

Keyword(s):

Abstract:

Disaggregated Memory Benefits for Server Consolidation

Kevin Lim, Yoshio Turner, Jichuan Chang, Jose Renato Santos, Parthasarathy Ranganathan

HP Laboratories
HPL-2011-31

disaggregated memory, virtual machines, consolidation, hypervisor

Recent architecture research has introduced a new building block - a memory blade - which provides
disaggregated memory capacity expansion and sharing for an ensemble of blade servers. In this paper, we
examine the systems implications of this new architectural building block. We build a software-based
prototype of memory disaggregation and examine how the additional level of indirection provided by the
memory blade can provide significantly higher levels of consolidation. We specifically examine the use
case of multiple large memory virtual machines (VMs) consolidated onto a single server. We explore
content based sharing strategies to maximize the utilization of both local and remote memory. Using an
in-memory database workload, our results show significantly higher levels of consolidation versus baseline
servers (twice as many VMs than a memory-constrained baseline, providing 47% higher throughput),
cost-effective memory expansion (28% better performance-per-dollar versus a large memory baseline), and
effective content based sharing (up to 40%).

External Posting Date: March 6, 2011 [Fulltext] Approved for External Publication
Internal Posting Date: March 6, 2011 [Fulltext]

Copyright 2011 Hewlett-Packard Development Company, L.P.

Disaggregated Memory Benefits for Server Consolidation

Kevin Lim Yoshio Turner Jichuan Chang Jose Renato Santos Parthasarathy Ranganathan
HP Labs

Abstract

Recent architecture research has introduced a new build-
ing block – a memory blade – which provides disag-
gregated memory capacity expansion and sharing for
an ensemble of blade servers. In this paper, we exam-
ine the systems implications of this new architectural
building block. We build a software-based prototype
of memory disaggregation and examine how the addi-
tional level of indirection provided by the memory blade
can provide significantly higher levels of consolidation.
We specifically examine the use case of multiple large-
memory virtual machines (VMs) consolidated onto a sin-
gle server. We explore content based sharing strate-
gies to maximize the utilization of both local and re-
mote memory. Using an in-memory database workload,
our results show significantly higher levels of consolida-
tion versus baseline servers (twice as many VMs than
a memory-constrained baseline, providing 47% higher
throughput), cost-effective memory expansion (28% bet-
ter performance-per-dollar versus a large memory base-
line), and effective content based sharing (up to 40%).

1 Introduction

Recent research introduced a disaggregated memory ar-
chitecture, which adds a level to the memory hierarchy
in the form of expanded remote memory capacity that
can be dynamically partitioned among multiple servers
in a blade enclosure [3]. Remote memory is provided
through a new building block, a memory blade, which
consists of a large pool of commodity memory, an ASIC
memory controller, and interface logic for communica-
tion between the memory blade and compute blades.
Disaggregated memory is the key to enabling indepen-
dent scaling of compute and memory resources, allowing
compute servers to access enough memory capacity to
match multi- or many-core processors, run large memory
applications, and handle consolidated virtual machine

environments. Previous work [3] presented microarchi-
tecture simulation results indicating that disaggregated
memory is a promising approach for a wide range of
large-memory application workloads in data centers.

This paper significantly extends the previous work in
three main ways. First, it presents the design and evalua-
tion of system software support for disaggregated mem-
ory. The design leverages indirection at the hypervisor
level to transparently integrate remote memory capac-
ity into the physical address space of each guest oper-
ating system (OS) instance. This allows legacy server
workloads to take advantage of the large remote memory
capacity without changes at kernel-level or application-
level. Furthermore, the design provides this support us-
ing only modest extensions to the hypervisor memory
management subsystem and with no reduction in the per-
formance of local memory accesses. Our evaluation on
a prototype system confirms the expected benefits of dis-
aggregated memory and finds that the relatively low la-
tency of remote memory compared to traditional paging
devices shifts the design trade-off for page replacement
schemes in favor of fast victim selection over minimizing
remote memory accesses.

Second, this paper studies the use of disaggregated
memory to improve data center server consolidation us-
ing virtual machines (VMs). Server consolidation is ac-
complished by running multiple VM-based services on
each physical server, reducing the number and total cost
of physical servers required to support a given data center
workload. Server consolidation is playing a growing role
as data center operators seek to minimize costs, and as
compute capacity rapidly increases in the many-core pro-
cessor era. In order to run services with minimal slow-
down compared to dedicated servers, co-located VMs
must share the resources of a physical server without
heavy contention. While CPU scheduling techniques can
be used to dynamically multiplex CPU usage across VMs
to closely match VM compute requirements over time, it
is more challenging to efficiently share memory capac-

1

ity. Each VM has a pre-set expectation of the physical
memory capacity it can access. Techniques like balloon-
ing and demand-paging to storage media can be used in
some cases to multiplex physical memory usage by VMs,
but in general each VM can require high performance
from all of its physical memory, precluding the effec-
tiveness of these techniques. In practice, this means that
a physical server’s memory capacity often needs to be as-
signed conservatively to VMs. Without allowing mem-
ory overcommitment, memory capacity easily becomes
the bottleneck resource that limits the achievable level of
server consolidation. Disaggregated memory can poten-
tially relieve that bottleneck by introducing a memory hi-
erarchy layer with large capacity and main memory-like
performance. Our study evaluates the real-world impact
of disaggregated memory on server consolidation on a
prototype Xen hypervisor-based system exhibiting com-
plex interactions of hypervisor, guests and resources not
modeled in previous simulation-based studies.

Finally, this paper unifies system software support for
disaggregated memory with content-based page sharing
(CBPS), a previous hypervisor technique that improves
the efficient use of memory capacity by transparently
copy-on-write sharing memory pages that have identical
content [5]. Our evaluation shows that the combination
of these two techniques further improves server consoli-
dation.

2 Review of Hardware Architecture

In a disaggregated memory design, the memory hierar-
chy is expanded to include a remote level provided by
separate memory blades. Disaggregated memory thus
breaks the typical co-location of compute and memory to
enable an architecture that allows for independent scal-
ing of compute and memory capacity. Whereas com-
modity servers are limited in their memory capacity by
the memory performance requirements and technology
scaling trends, memory blades are specifically designed
to provide large capacity through the use of buffer-on-
board, or other fan-out techniques. By providing this ca-
pacity to multiple servers, the cost associated with such
technologies is effectively amortized across the servers.

A server’s local and remote memory together consti-
tutes its machine address space. An application’s local-
ity of memory reference utilizes the server’s local mem-
ory to maintain high performance, while remote memory
provides memory size expansion at the cost of longer ac-
cess latency (albeit still orders of magnitude faster than
accessing today’s persistent storage). In our designs, we
utilize a PCI Express (PCIe) interconnect between the
servers and the memory blades. Because the access time
of remote data is dominated by transfer latency over the
interconnect, lowering remote DRAM speed has negli-

Figure 1: System diagram with memory blades

gible performance impact, providing hardware design-
ers the luxury to trade off speed for increased capacity
and power efficiency. In essence, disaggregated mem-
ory maintains high performance using fast local memory,
while addressing the capacity and power concerns using
slower remote memory, simultaneously satisfying all the
key requirements of a modern memory system.

Remote memory access can be supported either in
hardware by cache-line granularity through the cache co-
herence protocol or in software by swapping with local
pages through DMA transfers. In this paper, we assume
the software-based page swapping design because it re-
quires minimal hardware changes and, as we demon-
strate, performs well. Here, access to data stored in
remote memory results in the entire remote page being
transferred to local memory, which can then be directly
accessed, and a local page being selected for eviction to
remote memory. Additionally, to maximize memory uti-
lization, the remote memory capacity can be dynamically
allocated among the connected servers. This capability
allows servers to flexibly adjust their allocated remote
memory capacities based on dynamic demands.

As shown in Figure 1, this disaggregated memory de-
sign consists of a blade enclosure housing multiple com-
pute blades, which connect over the backplane to one or
more memory blades through a (PCIe) bridge and use
the standard I/O interface to access the memory blade.
Specifically, memory pages read from and written to the
remote memory blade are transferred over the shared
high-speed PCIe interconnect in the blade server enclo-
sure. This design improves cost-efficiency by reusing
the pre-existing commodity infrastructure and amortiz-
ing the cost of memory blade across multiple compute
servers.

The memory blade, shown in Figure 2, consists of a
custom ASIC or lightweight processor, storage for ad-
dress mapping tables, a PCIe bridge for connecting over
the backplane, and multiple rows of DIMMs attached
through buffer-on-board or similar fan-out techniques.
The ASIC or lightweight processor responds to mem-
ory accesses as they arrive from the PCIe interconnect.
Servers accessing remote memory send a request for a
memory location within their own address space, and the
memory blade uses its address mapping tables to trans-

2

Figure 2: Memory blade architecture

late the requested address and requesting server ID to the
address of the data on the memory blade. In addition, ei-
ther the processor or an external management processor
runs management software that coordinates the dynamic
capacity allocation, as well as discovery and setup phases
for initializing the remote memory allocations as servers
are booted up.

3 Software Architecture

To reach broad acceptance in the commodity market, dis-
aggregated memory should provide benefits to legacy
OSs and applications with minimal code modification.
Our design extends a hypervisor to support remote mem-
ory, enabling arbitrary OSs and applications running in
virtual machines to take advantage of the expanded ca-
pacity of remote memory without any code changes. Our
design relies on existing processor support for full hard-
ware virtualization.

We built a prototype system that extends the Xen
hypervisor to support remote memory as a guest-
transparent demand-paging store. The prototype sets
aside a portion of a server’s local memory to act as
an emulated remote memory blade with a configurable
speed. A future real memory blade could be substituted
for this emulation mode by adding a simple device driver
to the hypervisor.

Our extensions leverage support in modern processors
for a new level of page table address translation called
Nested Page Tables (NPT) by AMD and Extended Page
Tables (EPT) by Intel (for simplicity, we generically use
the term NPT in the following). The idea of adding
this new level of translation is to enable fully virtualized
guest VMs to maintain and update traditional OS page
tables without hypervisor involvement. Guest page ta-
bles map guest virtual addresses to pseudo-physical ad-
dresses. These PFNs (pseudo-physical frame numbers)
are in turn translated by the hardware to host machine
physical addresses, called MFNs (machine frame num-
bers) using the NPTs, which are managed exclusively by
the hypervisor.

We modified NPT handling to dynamically change
the mappings of guest PFN to host MFN as memory
pages are migrated back and forth on-demand between

Virtual address

Guest page table
(many per guest)

Nested page table
(one per guest)

Guest
Physical
Address

P W

MFN

P=TRUE local
P=FALSE remote (guest
read/write triggers NPT fault)

W=TRUE private
W=FALSE shared (CoW)
(guest write triggers NPT fault)

MFN (Machine Frame Number)

Guest Hypervisor

Figure 3: Page Tables

the servers local memory and a remotely accessed mem-
ory blade. The page table structure is shown in Fig-
ure 3. The hypervisor maintains one NPT for each guest
VM. Any PFN with a corresponding machine page that
has been migrated to the remote memory is marked not
present in the NPT. Thus, a guest memory access to a
remote page causes an NPT page fault in the hypervi-
sor (not in the guest). The hypervisor retrieves the refer-
enced page from the memory blade, marks the NPT entry
present, and then resumes the faulting guest virtual CPU
(vCPU). Unlike with paging to disk, access times to re-
mote memory are fast enough that it is not worthwhile to
de-schedule a faulting guest VM.

If a free local page is not available when a remote page
needs to be migrated, a local page is selected for eviction
and transfer back to remote memory. We experimented
with well-known page replacement policies: Round-
Robin and Clock (which approximates Least-Recently-
Used by examining the NPT page table Accessed bit).
Both are global replacement policies that consider all
of local memory for eviction, as opposed to a per-VM
replacment policy that would limit the choice to pages
of the VM that caused a page fault. While per-VM re-
placement would limit cross-VM performance interfer-
ence, a global replacement policy is more likely to un-
cover “cold” pages that will not be accessed in the near
future.

A complementary technique for increasing effec-
tive memory capacity is content-based page sharing
(CBPS) [5, 2, 4]. With CBPS, the hypervisor detects
memory pages with identical content, both within a VM
and across VMs, and transparently replaces the page
copies by a single copy. Transparent sharing of identical
pages increases the total effective memory capacity of
the system. In the context of consolidation, CBPS helps
free up memory to allow more VMs to be placed on a
single machine. The opportunity for sharing is greatest
when the VMs are similar, for example running the same
OS kernel or having similar data sets.

To implement CBPS, we borrowed code from Differ-
ence Engine [2] to extend the Xen hypervisor to detect
when guest memory pages have identical content and
transparently create NPT mappings to a single shared
MFN with read-only access (writeable bit set to false

3

local
private

local
shared

remote
shared

remote
private CBPS(R)

CBPS(LR)

Pg
Fa

ul
t(R

)

eviction

eviction

Pg
Fa

ul
t(R

W
)

PgFault(W)

CBPS(LR)

CBPS(R)

C
B

PS(L)

CBPS(L): share w/ a local page
CBPS(R): share with a remote page
CBPS(LR): share with local or remote page
PgFault(R): read page fault
PgFault(W): write page fault
PgFault(RW): read or write page fault

Figure 4: PFN State Transitions

in the NPT entries). The MFNs containing redundant
copies are freed. (Unlike Difference Engine, we only
share pages that are fully identical, and we do not com-
press page data). A guest write access to a shared MFN
causes an NPT page fault in the hypervisor (again, not
in the guest). The hypervisor creates a private writeable
copy of the MFN and changes the guest PFN to MFN
mapping for the faulting PFN. Then the hypervisor re-
sumes the faulting guest vCPU.

Systems with CBPS require memory overcommit sup-
port, where the total physical address space seen by VMs
exceeds the host machine’s physical memory capacity.
When page sharing is broken due to memory writes, new
host memory pages are allocated and can overflow the
host memory capacity. Typical CBPS systems would
overflow to disk storage, but we use a memory blade for
this purpose. The memory blade has data from multiple
systems, offering significant opportunities for cross-host
content sharing on the memory blade itself. Additionally,
CBPS can be used at both the local and remote memory
levels to increase overall effective capacity at both lev-
els. By reducing the total active working set, sharing at
the local level benefits remote memory by decreasing the
amount of remote memory required.

The state transitions for a single guest PFN is shown
in Figure 4, where greyed out transitions correspond to
sharing opportunities between local and remote MFNs,
an optional feature. Some state transitions in Figure 4 re-
quire MFNs to be allocated or freed. For example, when
a write access to a shared page occurs, a new MFN needs
to be allocated for a local private copy. To obtain this
page, the hypervisor may first need to evict some local
page by migrating its contents to remote memory. Thus,
a PgFault(W) transition from local/remote shared to lo-
cal private may trigger an eviction action that migrates
another PFN/MFN from local private or local shared to

Reconciling Sharing with MemBlade

Remote memory bitmap (one bit per MFN)

Non-shareable memory bitmap (one bit per GPFN, ideally one bit per MFN)
Used for guest I/O pages

Page struct
(per MFN)

domain

GPFN

domain

GPFN

domain

GPFN

Lock-free add/del
Garbage collection

Inverse map for shared pages

Figure 5: Inverse Mapping

remote private/shared.
When a shared page is moved to local or remote mem-

ory, the NPT entries for all PFNs that share the page
need to be updated to ensure proper address translation
and page fault triggering. We added a reverse map data
structure (Figure 5) that records the PFNs sharing each
MFN. Entries are added when CBPS page scanning de-
tects a sharing opportunity, and removed on guest write
accesses causing page faults. These actions can occur
concurrently by multiple CPU cores. To avoid lock con-
tention, which we found to be expensive for this struc-
ture, we designed it to be lock free, allowing concur-
rency of multiple delete operations and one add opera-
tion. Deletes mark entries in the inverse map as invalid
rather than de-linking the entries, and entries are later
garbage collected by the single CPU core that adds en-
tries when performing periodic CBPS scans. Additional
concurrency control challenges had to be overcome; for
example, a page fault caused by one guest can trigger
eviction that causes an NPT entry of another guest to be
modified. Finally, pages used as source or destination
of DMA transfers by I/O devices must be kept local and
non-shared. To enforce these properties, we added code
to Xen’s QEMU-based I/O emulation (in a helper “stub
domain”) to intercept memory pages used by guest VM
I/O operations and then prevent their eviction or sharing.

4 Evaluation

We ran our prototype hypervisor on a large memory sys-
tem which has 8 quad-core AMD Opteron processors,
with 256 GB of total RAM. We ran two primary work-
loads: VoltDB, an in-memory database software using a
TPC-C-esque setup; and mstress, a microbenchmark we
wrote which allots a virtual memory region for frequent
access (hot) and a separate region for infrequent access
(cold). VoltDB is setup with the database server VMs
running on our test system, and another server running
the client drivers which execute transactions against the
database. Due to its network interactions and in-memory
design, network and memory performance are highly
stressed. Mstress is highly memory access-intensive and
designed to stress our system. We ran using 108 accesses
to 7 GB of memory; the hot memory region is 0.7GB and
the cold region is 6.3GB, with 90% of accesses going to
hot pages. Half of the hot pages are shareable with two
copies of each shared page.

We use the VoltDB workload to illustrate the perfor-

4

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

1 VM 2 VM 3 VM 1 VM 2 VM 3 VM

Clock Global RR

Figure 6: Remote accesses in mstress

mance of disaggregated memory and CBPS on memory
intensive workloads, while we use the mstress workload
to provide insight into the fine-grained, function-level
performance of our prototype. A single workload in-
stance is run per-VM, and the VoltDB, and mstress VMs
have 4 and 8 GB of memory, respectively. In addition
to our prototype, we also developed a cost model to de-
termine the benefits provided by disaggregated memory
versus baseline systems. This model estimates the 3 year
total cost of ownership of a system, factoring in the pri-
mary hardware components (CPU, memory, disk, mem-
ory blade, etc.), as well as the 3 year power cost.

4.1 Page Replacement Policy Impact
We used the mstress workload to study the impact of
page replacement policy. We ran the workload using
Clock and Round Robin with 1, 2, and 3 VMs. Fig-
ure 6 plots the total number of remote memory accesses
incurred with each run. Overall, the number of remote
accesses is lower with Clock than Round Robin, indicat-
ing that Clock is better able to select victim pages that are
unlikely to be accessed soon. On the other hand, Figure 7
plots the total amount of CPU cycles spent in each run to
select a victim page, and the resulting workload runtimes
are shown in Figure 8. Executing the Clock algorithm is
far more expensive than Round Robin. Although Clock
makes slightly better decisions than round robin about
which pages to evict, Clock must examine more pages
and access more data structures to make each decision.
Compared to disk-based paging, where it pays to spend
a few extra CPU cycles to make more optimized choices,
the much lower latency of memory blades changes that
traditional trade-off in favor of making fast, less opti-
mized decisions.

4.2 VM Consolidation Results
Using the VoltDB workload, we measured the perfor-
mance, in terms of throughput, of several configurations.
We ran between 1 to 8 VoltDB VMs, and considered
five server configurations: Max, Base, CBPS, DM, and

0

5E+10

1E+11

1.5E+11

2E+11

2.5E+11

1 VM 2 VM 3 VM 1 VM 2 VM 3 VM

Clock Global RR

Cy
cl
es

Figure 7: Time in mstress selecting victim pages

0

50

100

150

200

250

300

350

400

450

1 VM 2 VM 3 VM 1 VM 2 VM 3 VM

Clock Global RR

Ru
nt
im

e
(s
)

Figure 8: mstress runtimes

DM+CBPS. The Max configuration has enough RAM to
host all of the VMs, Base is a cost-optimized server that
has RAM sufficient for half of the VMs, and CBPS is
the Base configuration with content based page sharing
enabled to provide a greater effective memory capacity.
The DM configuration uses our disaggregated memory
solution with enough RAM to host all of the VMs, but
half of the RAM is local to the server, and half is hosted
on the memory blade. DM+CBPS uses the combination
of disaggregated memory and content based page shar-
ing.

The performance results are shown in Figure 9. We
can see Max provides near linear performance scaling
with VMs and Base provides the same scaling, but is
only able to host half of the VMs. The CBPS con-
figuration enables memory capacity savings of approxi-
mately 40%, allowing an additional virtual machine to be
hosted. However, there is a slight performance penalty
due to the time required to do page scanning and com-
parisons, as well as the copy-on-write breaking of shared
pages if one of the sharers needs to modify the page. The
DM configuration is able to provide performance within
10% of the Max configuration, demonstrating the effec-
tiveness of our disaggregated memory design in keeping
the working set in the local memory. At 8 VMs, DM
shows a performance drop off, which is partially from the
working set growing too large, and partially from some
inefficiencies in our software that leads to serialization
delays as more VMs are added. In future revisions, we
expect these serialization delays can be significantly re-

5

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8

To
ta
l t
hr
ou

gh
pu

t

VMs

Max provision
Baseline
CBPS
Disag. Mem.
DM + CBPS

Figure 9: Total throughput as number of VMs is in-
creased.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 2 3 4 5 6 7 8

Pe
rf
 /
 $

VMs

Max provision
Baseline
CBPS
Disag. Mem.
DM + CBPS

Figure 10: Performance-per-dollar results, factoring in
the cost of each configuration

duced through more optimized data structures. Finally,
the DM+CBPS provides slightly lower performance at
4 VMs compared to DM, due to the same performance
penalties as in the CBPS case, but provides better scal-
ing at higher VMs, as the 40% memory capacity savings
frees up local memory to store a larger portion of the
working set.

In Figure 10, we show the performance-per-cost re-
sults for each of the configurations. Base is able to pro-
vide the best perf/$ for 1-4 VMs due to being a cost-
optimized server, but it is unable to scale to higher VMs
and provide as high peak perf/$ as the other configura-
tions. The CBPS option, due to its lower performance,
provides lower perf/$ at the same number of VMs as
Base, but is able to scale to a higher number of VMs.
The DM and DM+CBPS options are able to provide a
higher perf/$ compared to the Max configuration by uti-
lizing less expensive DIMMs, as well as reducing proces-
sor and board costs by requiring less memory channels
and less DIMMs per channel.

5 Related Work

Ye et al. [6] take a similar approach to extend the exist-
ing memory management indirection of an existing hy-
pervisor to model an additional memory hierarchy level
used transparently by OSs and applications in virtual ma-
chines. Our approach differs in that it takes advantage
of recent processor hardware support for nested paging.
More significantly, our investigation sheds light on the
use case of server consolidation with memory disaggre-
gation.

In addition, our work integrates memory disaggrega-
tion and content-based page sharing. CBPS has been the
topic of multiple publications [5, 2, 4], while this paper
demonstrates the complementary benefits of CBPS and
emerging hardware techniques.

The recent MemX project [1] implemented a remote
memory pager within a VM, with memory capacity pro-
vided by other servers in a cluster using Ethernet or In-
finiband as the interconnect. While motivated by sim-
ilar issues, our work differs in providing guest VM-
transparent access to remote memory, while MemX ex-
poses remote memory to guest VMs as a paging device.
For guest VMs with MemX to take full advantage of
the performance properties of remote memory compared
to traditional storage media would likely require further
modification of guest OS paging code. We also assume
a different hardware platform that uses PCIe as the in-
terconnect to a dedicated memory blade, resulting in a
remote memory that is an order of magnitude lower la-
tency than that provided by MemX, and therefore differ-
ent software-level requirements. The most recent MemX
work includes data deduplication (content based page
sharing), but only performs the deduplication on any re-
motely stored pages. Our work examines the synergy be-
tween deduplication at both the local and remote memory
levels.

6 Conclusions

Our work shows that disaggregated memory has strong
potential benefits for server consolidation. It is able
to provide high performance relative to a server using
entirely local memory, and able to do so at a supe-
rior performance-per-cost. By combining disaggregated
memory with content based page sharing, we have shown
further benefits in freeing up local memory, enabling
higher performance at higher VM consolidation than ag-
gressive baseline systems.

References
[1] DESHPANDE, U., WANG, B., HAQUE, S., HINES, M., AND

GOPALAN, K. Memx: Virtualization of cluster-wide memory. In

6

ICPP’10: Proceedings of the 39th International Conference on
Parallel Processing (2010), pp. 663–672.

[2] GUPTA, D., LEE, S., VRABLE, M., SAVAGE, S., SNOEREN,
A. C., VARGHESE, G., VOELKER, G. M., AND VAHDAT, A.
Difference engine: harnessing memory redundancy in virtual ma-
chines. In OSDI’08: Proceedings of the 8th USENIX conference
on Operating systems design and implementation (Berkeley, CA,
USA, 2008), USENIX Association, pp. 309–322.

[3] LIM, K., CHANG, J., MUDGE, T., RANGANATHAN, P., REIN-
HARDT, S. K., AND WENISCH, T. F. Disaggregated memory for
expansion and sharing in blade servers. In ISCA ’09: Proceedings
of the 36th annual international symposium on Computer archi-
tecture (New York, NY, USA, 2009), ACM, pp. 267–278.

[4] MIŁÓS, G., MURRAY, D. G., HAND, S., AND FETTERMAN,
M. A. Satori: enlightened page sharing. In USENIX’09: Proceed-
ings of the 2009 conference on USENIX Annual technical confer-
ence (Berkeley, CA, USA, 2009), USENIX Association, pp. 1–1.

[5] WALDSPURGER, C. A. Memory resource management in vmware
esx server. In OSDI ’02: Proceedings of the 5th symposium on Op-
erating systems design and implementation (New York, NY, USA,
2002), ACM, pp. 181–194.

[6] YE, D., PAVULURI, A., WALDSPURGER, C. A., TSANG, B.,
RYCHLIK, B., AND WOO, S. Prototyping a hybrid main memory
using a virtual machine monitor. In ICCD (2008), IEEE, pp. 272–
279.

7

