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Abstract—Hadoop enables high productivity in the develop-
ment of MapReduce applications. However, Hadoop becomes
less effective the further an application’s natural pattern of
computation is from MapReduce. This paper presents Clus-
terken, a reliable, object-based messaging framework to support
data-center-based applications. Clusterken provides object-level
virtual cluster management, exactly-once message processing,
composable reliability, output validity, and authorization based
access control. Together, these features simplify programming
and improve productivity on distributed applications by enabling
arbitrary interaction patterns. We compare two implementations
of a specification for a publication/subscription system, one
in Hadoop, the other in Clusterken. The comparison suggests
that, for at least this one application, Clusterken can yield a
fourfold increase in programmer productivity. Keywords: reliable
object-based messaging, composable reliability, virtual cluster
management, output validity, authorization-based access control,
publication/subscription

I. INTRODUCTION

Hadoop [1] is very effective for developing applications
that naturally transform into MapReduce problems that can be
expressed with a spawn/gather distributed interaction pattern.
For such programs Hadoop is used primarily as a MapRe-
duce [10] job scheduler with automated restart, along with its
reliable file system HDFS to hold both the input and output
of the MapReduce job. However, the limitations of supporting
only one, fixed distributed interaction pattern quickly become
apparent as one explores applications for which spawn/gather
is less natural. Some alternative patterns, such as stream-based
dataflow processing that requires nodes to synchronously
interact with each other, are so self evidently important that
they have inspired development of point solutions based on
Hadoop [9]. However, it is unlikely that this approach will
ever allow the expression of the wide variety of patterns of
computation needed for general purpose, data center comput-
ing.

One kind of application that does not fit neatly into the
spawn/gather framework is publication/subscription. While
details vary, the common foundation is a set of topics for
which there may be publishers who add events to a topic, and
subscribers who see the events for the topic; the topic will
often also maintain an archive of events that can be viewed
by late subscribers. A way to use Hadoop for this problem is to
run the system as a series of batches: collect all the published
events for a (heuristically chosen) period of time, and process
that batch to deliver the events to their respective topic archives

and subscribers. There are several problems, starting with
the fact that Hadoop is basically a batch-oriented application
execution engine, whereas the problem has a streaming flavor.

This paper presents Clusterken, which is a reliable object-
based messaging framework to support data-center-based dis-
tributed applications. Clusterken provides object-level virtual
cluster management, exactly-once message processing, com-
posable reliability, output validity, and authorization based
access control. Together, these features simplify user program-
ming and improve productivity on distributed processing by
enabling arbitrary interaction patterns. To demonstrate, we
compare productivity when implementing a pub/sub system
using Hadoop (with HBase [2] as the data store) versus in
Clusterken. The comparison suggests that, for at least this
one application, Clusterken can yield a fourfold increase in
productivity.

II. OVERVIEW OF CLUSTERKEN

A. Waterken Underpinnings

Clusterken is based on the Waterken distributed program-
ming platform [8], which delivers several features that benefit
the cluster programmer:

1) The vat is the basic unit of concurrency in Waterken.
Vats are lightweight containers that interact with other
vats only by exchanging non-blocking messages. A
single vat may contain many objects; a single server
may contain many vats.

2) Promises [15], [16] are used to deliver answers during
cross-vat communication. The application programmer
performs ordinary-looking object invocations to send
messages between objects in different vats. The sender
immediately acquires a local promise for the result and
goes on to the next statement for execution without being
blocked waiting for the result. Since the type of the
object that will be returned is known, it is possible to
invoke methods on a promised object even before the
promise resolves. Observers can be set on a promise
that will fire upon resolution. The vat never blocks or
waits for a promise fulfillment.

3) Turn based checkpointing is performed transparently on
a per-vat basis. Each vat has a single thread for executing
application code, a queue of incoming messages for
each source, and a queue of outgoing messages for each



destination. Computation in a vat begins by removing
a message from one of the incoming queues, and it
continues until the method invoked by the message has
computed the answer to be returned. At that time, the
Waterken infrastructure automatically checkpoints the
state of any changed objects, the value to be returned,
and the outgoing message queues as a single atomic
transaction [21]. The outgoing messages and return
value are released to the network only when the check-
point is complete, giving the system the advantages of
checkpoint-on-send [6] without requiring a checkpoint
for each send. A turn is the interval from the delivery
of the message to the target object to the completion of
the checkpoint.

4) Exactly once message processing is enforced in conjunc-
tion with the turn based checkpointing. Each outgoing
message is resent by the infrastructure until receipt of an
acknowledgment from the recipient denoting completion
of the checkpoint from processing the message. The
message contains an identifier so that the recipient’s
infrastructure can distinguish a duplicate message, in
which case the already-computed answer is immediately
returned without processing the message a second time.

5) Webkeys [20] embody object references for messages
crossing the network. Webkeys are specially formulated
urls that authenticate the receiver, authorize the sender,
and encrypt the channel. They enable easy enforcement
of authorization based access control [14].

6) The redirectory system allows a Waterken server find
another server to which it needs to send messages even
when the recipient moves between nodes. Hence, a vat
on a failed node can be relaunched on any node and
the system will transparently reconnect objects that have
references to one another.

Each of these features has important implications for pro-
ductive programming of data center applications.

Direct invocation of remote objects and the ability to invoke
methods on unresolved promises means that much of the code
looks sequential [22]. Since an object can only invoke objects
to which it has references, and the references are represented
over the wire as unguessable webkeys, access is effectively
controlled by limiting which objects get references to which
other objects.

Non-blocking messages preclude deadlock. No other appli-
cation activity occurs in a vat while it is processing a single
message. Hence, there is no plan interference [17], and there
are no fine grain data races. Parallelism comes from spawning
more vats on each cluster machine.

Since reliable checkpointing and message delivery are trans-
parent, the programmer need write no code to handle exception
conditions caused by server crashes or network partitions.
Since the checkpoints are local and independent, the program
is not constrained to be fully deterministic.

Integrating the checkpointing with the messaging ensures
output validity [13]: regardless of system failures, any state
the system arrives at is a state that the system could have

arrived at if different messages had simply been processed
more slowly and possibly in different order.

Output validity as implemented in Waterken extends across
subsystems to yield composable reliability: two independently
written subsystems of vats have the same reliability properties
when they interact as they do when executing separately [13].

The most recent checkpoints of all the vats represents a
recovery line, which improves scalability because no coordi-
nation is needed for either checkpoint or recovery.

B. Clusterken Enhancements

Waterken provides a framework to support object-based
reliable messaging. However, in a cluster programming envi-
ronment, further infrastructure support is required to connect
machine nodes to form a processing network, to specify how
application code will be hosted in each node within this
network, to monitor and respond to runtime node failure, and
to balance the processing loads on the nodes. To meet such
needs, we have built an additional layer of abstraction on top
of Waterken, which we call Clusterken.

To enable the application to create and connect all its objects
and vats throughout the cluster, Clusterken offers an object-
level interface for the authorized nodes. Clusterken provides
a means to define separately controllable virtual clusters
(Figure 1). A virtual cluster is the subset of nodes on which
an application (or application subsystem) has been granted
execution privileges. These virtual clusters are lightweight,
easy to create, easy to use, and easy to revoke. Both subclusters
(with fewer nodes) and superclusters (composed by aggre-
gating other virtual subclusters, possibly taken from multiple
hardware clusters) can be manufactured.

In the basic layout, each OS instance (a hardware node or a
virtual machine) has a Primary vatmaker; these primaries are
linked to each other to form the root virtual cluster. Given a
(webkey) reference to any vatmaker in a virtual cluster, one
may create new vats on any OS instance in that virtual cluster.
One may also manufacture a new, separately-revocable virtual
subcluster with vatmakers on any subset of the parent virtual
cluster. The system supports full rich sharing [19], allowing
the delegation of the authority to make attenuated delegations,
shifting the bulk of the administrative burden from the IT
administration staff to the project managers who have local
knowledge of which people and which applications need what
resources. In a simple scenario, the administrator with access
to the primary vatmakers could create a new virtual subcluster
for the pub/sub product owner, who would then create one new
virtual subcluster for the prototype pub/sub system. He would
share the webkey to the subcluster with all the people on the
product team, allowing those people to spawn vats on any of
those hosts by specifying the root class of the code to be run.
One revokes the subcluster when the prototype is no longer
needed.

The Clusterken API allows objects to create new vats con-
taining new objects on any node included in the application’s
virtual cluster. Arbitrary distributed interaction patterns are
easily built with this facility. It takes 14 lines of code to set



Fig. 1. The administrator starts with four Vat Makers running on four hosts,
either physical or virtual. Three of these Vat Makers are cloned to create a
Virtual Cluster for the Product Owner, who in turn creates a Virtual Cluster
consisting of two Vat Makers, and gives a webkey to one of these Vat Makers
to the person responsible for managing the pub/sub prototype (the notation
3.1.1 denotes the subsubcluster’s Vat Maker on Node 3). Note that each Vat
Maker in a Virtual Cluster holds references to the other Vat Makers in the
same Virtual Cluster. Hence, anyone with a webkey to Vat Maker can create
vats on any of the hosts in the virtual cluster.

up a traditional spawn/gather pattern of interaction, and 16
lines of code to set up a streaming ring pattern. All objects
with interfaces exported from a vat can act as clients, servers,
and peers. Whereas Hadoop treats all nodes as stateless
compute resources, Clusterken vats are stateful. Consequently,
the strategy for reliability in the presence of failure is quite
different. With Hadoop, if a node ceases to respond promptly,
the Hadoop scheduler restarts the last assigned computation.
With Clusterken, a controller relaunches the nonresponsive vat
from its last checkpoint.

Clusterken also supplies other facilities for the cluster pro-
grammer. The FarFile API provides a reliable file system ab-
straction integrated with the checkpointing protocol. It allows
remote writes to a file, guarantees exactly-once appending to
the file, and implements authorization based access control.

III. PUBLICATION/SUBSCRIPTION SYSTEM

We have written a detailed specification for a scalable topic-
based publication/subscription system [11]. An administrative
facility is responsible for creating and deleting topics managed
in the system. The admin also grants and revokes publication
and subscription rights on a per-topic basis. At runtime, an
event is published to the associated topic. The system enforces
the event publication rights, matches the published event
against the user subscription table and generates a notification
list including the users that show interest in the events. The
system then delivers the notification reliably to the identified
users. Historical events and notification results are archived in
a persistent store for auditing purposes.

This specification (minus the access control aspects) was
implemented using Hadoop MapReduce, with HBase as the
persistent data store for events, topics, user subscriptions and

intermediate user notification results. In this implementation,
events published within a time window (say, 20 seconds)
are buffered, and then become the input to the MapReduce
job, which is basically the table join between the event table
represented as 〈event, topic〉 and the user subscription table
〈user, subscription〉 , and produces the user notification table
〈user, notification〉. There is a second Map/Reduce job to
distribute the notification messages to the designated users
reliably (via multiple retries in case failures occur). These two
MapReduce jobs run concurrently and independently, with the
second job taking the output of the first job as its input. We
chose the Hadoop Fair Scheduler to schedule these two jobs.

We have built a similar scalable system in Clusterken that
meets the same specification.

IV. IMPLEMENTING PUB/SUB IN CLUSTERKEN

The Clusterken implementation of the pub/sub system is
an object-oriented system in which the objects generally
correspond to the objects in the conceptual system (see Figure
2). Except as otherwise noted, an object of any of these types
resides in its own vat, and these vats are distributed across all
the nodes in the cluster.

Fig. 2. A minimal Clusterken pub/sub system with one topic, one publisher,
and one subscriber (multiple subscriptions are shown, going to other sub-
scribers). Each square box represents a separate vat. These vats are distributed
randomly across the nodes of the cluster. The Admin object holds references
to everything that is separately revocable. The Admin object also holds a
reference to a VatMaker on the virtual cluster (not shown), with which it can
manufacture new vats on any node to add new pub/sub objects.

An EventReceiver object gives one publisher authority to
publish events to one topic. The EventReceiver, upon receiving
an event from its publisher, checkpoints the event along with
the message that sends the event to the Topic. Since the
publisher is outside the Clusterken system of composable
reliability, special handling is needed for event submission
failures. Consequently, if the publisher loses the connection to
the EventReceiver during submission of an event, the publisher
can retrieve the most recent successfully submitted event to
see where publication left off; the publisher handles failed
submissions according to the publisher’s recovery scheme. (If
the publisher is a person, he would look to see if the last
successful submission was the last one he tried to submit.)

The Topic object is the central receiver and distributor of
events for a single topic. Each topic resides in its own vat,
and the Topic objects are distributed across all the nodes in
the cluster. Every EventReceiver for the topic holds a remote



reference to the Topic. Each Topic holds references to a FarFile
(acting as an archive) and to each Subscription to the topic
from a SubscriberAgent.

Each Subscription object gives one subscriber access to
the events flowing through one Topic. The Subscriptions are
collocated in the vat with their Topic. When an event arrives
at a Topic, it notifies all the Subscriptions, each of which
forwards the event to its respective Batcher/SubscriberAgent
pair. Being collocated with the Topic, no communication or
checkpoints are needed for the subscription notification. The
messages to all the Batcher/SubscriberAgents are collected
during a single turn, and there is a single checkpoint performed
after notifying all the Subscriptions. That checkpoint holds the
messages to all the Batchers.

A FarFile is used directly as the archive for the topic. To
give an entity read access to the archive, one hands over a
separately revocable read-only FarFile webkey.

The Batcher and SubscriberAgent represent the subscriber
in the system. Events from all the Topics to which the
subscriber has subscriptions are sent to the Batcher, which
delivers them to the SubscriberAgent when there are enough
events to form a batch.

There is one Admin object whose webkey is given only to
the system administrator. The Admin object allows the admin-
istrator to add and remove Topics, EventReceivers, individual
Subscriptions, and Batcher/SubscriberAgents.

In the Clusterken pub/sub system all the data (except the
FarFile archive) is stored implicitly and automatically as part
of the vat checkpoints.

The object-level virtual cluster management system enables
easy distribution of vats across the cluster as new topics,
publishers, and subscribers were added. A newly created object
(such as a new EventReceiver or a new Topic in the pub/sub
application) is assigned to a new vat on a randomly selected
node in the virtual cluster, distributing the new vats smoothly
across the cluster.

V. PRODUCTIVITY COMPARISON TO THE HADOOP-BASED
IMPLEMENTATION

Table I describes interesting differences between the fea-
tures and effort required for the Hadoop and Clusterken
implementations.

TABLE I
HADOOP VS. CLUSTERKEN

Key Features Hadoop Clusterken
Effort 9 weeks 1 week
Lines of Code 1527 394
Access Control No Yes
Node failure handling Automatic Manual
Reliable messaging Limited Automatic
Concurrent Processing Fair Scheduler Randomized Vats
Tuple Matching By table join Output Validity
Event Processing Batched Streamed
Real-time No Soft
Pipeline Processing No Yes

The Effort metric, while interesting, is distorted because
the Hadoop effort includes the time to design and formulate

the specification (for example, on how to conform to the
Amazon Simple Notification Service APIs). The Clusterken
effort started with the specification already defined. The Lines
of Code metric, which does not suffer the distortions of the
Effort metric, still suggests roughly a factor of four increase
in productivity during implementation of the application.

The Hadoop team did not have time to implement the
specified access control. The Clusterken team did. Access
control was achieved with almost no additional code by simply
managing the visibility of references. For example, a publisher
receives authority to publish events in a topic by being given
a webkey to an EventReceiver. The EventReceiver interface
exposed to the publisher has no method that returns its private
Topic reference to the publisher. Since webkeys authorizing
access to Topics are unguessable, the publisher has no way to
access to the Topic directly.

For fault tolerance on node failure, Hadoop used MapRe-
duce based node relocation and retry. The current prototype of
Clusterken requires manual detection of a nonperforming node
and manual relaunch of the vats on that node from their most
recent checkpoints, either by rebooting the stalled node or by
relaunching the associated Clusterken server on another node.
Future work includes automating Clusterken’s identification
and management of such failed nodes and vats.

Fault tolerance for inter-node messaging is limited in
Hadoop to checkpointing the output of the reducer, which can
be fed as the input to the mappers of the next staged job. This
was inadequate to reliably ensure correctness. If internal state
is modified within a Map or Reduce task execution, it is the
responsibility of the task to guarantee such state consistency
when the task is re-executed, which is not trivial to implement
in user-defined Map or Reduce tasks. For example, a node
failure during the movement of an event from the input event
queue to the archive event queue could result in event dupli-
cation because HBase has no transactional support that spans
multiple rows. With Clusterken’s output validity guarantees,
the moment an event was checkpointed in the Event Receiver,
it was guaranteed that the event would (eventually) appear
exactly once in the archive and in each subscriber’s list.

Hadoop used its Fair Scheduler for concurrency. In Clus-
terken, the concurrency is achieved by distributing the con-
current vats for individual EventReceivers, Topics, FarFile
archives, and SubscriberAgents at random across the cluster.

Event Processing was handled in batches by the Hadoop
system. In Clusterken, when an event came in, it was imme-
diately checkpointed and began to stream through the system.

The batching of events meant that Hadoop could not op-
erate as a real time system. Clusterken’s operation could be
thought of as a soft real-time system. On a moderately loaded
Clusterken pub/sub system with a subscriber batch size of 1,
the time from input of an event by a publisher to delivery to
a subscriber was measured to take about 0.4s.

Pipelining with Hadoop could only be simulated via cas-
caded Hadoop jobs. In Clusterken pipelining was continuous,
built into the Clusterken fabric. With true pipelining, stream
processing is enabled. A new event can be received by the



EventReceiver stage while simultaneously an earlier event is
being processed at the topic matching stage.

VI. RELATED WORK

SpringSource [4], a large ad hoc collection of tools for
programming cloud services, includes the RabbitMQ [3] reli-
able messaging system. RabbitMQ follows the AMQP pro-
tocol [5]. RabbitMQ guarantees delivery of messages sent
through its queues. Messages and acknowledgments can be
grouped into transactions. However, RabbitMQ is strictly a
message handling system, and is not transactionally integrated
with the sender’s checkpoint. If RabbitMQ sends a message,
and the sender crashes before its next checkpoint succeeds,
a relaunch of the sender from its prior checkpoint will send
an identical message that RabbitMQ is unable to recognize as
a duplicate. Hence, while RabbitMQ guarantees at least once
delivery, it cannot guarantee exactly once delivery. RabbitMQ
does not implement output validity, which requires an atomic
checkpoint of server state and outgoing messages.

MapReduce Online [9] is an attempt to modify the batch-
oriented Hadoop MapReduce to support continuous query
and stream processing. It changes the communication pattern
between the Map tasks and the Reducer tasks such that the
Map task pushes the processing results to the corresponding
Reducer task. In the traditional MapReduce, a Reducer task
pulls the corresponding Map task’s processing results. How-
ever, due to MapReduce’s intrinsic nature, wherein a Reducer
cannot produce its final results until all the involved Map
tasks have completed and delivered their results to the Reducer
tasks, MapReduce Online is only effective in certain categories
of data processing. One such category is online aggregation, in
which the Reducer tasks can continuously make progress on
the incomplete data from the Map tasks. In contrast, Clus-
terken’s support of arbitrary distributed interaction patterns
means there is no such data dependency constraint.

With respect to parallel data processing, Microsoft
Dryad [12] allows a general data flow processing network to be
described and executed on a machine cluster, making it more
flexible than Hadoop. Like Hadoop, Dryad only supports batch
processing without reliable messaging support for inter-node
communication. Nephele [7] is more focused on a parallel
data flow processing network associated with parallel database
queries. Similar to Dryad and Hadoop, it is batch-oriented.
Little in the way of fault tolerance has been developed for its
runtime support. Flux proposes a fault tolerance architecture
based on primary/secondary nodes to allow reliable execution
of parallel query operations on each node [18].

VII. CONCLUSION

We have built a well-specified publication/subscription sys-
tem twice, once using Hadoop and once using Clusterken.
Comparing the two, there are a number of interesting differ-
ences. In particular, the Clusterken version

1) is streaming, while the Hadoop version is batch oriented,
2) needed one fourth the number of lines of code,
3) implemented the specified access controls, and

4) provided higher reliability, for example, avoiding event
duplication.

Hadoop and Clusterken have very different performance
characteristics, which become more important when we take
failures into account. We plan to do performance studies to
quantify these differences. Also, the MapReduce paradigm is
of limited expressiveness, so it is harder for programmers
to write alternate versions of the program with different
performance characteristics. That’s not the case for Clusterken.
It’s not clear that the most direct way to write a program results
in adequate performance. We plan to explore such issues.

Clusterken is missing a component comparable to the
Hadoop scheduler, so we are making that a priority for our
next version. While the Hadoop scheduler assumes that a node
is dead if it doesnt respond in a timely manner, we have more
flexibility with Clusterken. For example, it is simple to restart
a vat following a process crash or even an OS panic. More
problematic are hardware failures, because we need access to
the vats persistent checkpoint. One solution, using a shared
file system, may have unacceptably high latency, so we plan
to look at other approaches, such as dual ported disks.
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