

Keyword(s):

Abstract:



Database software for non-volatile byte-addressable memory

Goetz Graefe, Harumi Kuno

HP Laboratories
HPL-2011-37

database, NVRAM, byte-addressable, memory, concurrency, recovery, 8-trees

Most transactional software, e.g., in database systems, is written for a 2-level memory hierarchy with
volatile RAM and persistent disk storage. For example, the standard "write-ahead logging" technique relies
on an in-memory buffer pool to hold back dirty data pages until the relevant log records have been written
to stable storage. It is well-known that a buffer pool enables fast access via locality of reference. In
addition, in transactional systems, a buffer pool seems an essential component of write-ahead logging,
which ensures the consistency of persistent data even in the face of recovery from media failure. For a
transactional storage system using non-volatile, byte-addressable memory, which does not suffer from the
slow access times of disk, a buffer pool seems unnecessary. However, removing the buffer pool seems to
complicate transactional updates. We introduce a design and supporting techniques that simplify the
implementation of transactions using NVRAM as persistent storage. One new technique, "log-shipping to
self," avoids use of a buffer pool, supports existing write-ahead logging protocols, and is simpler than
traditional implementations of write-ahead logging. We also present a second innovation - a software
frame-work for automatically detecting and repairing individual pages. This feature is particularly relevant
in the context of NVRAM, since some NVRAM technologies may incur single-page failures. Traditional
database techniques know only offline (or snapshot) consistency checks; online and incremental
verification of data structures does not verify all invariants. Traditional database techniques also know only
media recovery, i.e., recovery of an entire disk rather than of individual pages. Repair of individual pages
today is more art than science and engineering. Techniques for complete online consistency checks as well
as principled automatic repair are also introduced here.

External Posting Date: March 21, 2011 [Fulltext] Approved for External Publication
Internal Posting Date: March 21, 2011 [Fulltext]
To be published and presented at Non-Volatile Memories Workshop 2011, March 6-8, 2011.

Copyright Non-Volatile Memories Workshop 2011.

 Page 1 of 2

Database software for non-volatile byte-addressable memory1
Goetz Graefe, Harumi Kuno

Hewlett-Packard Laboratories

Abstract: Most transactional software, e.g., in database sys-

tems, is written for a 2-level memory hierarchy with volatile RAM

and persistent disk storage. For example, the standard “write-

ahead logging” technique relies on an in-memory buffer pool to

hold back dirty data pages until the relevant log records have been

written to stable storage. It is well-known that a buffer pool

enables fast access via locality of reference. In addition, in trans-

actional systems, a buffer pool seems an essential component of

write-ahead logging, which ensures the consistency of persistent

data even in the face of recovery from media failure.

For a transactional storage system using non-volatile, byte-

addressable memory, which does not suffer from the slow access

times of disk, a buffer pool seems unnecessary. However, remov-

ing the buffer pool seems to complicate transactional updates.

We introduce a design and supporting techniques that simpl-

ify the implementation of transactions using NVRAM as persistent

storage. One new technique, “log-shipping to self,” avoids use of

a buffer pool, supports existing write-ahead logging protocols, and

is simpler than traditional implementations of write-ahead logging.

We also present a second innovation – a software frame-

work for automatically detecting and repairing individual pages.

This feature is particularly relevant in the context of NVRAM,

since some NVRAM technologies may incur single-page failures.

Traditional database techniques know only offline (or snapshot)

consistency checks; online and incremental verification of data

structures does not verify all invariants. Traditional database tech-

niques also know only media recovery, i.e., recovery of an entire

disk rather than of individual pages. Repair of individual pages

today is more art than science and engineering. Techniques for

complete online consistency checks as well as principled automat-

ic repair are also introduced here.

1 Introduction
A relational database software system can be split into mul-

tiple pieces. For example, the relational layer provides catalogs

and interactive data definition, parsing and validation including

security, and query processing including compile-time optimiza-

tion and run-time execution. The storage layer provides access

methods (e.g., B-tree indexes) including search and updates, trans-

actions including concurrency control and recovery, and utilities

including defragmentation, consistency checks, backup and re-

store. The present paper concerns only some aspects of the storage

layer, even if the relational layer also could be optimized for entire

databases fitting into byte-addressable memory.

Even if hardware and low-level system software provide

some of the “enterprise abilities” (reliability, scalability, managea-

bility, etc.), each database system must verify its data structures

and repair or recover them as appropriate. For example, if data-

base replication fails to propagate all aspects of a node split in a B-

tree, some keys or pointers may be incorrect, which in turn may

lead to incorrect query results as well as subsequent incorrect up-

dates. All commercial database packages include verification utili-

ties, and all vendors recommend their regular use.

Current software for disk-based databases represents a bal-

ance between functionality, execution efficiency, and software

complexity (development, testing, maintenance, enhancement).

Introduction of a new type of storage medium upsets that existing

balance. New features or optimizations for reliability or perfor-

mance might therefore render data management software more

complex. Our goal is to provide carefully chosen innovations that

make the overall software system less complex, more principled,

and, ideally, also more efficient.

For example, we propose to continue dividing a database in-

to pages, even in byte-addressable NVRAM. There are several

good reasons for doing so. During insertion, update, or deletion of

a record, only a small part of the overall data structure is subject to

change. This has immediate beneficial effects on complexity, con-

currency control and recovery. Pages provide containment for

faults and repair, and there also are subsequent benefits, e.g., for

efficient incremental backup to page-based storage such as a tradi-

tional disk. Page sizes require new optimization, however, since

heuristics such as for optimizing disk-based B-trees do not apply.

2 Related techniques
In Gray’s early form of write-ahead logging in databases

[G 78], each type of database update must be implemented in three

forms: as “do” action during normal processing including creation

of log records, as “redo” action invoked during media or system

recovery, and as “undo” action invoked during transaction roll-

back or system recovery. Since a failure (system crash) is at least

as likely during recovery as during forward processing, and since

recovery actions are not logged, recovery actions must be idempo-

tent, i.e., they may be applied repeatedly with the same outcome.

ARIES logs recovery actions and tags each data page with

the address of the most recent log record already applied, called

the log sequence number (Page LSN) [MHL 92]. “Exactly once”

application of log records can be ensured, idempotent recovery

actions are not required, and thus “undo” can be a logical compen-

sation rather than a strict physical reversal of the original action.

When a database writes multiple disk sectors as a single

large page, partial writes are possible. Multiple research and de-

velopment efforts have focused on verification of individual data-

base pages and of complete databases, e.g., the structure of B-trees

and the consistency of tables, indexes, and views [GS 09, M 95].

Our work builds upon those prior efforts and designs.

3 Transactional updates
Write-ahead logging prohibits modifications in the persistent

database prior to successful logging. In traditional database archi-

tecture, a buffer pool holds intermediate states. Dirty pages remain

in the buffer pool until relevant log records are on stable storage.

In byte-addressable persistent memory, a buffer pool with

copies of stored pages is neither required nor desired. Nonetheless,

it is imperative that uncommitted updates can be rolled back if a

1Presented at the 2nd Annual Non-Volatile Memories Work-

shop (NVMW) 2011. UC San Diego, March 6-8, 2011.

 Page 2 of 2

transaction fails. A naïve approach to the problem therefore re-

quires additional recovery logic, code, complexity, and test cases.

In our technique, a log record is formed first and logged

immediately in persistent storage (NVRAM), whereupon it can be

applied to the database. This adheres to write-ahead logging – the

log record is saved before any in-place database update. The tradi-

tional “do” action is reduced to (or replaced by) creation of a log

record. Thus, the traditional “do” action of “do, redo, undo” is

obsolete; only “redo” and “undo” remain for database updates.

The actual database modification is driven by log records,

not by the code executing the user transaction. If desired, the

threads that apply log records may be separate from those that

execute user transactions and create log records, in particular on

many-core processors. On the other hand, if there is a delay, a new

data structure must keep track of pending updates to each data

page, such that subsequent retrievals from such pages can produce

the most up-to-date data. In order to avoid searching something

like a buffer pool, this data structure could be anchored in the data

page itself. A traditional lock manager cannot serve this purpose

because locks disappear when an update transaction commits.

The new technique promises to simplify transaction imple-

mentation and it may be more suitable to many-core processors

than today’s standard techniques. Due to the similarity of database

replication by log shipping, we call the new sequence of update

actions “log shipping to self.” A new data structure is needed to

ensure timely application of log records in order to prevent queries

retrieving incorrect results.

4 Fault detection and recovery
Database pages may become corrupt for a number of rea-

sons [M 95], from hardware faults to software problems in update

logic, recovery, or replication. Offline consistency checks require

a quiescent database, which is inconvenient at best, or a snapshot,

which usually is out-of-date by the time the consistency check is

complete. Traditional online consistency checks usually are in-

complete. For example, they may ensure integrity constraints

within a page but not across pages. In a B-tree index, space alloca-

tion for variable-size records and sort order of key values may be

verified within a page but not non-overlap of key ranges in neigh-

boring leaf pages. Fortunately, with minor modifications to the

traditional B-tree page format, online verification can be complete,

including all relationships to neighboring pages [GS 09]. Each

root-to-leaf traversal can verify all integrity constraints of all pag-

es it touches. Depending on the reliability of various technologies

and successive generations of non-volatile storage memory, such

online verification may become a crucial defensive technique.

Detection of faults has little value, however, if detected

faults cannot be repaired. Traditional techniques enable transac-

tion recovery (rollback or durability of a single transaction), sys-

tem recovery (clean-up after a process or system crash), and media

recovery (re-creation of a failed disk or disk array). What is

needed, however, is a fourth form of database failure and recovery

– repair of one or more individual database pages.

Current single-page “repair” mechanisms seem more “black

art” than solid science and engineering. They use heuristics such

as “most likely change” or “minimal edit distance” rather than a

principled approach. If the heuristics fail or their change seems too

radical, database administrators today are asked to erase and

recreate information, e.g., drop secondary indexes and rebuilt

them from the primary index, which are deemed reliable and accu-

rate. Efficient query and update processing can resume when the

secondary indexes are complete, i.e., after considerable delay.

Our proposed technique introduces single-page backups and

online single-page recovery using the transaction log. The backup

pages may be in the database or in the recovery log. In the data-

base, they may be the result of a page movement during defrag-

mentation, page relocation in a write-optimized (log-structured)

operation [G 04], or an explicit backup operation. In the recovery

log, backup pages may be the result of formatting after allocation

or of explicitly logging the current page contents. In addition to

page backups, our proposed technique requires that log records

pertaining to the same data page be linked for efficient scan within

the recovery log. Many database systems already link log records

in this way. Ordinarily, the anchor of this linked list is in the data

page, i.e., the Page LSN. However, if a data page is corrupt in

non-volatile memory, all of its contents, including its Page LSN,

are suspect. Therefore, a second copy of the Page LSN is required.

In systems without buffer pool, the queue of waiting log

records (“log shipping to self”) can serve the purpose. If page

locks are employed, this queue can be integrated with the lock

manager. When an update transaction commits without applying

its log records, a “no lock” entry must remain pointing to the

pending log records such that subsequent retrievals from that data

page can first apply those log records. Once a data page is up-to-

date, its parent page (e.g., in a B-tree index) can retain the second

copy of the Page LSN. This is equivalent to tracking the current

location of pages in write-optimized (log-structured) B-trees.

It is not required to keep a pointer to the most recent backup

page if page backups are logged. In that case, traversing the chain

of log records into the past will eventually find a backup page.

5 Summary
In summary, software that supports transactional retrievals

and updates requires modifications when NVRAM replaces RAM

and perhaps even disks. These modifications need not increase

complexity; in fact, new techniques may improve both complexity

and performance. For updates, we reduced the traditional “do,

redo, undo” paradigm of transactional updates to “redo and undo”

only. For repair of individual pages, we described data structures

for complete online verification of B-tree (database index) struc-

tures and we introduced techniques for a principled repair based

on page backups and the recovery log.

6 References
[G 78] Jim Gray: Notes on data base operating systems. Advanced

course: operating systems 1978: 393-481.

G 04] Goetz Graefe: Write-optimized B-trees. VLDB 2004: 672-

683.

[GS 09] Goetz Graefe, R. Stonecipher: Efficient verification of b-

tree integrity. BTW 2009: 27-46.

[M 95] C. Mohan: Disk read-write optimizations and data integrity

in transaction systems using write-ahead logging. ICDE

1995: 324-331.

[MHL 92] C. Mohan, Donald J. Haderle, Bruce G. Lindsay, Ha-

mid Pirahesh, Peter M. Schwarz: ARIES: a transaction re-

covery method supporting fine-granularity locking and par-

tial rollbacks using write-ahead logging. ACM TODS 17(1):

94-162 (1992)

