with the current cluster load is below the threshold.

The simulator was very helpful in designing the ARIA
evaluation approach. We were able to generate, execute, and
analyze many different job arrival scenarios and their out-
comes before deciding on the job arrivals driven by a thresh-
old. Simulations take a few minutes compared to multi-hour
executions of similar workloads in the real testbed.

Table 3 summarizes the results of our simulations for Ya-
hoo! and testbed workloads with 100 jobs. Each experiment
was repeated 100 times. In the table, we report the simula-
tion results averaged across these 100 runs.

Load SLO # of jobs Average
threshold exceeded with Load (%)
for arrival (%) | utility (%) | missed SLO
‘Workload W1 W2 W1 W2 W1 W2
105 3.31 12.81 | 0.54 5.21 28.15 | 34.31
100 1.41 4.65 0.43 3.54 26.51 | 33.30
95 0 0 0 0 25.21 | 30.77
90 0 0 0 0 24.70 | 29.43
85 0 0 0 0 23.52 | 28.47

Table 3: Simulation results with testbed (W1) and Ya-
hoo! (W2) workloads.

We observe that allocation decisions of the SLO-scheduler
enables the job to efficiently meet the job deadlines when
the load threshold is less than 100%. Moreover, even with
a higher load threshold (105%) we see that only a few jobs
are missing their deadlines. The last column reports the
average utilization of the cluster during the runs measured
as the percentage of running map and reduce tasks compared
to the total cluster capacity. It is significantly lower than
the load threshold used for job arrivals. Figure 7 shows the
number of running map and reduce tasks in the cluster over
time when processing the Yahoo! workload for two different
simulations: with load threshold of 95% and 105%. It shows
that the average load can be a misleading metric to observe:
the individual map and reduce slots’ utilization might be
quite high, but since the reduce tasks do not start till the
map tasks are completed for a given job this can lead to a
low average utilization in the cluster. A similar situation
is observed for simulations with testbed workload (W1). We
omit the figure due to lack of space.



We observe the similarity of simulation results for two
quite different workload sets, that makes us to believe in
the generality of presented conclusions.

7.3 Testbed Evaluation of ARIA

For evaluating ARIA and validating the efficiency of re-
source allocation decisions of the new SLO-scheduler in our
66-node Hadoop cluster, we used applications described in
Section 7.1 that constitute the testbed workload W1 as sum-
marized in Table 2.

First, we executed each of the applications in isolation
with their different datasets and three different map and re-
duce slot allocations. This set of experiments was run three
times and the job profiles and the variation in the averages
was less than 10% (up to 20% variation was seen in the
maxima and minima). These experiments and the results
are similar to ones we performed in our initial performance
evaluation study presented in Section 4. Then, we also ex-
ecuted these applications along with each other, and the
extracted job profiles show a slightly higher variation while
still being very close to the earlier extracted job profiles.

Using the same evaluation approach and technique de-
signed during our simulation experiments and described in
detail in Section 7.2, we maintain the load on the testbed
cluster below a certain threshold for generating varying load
conditions. To assess the quality of scheduling and resource
allocation decisions, we observe the number of jobs exceed-
ing deadlines and measure the relative deadlines exceeded.
The results are summarized in Table 4.

Load SLO # of jobs Average
threshold exceeded with Load (%)
for arrival (%) | utility (%) | missed SLOs
105 7.62 1 29.27
100 4.58 1 27.34
95 0 0 26.46
90 0 0 25.63
85 0 0 24.39

Table 4: Results of testbed workload execution.

We observe that a very few jobs miss their deadlines for
load threshold above 100% with relatively low numbers for
exceeded deadlines. We also measured the accuracy of job
completions with respect to the given jobs deadlines and ob-
serve that they range in between 5%-15%, which is slightly
worse than the simulation results, but close to our initial
evaluations presented in Figure 5. Average utilization mea-
sured in the testbed is very close to simulation results, that
further validates the accuracy of our simulator.

The performance overhead of the scheduling in ARIA is
negligible: it takes less than 1 second for scheduling 500 jobs
on our 66 node cluster. Likewise, the logging/accounting
infrastructure is enabled by default on production clusters
and can be used for generating job profiles.

We do not compare our new scheduler with any other
existing schedulers for Hadoop or proposed in literature, be-
cause all these schedulers have very different objective func-
tions for making scheduling decisions. For example, it would
not be useful to compare our scheduler with the Hadoop Fair
Scheduler (HFS) [21] because HF'S aims to support a fair re-
source allocation across the running jobs and does not pro-
vide the targeted resource allocations for meeting the jobs
SLOs. As a result, the HFS scheduler might have a high
number of jobs with missed deadlines and arbitrarily high
SLO-exceeded utility function.

8. RELATED WORK

Job scheduling and workload management in MapReduce
environments is a new topic, but it has already received
much attention. Originally, MapReduce (and its open source
implementation Hadoop) was designed for periodically run-
ning large batch workloads. With a primary goal of mini-
mizing the makespan of these jobs the simple FIFO sched-
uler (initially used in these frameworks) is very efficient. As
the number of users sharing the same MapReduce cluster
increased, a new Capacity scheduler [2] was introduced to
support more efficient cluster sharing. Capacity scheduler
partitions the resources into pools and provides separate
queues and priorities for each pool. However, within the
pools, there are no additional capabilities for performance
management of the jobs.

In order to maintain fairness between different users, the
Hadoop Fair Scheduler (HFS) [21] was proposed. It allocates
equal shares to each of the users running the MapReduce
jobs, and also tries to maximize data locality by delaying the
scheduling of the task, if no local data is available. Similar
fairness and data locality goals are pursued in Quincy sched-
uler [8] proposed for the Dryad environment [7]. The au-
thors design a novel technique that maps the fair-scheduling
problem to the classic problem of min-cost flow in a directed
graph to generate a schedule. While both HFS and Quincy
allow fair sharing of the cluster among multiple users and
their applications, these schedulers do not provide any spe-
cial support for achieving the application performance goals
and the service level objectives (SLOs).

FLEX [20] extends HFS by proposing a special slot allo-
cation schema that aims to optimize explicitly some given
scheduling metric. FLEX relies on the speedup function of
the job (for map and reduce stages) that produces the job
execution time as a function of the allocated slots. This
function aims to represent the application model, but it is
not clear how to derive this function for different applica-
tions and for different sizes of input datasets. FLEX does
not provide a technique for job profiling and detailed Map-
Reduce performance model, but instead uses a set of simpli-
fying assumptions about the job execution, tasks durations
and job progress over time. The authors do not offer a case
study to evaluate the accuracy of the proposed approach and
models in achieving the targeted job deadlines.

Dynamic proportional share scheduler [17] allows users to
bid for map and reduce slots by adjusting their spending
over time. While this approach enables dynamically con-
trolled resource allocation, it is driven by economic mecha-
nisms rather than a performance model and/or application
profiling. Polo et al. [16] introduce an online job completion
time estimator which can be used for adjusting the resource
allocations of different jobs. However, their estimator tracks
the progress of the map stage alone and has no information
or control over the reduce stage. Ganapathi et al. [4] use
Kernel Canonical Correlation Analysis to predict the perfor-
mance of MapReduce workloads. However, they concentrate
on Hive queries and do not attempt to model the actual ex-
ecution of the MapReduce job. The authors discover the
feature vectors through statistical correlation.

Morton et al. [14] propose ParaTimer for estimating the
progress of parallel queries expressed as Pig scripts that can
translate into directed acyclic graphs (DAGs) of MapReduce
jobs. Instead of detailed job profiling that is designed in our
work, the authors rely on earlier debug runs of the query
for estimating throughput of map and reduce stages on the
user input data samples. The approach relies on a simplis-



tic assumption that map (reduce) tasks of the same job have
the same duration. It is not clear how the authors measure
the duration of reduce tasks (what phases of the reduce task
are included in the measured duration), especially since the
reduce task durations of the first wave and later waves are
very different. Usage of the FIFO scheduler limits the ap-
proach applicability for progress estimation of multiple jobs
running in the cluster with a different Hadoop scheduler.

Phan et al. [15] aim to build an off-line optimal schedule
for a set of MapReduce jobs with given deadlines by detailed
task ordering of these jobs. The scheduling problem is for-
mulated as a constraint satisfaction problem (CSP). The
authors assume that every (map or reduce) task duration of
every job is known in advance. MapReduce jobs with a sin-
gle map and reduce waves are considered. There are some
other simplifications in MapReduce job processing where the
data transfer (shuffle and sort) is considered as a separate
(intermediate) phase between map and reduce tasks while
in reality the shuffle phase overlaps significantly with map
stage. All these assumptions and the CSP complexity issues
make it difficult to generalize the proposed approach.

Originally, Hadoop was designed for homogeneous envi-
ronment. There has been recent interest [22] in heteroge-
neous MapReduce environments. Our approach and the pro-
posed SLO-scheduler will efficiently work in heterogeneous
MapReduce environments. In a heterogeneous cluster, the
slower nodes would be reflected in the longer tasks durations,
and they all would contribute to the average and maximum
task durations in the job profile. While we do not explic-
itly consider different types of nodes, their performance is
reflected in the job profile and used in the future prediction.
As the job progresses, the resource allocations are recom-
puted during the job’s execution and adjusted if necessary.
So if occasionally, the job was assigned a higher percentage
of slots residing on the slower nodes then the scheduler com-
pensates for the bad performance and slower job progress
by adding extra slots for processing. This is a very powerful
feature of our scheduler that can increase resource alloca-
tion if the job execution progress is behind the targeted and
expected one. So, while we did not explicitly target the het-
erogeneous environment, our approach will efficiently work
in heterogeneous Hadoop clusters as well.

Much of the recent work also focuses on anomaly detec-
tion, stragglers and outliers control in MapReduce environ-
ments [11, 18, 1] as well as on optimization and tuning clus-
ter parameters and testbed configuration [6, 9]. While this
work is orthogonal to our research, these results are impor-
tant for performance modeling in MapReduce environments.
Providing more reliable, well performing, balanced environ-
ment enables reproducible results, consistent job executions
and supports more accurate performance modeling.

9. CONCLUSION

In the enterprise setting, sharing a MapReduce cluster
among multiple applications is a common practice. Many
of these applications need to achieve performance goals and
SLOs, that are formulated as the completion time guaran-
tees. In this work, we propose a novel framework ARIA to
address this problem. It is based on the observation that
we can profile a job that runs routinely and then use its
profile in the designed MapReduce performance model to
estimate the amount of resources required for meeting the
deadline. These resource requirements are enforced by the
SLO-scheduler. Our current job ordering is inspired by the
EDF scheduling which is a “champion” policy for real-time
processing. However, the deadline scheduling in MapReduce

environments has a few significant and interesting distinc-
tions as compared to the traditional assumptions. Map-
Reduce job execution time depends on the amount of map
and reduce slots allocated to the job over time. One can
“speed-up” the job completion by increasing the resource al-
location and it can be done during both map and reduce
stages. This creates new opportunities for different schedul-
ing policies and their performance comparison.

The proposed performance model is designed for the case
without node failures. The next step is to extend this perfor-
mance model for incorporating different failure scenarios and
estimating their impact on the application performance and
achievable “degraded” SLOs. We intend for apply designed
models for solving a broad set of problems related to capac-
ity planning of MapReduce applications and the analysis of
various resource allocation trade-offs in the SLOs support.
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