

Keyword(s):

Abstract:

Artifact-Centric Business Process Synthesis Framework Using Discrete Event
Systems Theory
Yin Wang, Ahmed Nazeem

HP Laboratories
HPL-2011-40

Business Process Synthesis, Service Composition, Artifact, Supervisory Control, Discrete Event Systems

Artifact-centric design principle promotes business artifacts to the central role. Services in an artifact
system are operations that change the state of these artifacts. A business rule specifies a condition to invoke
a service, and a set of rules form a business process. Analogous to the service composition problem in
Service Oriented Architecture, one can synthesize an artifact-centric process automatically from a given set
of artifacts and services. However, handling uncontrollable events such as user behavior and conditional
effects is a challenge. With a few exceptions that target at specific models, existing composition algorithms
either assume deterministic outcome of uncontrollable events, or use the execution monitoring and
replanning technique. Replanning may be late and miss the opportunity to achieve the goal. In this paper,
we introduce a branch of control theory, called Discrete Event Systems (DES) theory, for process synthesis.
This theory applies discrete state space models such as automata and Petri nets. The objective is to
synthesize the control logic that achieves a given specification. With automaton model, the control logic is
represented by state-action pairs that closely resemble rules in artifact systems. While planning techniques
are usually optimistic in the sense that they search for the optimal path to achieve the goal, DES theory
considers all possible paths and tries to guarantee the specification under the worst sequence of
uncontrollable events. We use Google Checkout Service to illustrate our process synthesis technique.

External Posting Date: April 6, 2011 [Fulltext] Approved for External Publication
Internal Posting Date: April 6, 2011 [Fulltext]

Copyright 2011 Hewlett-Packard Development Company, L.P.

Artifact-Centric Business Process Synthesis

Framework Using Discrete Event Systems Theory

Yin Wang1 and Ahmed Nazeem2

1 Hewlett-Packard Labs, Palo Alto
2 Georgia Institute of Technology, Atlanta

Abstract. Artifact-centric design principle promotes business artifacts

to the central role. Services in an artifact system are operations that

change the state of these artifacts. A business rule speci�es a condition

to invoke a service, and a set of rules form a business process. Analogous

to the service composition problem in Service Oriented Architecture, one

can synthesize an artifact-centric process automatically from a given set

of artifacts and services. However, handling uncontrollable events such

as user behavior and conditional e�ects is a challenge. With a few ex-

ceptions that target at speci�c models, existing composition algorithms

either assume deterministic outcome of uncontrollable events, or use the

execution monitoring and replanning technique. Replanning may be late

and miss the opportunity to achieve the goal. In this paper, we introduce

a branch of control theory, called Discrete Event Systems (DES) theory,

for process synthesis. This theory applies discrete state space models such

as automata and Petri nets. The objective is to synthesize the control

logic that achieves a given speci�cation. With automaton model, the con-

trol logic is represented by state-action pairs that closely resemble rules

in artifact systems. While planning techniques are usually optimistic in

the sense that they search for the optimal path to achieve the goal, DES

theory considers all possible paths and tries to guarantee the speci�ca-

tion under the worst sequence of uncontrollable events. We use Google

Checkout Service to illustrate our process synthesis technique.

1 Introduction

The principle of artifact-centric business process model has received increas-
ing attention in the past decade [6, 11, 21, 8]. The formal de�nition has been
proposed [6] and the principle has been applied to business processes in large
enterprises [10]. An artifact system consists of artifacts, services, and business
rules. Artifacts are data objects with states and attributes. Services are oper-
ations that change these states and attributes. The semantics of services are
typically described by preconditions and e�ects that are logic formulae over the
states and attributes. Business rules specify the conditions on which the services
are invoked. A set of rules de�ne an artifact-centric business process. Given a set
of artifacts and services, without or with an incomplete set of rules, we want to
automatically derive the full set of rules to achieve a given goal. This is referred

to as the business process synthesis problem [11]. In the Service-Oriented Ar-
chitecture, this problem is closely related to the concept of service composition,
which is heavily investigated [23, 7, 4, 3, 22, 27].

Usually the service composition problem takes as input a set of services and
a composition goal. The outcome is a composite of services that satis�es the
goal. The composite organizes services into control �ow structures, typically
in the form of a work�ow. A fully automated service composition approach
needs a formal model that captures the service semantics. This model restricts
the choice of composition algorithms. Since there is no standard service model
widely adopted in practice, a large variety of service composition algorithms
exist. These algorithms can be largely divided into input/output model based,
precondition/e�ect model based, and stateful model based [34]. The increasing
popularity of the artifact-centric model could lead to the convergence of service
modeling and composition methods. The goal of this paper is to propose a process
synthesis framework for the artifact model.

Considerable amount of service composition work under precondition/e�ect
models exist [23, 3, 22], and planning is a popular solution [24]. Planning algo-
rithms usually search for one solution to achieve the goal, based on optimization
criteria such as shortest path. In the presence of uncontrollable events such as
user behavior or conditional e�ects, planning typically resorts to the execution
monitoring and replanning mechanism. Replanning may be too late as the path
chosen at the beginning is usually optimistic. Alternatively, one can examine all
possible paths and synthesize a safe process that guarantees reaching the goal.
This problem has been addressed under speci�c models, e.g., game-structure
model checking for �Roman Model� [15], and customized control synthesis algo-
rithms for open work�ow Petri nets [2]. The problem has also been studied under
the artifact model recently [11]. In this paper, we introduce Discrete Event Sys-
tems theory [9] to address this problem and propose an artifact-centric process
synthesis framework.

Discrete Event Systems (DES) is a branch of control theory developed since
the early 1980s. While classical control theory uses di�erential equations to model
system dynamics, the theory of DES addresses systems with discrete state spaces
and event driven dynamics. Popular DES modeling formalisms include automata
and Petri nets. The control principle in DES is the same as in traditional control
theory. First we model the system to be controlled as an automaton or a Petri net.
The control speci�cation is given in accordance to the model, e.g., regular expres-
sions for automata or bad markings for Petri nets. The control synthesis step
calculates the control logic to achieve the speci�cation. Under the automaton
model, the control logic is speci�ed as state-action pairs, which closely resemble
business rules in the artifact model. The runtime execution utilizes the classical
observe-action loop to guide the system. Recently, DES control theory has been
successfully applied to the safe execution of possibly �awed work�ows [32], and
deadlock avoidance in multithreaded programs [31, 33].

Comparing with ad-hoc composition methods, business process synthesis us-
ing DES theory has many bene�ts. First, the synthesis result is correct by con-

struction. If the goal cannot be achieved, the violation path is generated. Sec-
ond, the synthesized process is maximal permissiveness in the sense that it does
not restrict the system behavior unless absolutely necessary. Third, as a model-
based approach, control synthesis addresses changing business requirements au-
tomatically by new control speci�cations. Finally, existing business rules can be
modeled as control speci�cations. Therefore, as byproduct, our control synthesis
algorithm can analyze artifact systems and verify properties such as reachabil-
ity and deadlock freedom. DES theory also handles partial observability and
decentralized control, which we brie�y discuss in this paper.

We make the following contributions in this paper: i) the systematic intro-
duction of the DES theory to the business process synthesis problem, ii) the
development of a business process synthesis framework and the entire proce-
dure, iii) the conversion of Google Checkout Service (GCS) into artifact models,
iv) demonstration of the applicability of our framework using the GCS example,
and v) a preliminary implementation of the framework in the Web2Exchange
platform [30].

The rest of this paper is organized as follows. Section 2 introduces the artifact-
centric model and the DES control theory. Section 3 models GCS using the
artifact-centric model. Section 4 develops the process synthesis framework and
procedure, using GCS as a running example. Section 5 introduces other capabil-
ities of DES theory that are relevant to the process synthesis problem. Section 6
discusses related work and Section 7 concludes the paper with a summary.

2 Background

This section introduces a simpli�ed artifact-centric models, automaton compo-
sition operations, and the speci�c DES theory we exploit in this paper, called
Supervisory Control Theory.

2.1 Artifact-Centric Model

We present a simpli�ed artifact-centric model here, based on the de�nition intro-
duced in [6]. Notably, we do not include states in the artifact de�nition. Instead
we use enum type attribute to capture states. This allows multiple enum attributes
in one artifact. In accordance with this simpli�cation, we allow attribute value
checking and value assignment in preconditions and e�ects. But business rules
cannot change the value of attributes. In addition, we aggregate the read and
write sets into one access set for services.

Our type system consists of primitive types Tp that includes the enumeration
type, and C of artifact class types. A type is an element in the union T = Tp∪C,
and the domain of each type t ∈ T is dom(t). We denote attribute set by A,
and the identi�er for each class C ∈ C by idC .

De�nition 1. (artifact) An artifact class is a tuple (C,A, τ) where C ∈ C is a
class type, A ⊆ A is a �nite set of attributes, τ : A→ T is a total mapping. An

artifact object of class (C,A, τ) is a pair (o, u) where o ∈idC is an identi�er,
and u is a partial mapping that assigns each attribute A ∈ A an element in its
domain dom(τ(A)).

An attribute A of an artifact object x is referenced as x.A.

De�nition 2. (schema) A schema is a �nite set Γ of artifact classes with dis-
tinct names such that every class referenced in Γ also occurs in Γ .

We de�ne the set of terms over a schema Γ to be: i) objects of classes in Γ , and
ii) x.A where x is a term and A is an attribute.

De�nition 3. (atom) An atom over a schema Γ is one of the following:

1. t1 = t2, where t1, t2 are terms in Γ ,
2. def(t.A), where t is a term in Γ and A an attribute,
3. new(t.A), where t is a term in Γ and A an artifact typed attribute, and
4. t.A = val, where val ∈ dom(τ(t.A)) is a value for the term t.A.

A condition over Γ is a conjunction of atoms and negated atoms, whereas an
e�ect is a set of conditions that describe di�erent conditional outcome.

De�nition 4. (service) A service s over a schema Γ is a tuple (n, V, P,E) where
n is the service name, V is the �nite set of variables of classes in Γ , P is a
condition over Γ that does not contain the atom new and E is the e�ect.

Various semantics exist for the precondition/e�ect service model. We adopt
the semantics de�ned in [6] and omit the discussion here. Notably, the semantics
are not fully consistent with the OWL-S standard. However, these discrepancies
are technicalities that a�ect only the modeling. As long as we can translate the
semantics into automaton model, our process synthesis algorithm can proceed.

De�nition 5. (artifact system) An artifact system is a triple (Γ , S, R), where
Γ is a schema, S is a set of services over Γ , and R is a set of business rules. A
business rule is a pair of a condition and a service over Γ . The service is invoked
if the condition is true.

2.2 Automaton Model and Composition Operations

We model the system to be controlled as an automaton G = (X,E, f, x0, Xm),
where X is the set of states, E is the set of event labels, partial function
f : X × E → X is the transition function, x0 is the initial state, and Xm is
the set of terminal states. We denote the regular language generated by G as
L(G), and the language marked by G is Lm(G); namely, Lm(G) consists of those
strings in L(G) that end at a state in Xm. Event set E is partitioned into con-
trollable and uncontrollable events E = Ec ∪ Euc. Controllable events can be
prevented or postponed at run time, but uncontrollable ones cannot. Examples
of controllable events include charging a credit card. On the other hand, the
outcome of the charging action should be modeled as uncontrollable events, e.g.,
successful charge or invalid card number.

Two automaton composition operations are relevant to our discussion.

De�nition 6. (product) The product of automata G1 = (X1, E1, f1, x01, Xm1)
and G2 = (X2, E2, f2, x02, Xm2) is an automaton G1 ×G2 := (X1 ×X2, E1 ∩
E2, f , (x01, x02), Xm1 ×Xm2)

f((x1, x2), e) :=

{
(f1(x1, e), f2(x2, e)) if both are de�ned
unde�ned otherwise

We have L(G1 ×G2) = L(G1) ∩ L(G2) and Lm(G1 ×G2) = Lm(G1) ∩ Lm(G2).

De�nition 7. (parallel composition) The parallel composition of automata G1

and G2 is an automaton G1||G2 := (X1×X2, E1 ∪E2, f, (x01, x02), Xm1×Xm2)

f((x1, x2), e) :=

(f1(x1, e), x2) if f1(x1, e) is de�ned and e /∈ E2

(x1, f2(x2, e)) if f2(x2, e) is de�ned and e /∈ E1

(f1(x1, e), f2(x2, e)) if both are de�ned
unde�ned otherwise

The above de�nitions extend to more than two automata in a natural way.

2.3 Supervisory Control Theory

Supervisory control theory (SCT) is a branch of DES control theory that deals
with systems modeled as �nite state automata and control speci�cations ex-
pressed as regular languages. It was originally proposed in the 1980s [26] and
has been thoroughly studied and extended in the past three decades. This section
outlines the theory and discusses its capabilities that we exploit in this paper;
see [9] for a more detailed exposition of SCT.

A supervisor S of G is a function S : L(G) → 2E , i.e., S maps a string in L(G)
to a set of events to be disabled. These events must be de�ned by f and must
not include any uncontrollable events. Following the control logic of S, we get
a sublanguage of L(G), denoted as L(S/G). We call S/G the controlled system.
The set of marked strings that survive in the controlled system is L(S/G)∩Lm(G)
and it is denoted by Lm(S/G).

In general, the control speci�cation is a regular language K ⊆ Lm(G) over
the event set E. The supervisory control problem is to �nd a supervisor S such
that Lm(S/G) = K and L(S/G) = K, where the overbar notation denotes
the operation of pre�x-closure over strings. This means that all strings of K
are achieved under control and that all strings in the controlled behavior can
be extended to a string in K; the latter condition is called the non-blocking
condition. Subject to the technical condition that K = K∩Lm(G), the necessary
and su�cient condition for the existence of the supervisor in the presence of
uncontrollable events is:

KEuc ∩ L(G) ⊆ K (1)

This condition means that if a string is allowed by both G and K, any extension
by uncontrollable events that are de�ned in G should be included in K, because
we cannot block any uncontrollable event. The speci�cation K is said to be
controllable if (1) is satis�ed.

Algorithm 1 Iterative control synthesis algorithm

Input: G = (X,E, f, x0, Xm) and speci�cation K represented by H = (Y,E, h, y0, Ym)
Output: supremal controllable non-blocking sublanguage K↑C

1: Let H0 := (Y0, E, h0, (y0, x0), (Ym ×Xm)) = H ×G, where Y0 ⊆ Y ×X
2: i = 0
3: repeat

4: i = i+ 1
5: Hi := (Yi, E, hi, (y0, x0), (Ym ×Xm)) = Hi−1

6: remove every state (y, x) ∈ Yi where f(x, e) is de�ned for some e ∈ Euc but

hi((y, x), e) is not de�ned
7: trim dead paths of Hi such that L(Hi) = Lm(Hi)
8: until Hi = Hi−1

9: K↑C = Lm(Hi)

If K is controllable, we construct the supervisor S as ∀σ ∈ L(G), S(σ) =
{e|e ∈ E, σe ∈ L(G) \ K}. If K is not controllable, we want to �nd the maximal
subset of K such that (1) is satis�ed. It can be shown that the maximal subset
is unique and computable. It is called the supremal controllable non-blocking
sublanguage ofK and denoted as K↑C . This sublanguage has four key properties:
(i) It satis�es (1) by construction and therefore it is achievable under control by
its corresponding supervisor. (ii) It does not prevent successful termination and
therefore it is non-blocking. (iii) It is maximally permissive, disabling transitions
only when necessary to satisfy the control speci�cation K. (iv) It is a regular
language. Next we describe the algorithm that computes this language.

The control synthesis algorithm is an iterative process. Algorithm 1 illustrates
this process. We start with the product automaton H0 for automaton G and
control speci�cation K represented by automaton H, where L(H) = K and
Lm(H) = K. The product operation allows mapping of states of H to those of
G. The subsequent iterative process prunes H0 until it is both controllable and
non-blocking.

Controllability, as stated in (1), is satis�ed at Step 6. If some uncontrollable
transition is present in G but it is not permitted by K, the corresponding state
in the product automaton must be removed as we cannot prevent it from �ring
and therefore violating the speci�cation K. Once we remove these states, some
other states in the product automaton may no longer reach any terminal state.
Therefore we further trim the automaton in Step 7. Similarly, trimming the
automaton can remove (uncontrollable) transitions in the product automaton
and violate controllability condition (1), hence we need to iterate.

Note that Algorithm 1 may output an empty language if there are too many
uncontrollable transitions or if K is too restrictive. One can modify the algorithm
to output the pathological paths where K is violated. In addition, while we
consider control speci�cations for the maximally permitted behavior so far, as a
dual problem, the supervisory control theory can handle control speci�cations
for the minimally required behavior. For example, instead of describing the entire

order processing system and capturing all corner cases, one can specify only rules
to be enforced, e.g., returned order must be refunded.

Control synthesis requires time quadratic in the size of G ×K in the worst
case. However, control synthesis in practice usually converges in a few iterations.
In addition, control synthesis is an o�ine operation, and it does not increase
execution time. Finally, business processes are typically small, a few dozens of
tasks at most. Our experience shows that automaton models and the control
synthesis algorithm scale to real-world business processes [32].

3 Google Checkout Service Example

We use Google Checkout Service (GCS) as a running example in this paper. This
section discusses artifacts and services we discover from the online developer's
guide. There are numerous ways to model a service using the artifact model.
Our intention is to demonstrate the applicability of control theory using a real
business process synthesis example. Therefore we pick the simplest model and
omit certain technical details.

Google Checkout is an online payment processing service that helps mer-
chants manage their sales orders. It has around 30 RESTful style APIs that
communicate between Google and the merchant through HTTP PUT and GET
commands. The parameters of each API can be sent through name value pair
in the HTTP request, or in a separate XML message. These APIs are designed
with extreme �exibility such that merchants of various size and complexity can
use the same service. The simplest case could be a lump sum payment, while the
complicated case includes a fully customizable calculation system for shipping,
tax, coupon, and gift certi�cate, and handles a complete range of operations
such as credit authorization, declined payment, back order, shipping, return,
and refund. This �exibility results in an in�ated set of APIs and an utterly com-
plicated system. As a result, there is a steep learning curve on using these APIs.
Google estimates up to four weeks to integrate GCS with a merchant's shop-
ping portal [1]. Maintenance is even more di�cult as both the merchant's order
processing system and GCS are evolving. Our strategy is to model GCS as an
artifact system but with an incomplete set of business rules. These rules capture
only Google's behavior, according to their speci�cation document. We then use
DES control theory to automatically synthesize the rules for the merchant, thus
complete the integration.

First we derive artifacts from the XML schema. The process can be auto-
mated if we consider each XML element as an artifact, and its XML attributes
naturally become the attributes of the artifact. However, for simplicity and bet-
ter readability, we aggregate some of these XML elements and present only the
high-level artifacts here. Figure 1 shows the top level artifact class Order and an
incomplete set of its attributes. Some of these attributes are of primitive types
like String and enum, the others are artifact class types. Details of three of these
second level artifact classes are displayed in Fig. 1 as well.

Class Order Class MerchantCalc Class RiskInformation
GoogleOrderNumber: String URL: String avsResponse: enum
shoppingCart: ShoppingCart acceptCoupon: bool billingAddress: Address
merchantCalc: MerchantCalc acceptGiftCerti�cate: bool buyerAccountAge: int
orderAdjustment: OrderAdjustment cvnResponse: enum
riskInformation: RiskInformation Class OrderAdjustment eligibleForProtection: bool
�nancialOrderState: enum adjustmentTotal: double ipAddress: String
ful�llmentOrderState: enum merchantCalcSuccess: bool partialCCNumber: String
... ...

Fig. 1. Some artifact classes in Google Checkout Service

Each API is considered as a service in the artifact model. Its precondition and
e�ects must be logical formulae in the form described in De�nition 3. Deriving
these formulae from the online document is straightforward. There are roughly
two categories of APIs, information calculation and order state manipulation.
Information calculation APIs change the status of certain attributes from unde-
�ned to de�ned. Figure 2 shows two examples. Order state manipulation APIs
issued by the merchant are displayed in Table 1. These APIs a�ect the �nan-
cialOrderState attribute and the ful�llmentOrderState attribute, abbreviated as
�State and �State in the table, respectively. We derive this table directly from
the �Financial Order States� and �Ful�llment Order States� tables online.

Service CheckoutShoppingCart Service NewOrderNoti�cation

Access: {x: Order } Access: {x: Order}
Pre: ¬def(x.shoppingCart) ∧ Pre: ¬def(x.GoogleOrderNumber)

¬def(x.merchantCalc) Effects:
Effects: � def(x.GoogleOrderNumber) ∧
� new(x.shoppingCart) x.�nancialOrderState = reviewing ∧
� new(x.shoppingCart) ∧ x.ful�llmentOrderState = new
new(x.merchantCalc)

Fig. 2. Example service de�nition for Google Checkout Service

We can now describe the mainline checkout process. When the online shop-
ping customer clicks the checkout button, the merchant calls CheckoutShopping-
Cart and redirects the customer to GCS page. If the merchant optionally de�nes
the MerchantCalc artifact, Google responds with the MerchantCalculationCall-
back API immediately. After collecting customer information and optionally the
merchant-speci�ed tax and shipping cost, Google calls NewOrderNoti�cation and
RiskInformationNoti�cation. The merchant can either charge and ship the or-
der or cancel the order. The merchant can also cancel the order after a charge
failure. If the customer rejects or returns shipping, the merchant can cancel the
order after issuing a refund. According to this process, services in the artifact
model are invoked by either Google or the merchant. Google speci�es precisely
when to invoke its commands, which we capture by business rules in the artifact

Service Precondition Effects

AuthorizeOrder x.�State = chargeable � x.�State = chargeable
� x.�State = payment_declined

ChargeAndShipOrder x.�State = chargeable � x.�State = charged
� x.�State = payment_declined

RefundOrder x.�State = charged

CancelOrder x.�State = chargeable ∨ x.�State = canceled ∧
x.�State = payment_declined x.�State = will_not_deliver

ProcessOrder x.�State = new x.�State = processing

DeliverOrder x.�State = new ∨ x.�State = delivered
x.�State = processing

Table 1. Merchant-issued services relevant to the �nancial and ful�llment order states

model. Figure 3 shows two examples. The merchant must de�ne its own rules
for its APIs, in order to complete the integration. We use DES control theory to
automatically synthesize these rules.

if def(x.merchantCalc) invoke MerchantCalculationCallback

if x.�nancialOrderState= reviewing invoke RiskInformationNoti�cation

Fig. 3. Example business rules for Google Checkout Service

4 Artifact-Centric Business Process Synthesis Framework

This section describes the procedure of synthesizing artifact-centric business pro-
cesses using the supervisory control theory. The entire procedure is implemented
in the Web2Exchange platform [30]. Web2Exchange is an object-oriented plat-
form for service management. To incorporate artifact models in the platform,
we store artifacts as data objects, and services as functions. The Common Infor-
mation Model (CIM) based annotation system in Web2Exchange facilitates the
use of precondition/e�ect descriptions. For the purpose of illustration, we use
Google Checkout Service (GCS) as a running example throughout this section.

4.1 Architecture

Figure 4 is the architecture of our synthesis procedure. First, we translate the
artifacts and services into a set of automata. Each automaton represents some
attribute of an artifact. Based on the business goal, our composition algorithm
�nds and integrates the relevant set of automata using the parallel composition
operation. This composite automaton captures all possible behaviors in the ar-
tifact system but does not provide any business rules to guide the execution
toward the goal. The control synthesis step calculates these rules automatically
and represents them as state-action pairs in a supervisor. The business process

Fig. 4. Architecture

execution engine enforces these rules through the observe-act feedback cycle.
Next we explain each module in detail.

4.2 Modeling

Each attribute that appears in the precondition or e�ect of some service is mod-
eled by an automaton. States of the automaton represent possible values of the
attribute, while transitions are services. An attribute may have an in�nite num-
ber of values. Fortunately we only need to represent those that appear in the
preconditions and e�ects. For example in GCS, most attributes such as Google-
OrderNumber have only two states, de�ned or unde�ned. Numerical types with
mathematical operations can be discretized using interval arithmetics. Artifact
class typed attributes can refer to any artifact instances of the same type, but
typically there is a �xed number of artifact instances in the system. In the case of
GCS, there is exactly one instance for every artifact class we consider. Therefore
each artifact typed attribute has only two values: unde�ned or referring to the
only instance.

Transitions are added to the automaton based on the precondition and ef-
fect of the corresponding service. For example, if a service changes an attribute
from unde�ned to de�ned, we add a transition of the service's name to connect
the two states. The attribute �nancialOrderState exhibits the most complicated
automaton in our system, displayed in Fig. 5. Transitions drawn by dashed lines
are uncontrollable by the merchant, which are issued by Google or controlled
by the shopping customer. For example, in the payment_declined state, the
controllable transition is the CancelOrder command, while uncontrollable tran-
sitions can lead to canceled_by_google state if the customer fails to provide
a valid credit card in time. Another source of uncontrollable transitions is con-
ditional e�ects. For example, the ChargeAndShipOrder command may result in
either charged state or payment_declined state. The command itself is con-
trollable but the outcome is not. In this case, we add an intermediate state and
split the transition into two stages. The �rst stage connects the source state to
the intermediate state by the controllable transition that represents the service.
The second stage connects the intermediate state to a set of states through un-

controllable transitions. Each of these destination states represents a possible
outcome of the conditional e�ect.

Fig. 5. The automaton for the �nancialOrderState attribute

As a preliminary implementation, we allow enumeration type and artifact
class type attributes in Web2Exchange. Integer types are allowed but we allow
only equality checking in precondition/e�ect formulae. This is su�cient for GCS.

4.3 Composition

The composition phase takes the business goal as the input, selects relevant au-
tomata from the repository, and uses parallel composition operation to build the
composite automaton. We allow two types of business goal speci�cations. The
�rst is language based, as described in Section 2.3. In this case, the speci�ca-
tion is given as a regular expression over the alphabet of services in the artifact
system. For example, RefundOrder must precede CancelOrder. The second type
is state based. For example, we want to reach the state where attribute �nan-
cialOrderState=charged and ful�llmentOrderState=delivered. Let G denote
the set of component automata in the repository. We pick the initial set of au-
tomata G′ ⊆ G and expand the set until all relevant component automata are
included for composition. In the case of language based speci�cations, we start
with the attributes used in the preconditions and e�ects of the services in the
regular expression. For state based speci�cations, we pick the attributes used to
express the desirable state.

Parallel composition synchronizes automata on shared events, therefore all
automata that share events with those in G′ must be included, i.e., G′ = G′ ∪
{G|G ∈ G \G′,∃H ∈ G′, Eg ∩Eh ̸= ∅}, where Eg and Eh denote the event sets of
G and H, respectively. We continue expanding G′ until no new automaton can
be added. This is the basic automaton selection procedure. There is an optional
pruning step that can reduce the number of component automata selected in ex-
change for less �exible solutions. For example, we can prune dead states in each
component automaton, which are states not reachable from the initial state or
states that cannot reach the goal state. This pruning does not reduce alternative
paths in the composite to reach the goal, but the composite may become unde-
�ned should the execution lead to those dead states unexpectedly. In addition,

we can sacri�ce alternative paths for a small composite automaton. As an anal-
ogy, with a composition task like map navigation, we may want only one path
rather than numerous alternatives.

The computational complexity of the above algorithm depends on the size of
the �nal composite. The parallel composition constructs the Cartesian product
for the state sets of all automata involved in the operation, which dominates
the computation. With many shared events among components, in practice, the
state space is much smaller than the full Cartesian product. Pruning further
reduces the number of automata in the �nal composite. With the goal of �nan-
cialOrderState=charged and ful�llmentOrderState=delivered for GCS, our
composition algorithm picked 20 component automata for the parallel composi-
tion. The composite automaton has 98 states and 134 transitions.

4.4 Control Synthesis

Given a control speci�cation as a regular language K, we synthesize the supremal
controllable non-blocking sublanguage K↑C automatically using Algorithm 1.
Here the system G is the parallel composition automaton. State-based control
speci�cations can be translated into language-based speci�cations. Multiple con-
trol speci�cations can be uni�ed by language intersection. Next we present a few
control speci�cation examples for GCS.

The merchant's primary goal state is �nancialOrderState=charged and ful-
�llmentOrderState=delivered. The control speci�cation simply marks the cor-
responding states as terminal. But this speci�cation is not controllable accord-
ing to equation (1), because �nancialOrderState can go to the canceled_by_
google state unavoidably. Using Fig. 5 as an illustration, Algorithm 1 will it-
eratively remove states canceled_by_google, reviewing, undefined, and
output an empty language. We need to mark the state �nancialOrderState=
canceled_by_google and ful�llmentOrderState ̸=delivered as terminal too.
The new speci�cation is controllable. In contrast, with the same goal, planning
algorithms may choose to ship the order before charging the customer, or be-
fore the payment is con�rmed, because charging and shipping are independent
services. Replanning after reaching the payment_declined state is too late.
We may add the charged state as a precondition for shipping, but this is more
restrictive than the real semantics are. It is more �exible to model the semantic
as is and handle various business objectives using control speci�cations. Another
example is the execution ordering between RefundOrder and CancelOrder. The
API reference allows both APIs to take place at the charged state, but some-
where else in the document there is a note that RefundOrder must precede Can-
celOrder. This document inconsistency can be addressed by a regular expression
{∗RefundOrder∗CancelOrder∗}.

Business rules can be translated into language speci�cations too. We need to
�nd the states in the composite automaton that satisfy the condition of the rule,
and remove all of its outgoing transitions except the one representing the service
to be invoked. The resulting automaton is the speci�cation. If the speci�cation
is controllable, the artifact system guarantees successful termination. Otherwise

Algorithm 1 can complete the system by synthesizing a supervisor. Therefore, as
byproduct, our framework can analyze the soundness of existing artifact systems,
and complete the rule set if needed.

4.5 Runtime Execution

The runtime execution engine observes the system state, and invokes services as
needed according to K↑C . We have discussed in Section 2.3 on how to derive a
supervisor automaton from K↑C . The runtime execution need only to follow the
transition rules of the supervisor. Supervisory Control Theory guarantees that
the supervisor never blocks any uncontrollable transitions.

5 Extensions

This section discusses partial observability [19] and decentralized control [28] in
DES theory. We do not exploit these capabilities in this paper but they are
relevant to the business process synthesis problem. These concepts have been
discussed in the literature with respect to di�erent service models [14, 2].

We assume throughout this paper that all transitions are observable to the
execution engine. This is referred to as full observability in DES theory. Exten-
sions to the control synthesis methods we employ in this paper exist to address
partial observability. In a partially observable system, transitions in G are either
observable or unobservable. In the business process domain, we may assume that
transitions within a business organization are observable, but external organi-
zations are not, except those that are communicated intentionally. The typical
solution to the control synthesis problem under partial observability involves the
construction of an observer automaton that, based on observable transitions, es-
timates the set of states the system could possibly be in (called belief state in
AI literature). Then, for every state in the estimate set, the controller disables
transitions that violates the speci�cation. Similarly to the case with only uncon-
trollable transitions, we desire non-blocking execution, permissive control, and
other properties. After building the observer, the complexity of control synthesis
is polynomial to the number of observer states. With partial observability, the
maximally permissive controllable non-blocking sublanguage is no longer unique.
Di�erent control actions may result in di�erent incomparable sublanguages.

Decentralized control is another well studied topic in DES theory. It allows
decentralized entities to make their own control decisions using local observa-
tions, yet the global behavior satis�es the given control speci�cation. This ap-
proach can be applied to business process synthesis that involve multiple or-
ganizations. Various �avors of decentralized models exist. The communicating
automata model in the AI literature partitions the system and selects communi-
cating events between local models. In the DES literature, the method is usually
based on a global system model. The global model can be built from component
models automatically via composition operations. After the control synthesis,
online control decisions can be computed on-the-�y and a global model is not
necessary.

6 Related Work

Existing work on artifact-centric models exhibits signi�cant interest on the static
analysis and veri�cation of business processes [6, 12, 13]. Properties including
reachability, dead path, and persistence have been studied. Recently model
checking techniques have been applied to the process veri�cation problem and
decidability results are obtained [8]. The choreography problem of artifact-centric
models has been studied too [21], which bears similarity with the decentralized
control problem in DES. The goal in [11] is the closest to ours, which is to
synthesize an artifact-centric business process with one artifact class. The pa-
per de�nes the concepts γ-safe and maximal γ-safe rule sets where γ is a given
synthesis goal. These concepts map to the notions controllability and maximal
permissiveness in DES, respectively.

In the more general problem of service composition, there is a considerable
amount of work using the precondition/e�ect model [23, 3, 22, 25]. The semantic
markup language for web services, OWL-S, is using the precondition/e�ect model
too. As there is no widely adopted industrial standard, the semantics of these
models are slightly di�erent. This discrepancy a�ects only the translation of
these models into automata. The overall process synthesis procedure applies to
any precondition/e�ect model as long as the translation exists. There are other
service composition work based on the input/output model [27, 29] or stateful
models [7, 5, 17].

Typical composition algorithms handle uncontrollable events by the assump-
tion of deterministic outcome or techniques similar to runtime replanning. No-
table exceptions include the work from two research groups. The �rst group
considers the �Roman Model� that is �rst introduced in [5]. This model cap-
tures service dynamics by automaton, and uses a central orchestrator to dele-
gate an action to a local automaton. Composition with partial controllability
has been studied [15], and the work extends to partial observability as well [14].
The approach is based on the game-structure model checking, where the syn-
thesis problem is equivalent to �nding the winning strategy in a safety game.
Another group considers the open work�ow nets, which are acyclic work�ow
Petri nets augmented by input and output places. The controller is allowed to
place tokens in the input places to guide the execution of the net. Centralized
and decentralized controllability have been studied [2], and various �avors of
decentralized control synthesis problems are discussed [20, 16]. Albeit the use of
Petri net model, the synthesis algorithm is close to ours as it is based on the
reachability graph and state space exploration. Comparing with these work, we
consider the control synthesis problem in the artifact model. The intention is
to systematically introduce Supervisory Control Theory (SCT) and propose a
process synthesis framework for real services.

Our previous work applied SCT to the safe execution of possibly �awed work-
�ows [32]. The control speci�cation was limited to the special case of avoiding
undesirable states in the automaton. In addition, the control logic must not
violate the semantics of the manually composed work�ow, which is often nar-
row. Using Petri net model, we applied a di�erent branch of DES theory, called

Supervision Based on Place Invariants, to avoid deadlocks in multithreaded pro-
grams [31, 33]. The method successfully found and avoided real deadlock bugs
in large-scale open-source software. Recently, there is considerable interest in
applications to programming using control theory [18].

7 Conclusion

In this paper, we introduced the Supervisory Control Theory to address the busi-
ness process synthesis problem under the artifact-centric service model with un-
controllable or nondeterministic events. We developed a process synthesis frame-
work that translates the artifact model into a set of automata, selects relevant
automata for composition, synthesizing a supervisor for a given speci�cation,
and enforces the supervisor at runtime. The synthesized process is provably cor-
rect and maximally permissive. In addition to process synthesis, the framework
can analyze the correctness of existing artifact systems. Although we restrict
our attention to the artifact-centric model because of its popularity and the rel-
atively well-de�ned formal model. Our framework and the synthesis procedure
extends to other service models, as long as the translation of the model into
automata exists.

References

1. Google checkout service. http://code.google.com/apis/checkout/developer/

index.html .

2. K. S. 0004. Controllability of open work�ow nets. In EMISA , pages 236�249, 2005.

3. V. Agarwal, K. Dasgupta, N. M. Karnik, A. Kumar, A. Kundu, S. Mittal, and

B. Srivastava. A service creation environment based on end to end composition of

Web services. In WWW , pages 128�137, 2005.

4. P. Albert, L. Henocque, and M. Kleiner. A constrained object model for con�gu-

ration based work�ow composition. In BPM Workshops , pages 102�115, 2005.

5. D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Mecella. Automatic

composition of e-services that export their behavior. In ICSOC , pages 43�58, 2003.

6. K. Bhattacharya, C. E. Gerede, R. Hull, R. Liu, and J. Su. Towards formal analysis

of artifact-centric business process models. In BPM, pages 288�304, 2007.

7. T. Bultan, X. Fu, R. Hull, and J. Su. Conversation speci�cation: a new approach

to design and analysis of e-service composition. In WWW , pages 403�410, 2003.

8. P. Cangialosi, G. D. Giacomo, R. D. Masellis, and R. Rosati. Conjunctive artifact-

centric services. In ICSOC , pages 318�333, 2010.

9. C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems .

Springer, second edition, 2008.

10. T. Chao, D. Cohn, A. Flatgard, S. Hahn, M. H. Linehan, P. Nandi, A. Nigam,

F. Pinel, J. Vergo, and F. Y. Wu. Artifact-based transformation of ibm global

�nancing. In BPM, pages 261�277, 2009.

11. C. Fritz, R. Hull, and J. Su. Automatic construction of simple artifact-based

business processes. In ICDT, pages 225�238, 2009.

12. C. E. Gerede, K. Bhattacharya, and J. Su. Static analysis of business artifact-

centric operational models. In SOCA, pages 133�140, 2007.

13. C. E. Gerede and J. Su. Speci�cation and veri�cation of artifact behaviors in

business process models. In ICSOC , pages 181�192, 2007.

14. G. D. Giacomo, R. D. Masellis, and F. Patrizi. Composition of partially observable

services exporting their behaviour. In ICAPS , 2009.

15. G. D. Giacomo and F. Patrizi. Automated composition of nondeterministic stateful

services. In WS-FM , pages 147�160, 2009.

16. C. Gierds, A. J. Mooij, and K. Wolf. Reducing adapter synthesis to controller

synthesis. IEEE Transactions on Services Computing , 99(PrePrints), 2010.

17. R. R. Hassen, L. Nourine, and F. Toumani. Protocol-based Web service composi-

tion. In ICSOC , pages 38�53, 2008.

18. M. V. Iordache and P. J. Antsaklis. Petri nets and programming: a survey. In Pro-

ceedings of American Control Conference , ACC'09, pages 4994�4999, Piscataway,

NJ, USA, 2009. IEEE Press.

19. F. Lin and W. M. Wonham. On observability of discrete-event systems. Informa-

tion Sciences , 44(3):173�198, 1988.

20. N. Lohmann and K. Wolf. Realizability is controllability. In WS-FM , pages 110�

127, 2009.

21. N. Lohmann and K. Wolf. Artifact-centric choreographies. In ICSOC , pages 32�46,

2010.

22. H. Meyer and M. Weske. Automated service composition using heuristic search.

In BPM, pages 81�96, 2006.

23. S. Narayanan and S. A. McIlraith. Simulation, veri�cation and automated com-

position of web services. In WWW , pages 77�88, 2002.

24. D. Nau, M. Ghallab, and P. Traverso. Automated Planning: Theory & Practice .

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

25. A. Ragone, T. D. Noia, E. D. Sciascio, F. M. Donini, and S. Colucci. Fully auto-

mated Web services orchestration in a resource retrieval scenario. In ICWS, pages

427�434, 2005.

26. P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event

processes. SIAM J. Control Optim. , 25(1):206�230, 1987.

27. A. Riabov, E. Bouillet, M. Feblowitz, Z. Liu, and A. Ranganathan. Wishful search:

interactive composition of data mashups. In WWW , pages 775�784, 2008.

28. K. Rudie and W. M. Wonham. Think globally, act locally: decentralized supervi-

sory control. 37(11):1692�1708, November 1992.

29. Z. Shen and J. Su. On completeness of Web service compositions. In ICWS, pages

800�807, 2007.

30. V. Srinivasmurthy, S. Manvi, R. Gullapalli, D. Sathyamurthy, N. Reddy, H. Dat-

tatreya, S. Singhal, and J. Pruyne. Web2exchange: A model-based service trans-

formation and integration environment. pages 324 �331, Sept. 2009.

31. Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. A. Mahlke. Gadara: Dynamic

deadlock avoidance for multithreaded programs. In OSDI'08 , pages 281�294, 2008.

32. Y. Wang, T. Kelly, and S. Lafortune. Discrete control for safe execution of IT

automation work�ows. In EuroSys , 2007.

33. Y. Wang, S. Lafortune, T. Kelly, M. Kudlur, and S. Mahlke. The theory of deadlock

avoidance via discrete control. In POPL'09 , pages 252�263, New York, NY, USA,

2009. ACM.

34. Y. Wang, H. R. Motahari-Nezhad, and S. Singhal. A language-based framework

for analyzing service representation models and service composition approaches.

In IEEE International Conference on e-Business Engineering , 2010.

