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Assessing the vulnerability of large heterogeneous systems is crucial to IT operational decisions such as
prioritizing the deployment of security patches and enhanced monitoring. These assessments are based on
various criteria, including (i) the NIST National Vulnerability Database which reports tens of thousands of
vulnerabilities on individual components, with several thousand added every year, and (ii) the specifics of
the enterprise IT infrastructure which includes many components. Defining and computing appropriate
vulnerability metrics to support decision making remains a challenge. Currently, several IT organizations
make use of the CVSS metrics that score vulnerabilities on individual components. CVSS does allow for
environmental metrics, which are meant to capture the connectivity among the components; unfortunately,
within Section 2.3 of [1] there are no guidelines for how these should be defined and, consequently,
environmental metrics are rarely defined and used. We present a systematic approach to quantify and
automatically compute the risk profile of an enterprise from information about individual vulnerabilities
contained in CVSS scores. The metric we propose can be used as the CVSS environmental score. Our
metric can be applied to the problem of prioritizing patches, customized to the connectivity of an
enterprise. It can also be used to prioritize vulnerable components for purposes of enhanced monitoring.
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Abstract. Assessing the vulnerability of large heterogeneous systems
is crucial to IT operational decisions such as prioritizing the deploy-
ment of security patches and enhanced monitoring. These assessments
are based on various criteria, including (i) the NIST National Vulner-
ability Database which reports tens of thousands of vulnerabilities on
individual components, with several thousand added every year, and (ii)
the specifics of the enterprise IT infrastructure which includes many com-
ponents.
Defining and computing appropriate vulnerability metrics to support de-
cision making remains a challenge. Currently, several IT organizations
make use of the CVSS metrics that score vulnerabilities on individ-
ual components. CVSS does allow for environmental metrics, which are
meant to capture the connectivity among the components; unfortunately,
within Section 2.3 of [1] there are no guidelines for how these should be
defined and, consequently, environmental metrics are rarely defined and
used.
We present a systematic approach to quantify and automatically com-
pute the risk profile of an enterprise from information about individual
vulnerabilities contained in CVSS scores. The metric we propose can be
used as the CVSS environmental score. Our metric can be applied to
the problem of prioritizing patches, customized to the connectivity of an
enterprise. It can also be used to prioritize vulnerable components for
purposes of enhanced monitoring.

1 Introduction

Deciding which subsystems within a large enterprise system should be prioritized
for patching or should be monitored more closely is an art. Patching involves
more than the deployment of a patch, which is itself a non-trivial task. It also
involves assessing the risks of a vulnerability; planning, scheduling, testing and
qualifying the patches in a staging environment; and finally assembling the re-
sources needed for deployment, and for handling patch distribution failures and
help desk calls from end users. It is estimated that every patching event costs
anywhere between 0.0025 and 0.5513 person hours per system [3]. For large or-
ganizations with many tens of thousands of systems to be managed, the cost of
security patch management can be excessive.



As a result, organizations cannot address every known vulnerability, but
rather must prioritize them, based on the risk they pose to the enterprise. How
should an IT organization assess the risk posed by component vulnerabilities?
The key concern is to design a rational risk assessment scheme that can be
automated.

Several IT organizations, prioritize security patches using the Common Vul-
nerabilities and Exposure (CVE) system. CVE is a system for disseminating
vulnerability information against various types of IT assets. CVE reports are
coupled with a set of metrics defined by the Common Vulnerability Scoring Sys-
tem (CVSS). CVSS includes a base score, which rates the vulnerability in isola-
tion. CVSS also specifies environmental metrics intended to allow organizations
to account for the relevance of the vulnerability in their environment. Unfortu-
nately within Section 2.3 of [1], there are no guidelines to develop environmental
metrics and so they are rarely, if ever, used.

The risk presented by a component vulnerability depends on the context in
which the component is used, as well as the location of the component within the
enterprise topology. A component with a severe vulnerability in an isolated part
of a network that has little relevance to business operations may not pose as much
risk as a component with a mild vulnerability, but which plays a critical role in
an important business service. A second deficiency of the CVSS metrics is that
it does not account for multi-stage attacks which exploit vulnerable components
to launch attacks on components deeper within the network that are not directly
accessible to the attack source.

Our goal is to utilize the CVSS base scores to define and compute environ-
mental metrics for components within an enterprise. The requirement is that
the metric be intuitive and efficiently computable. The metric we define in this
paper meets both requirements and captures both the difficulty of launching
an attack on a component, and the impact that a successful attack can have
by opening up exploits on components downstream from the component. We
demonstrate scalable algorithms to compute our metrics, and give examples on
enterprise-scale networks with several thousand components.

Our metrics can be used to prioritize vulnerabilities, so that system adminis-
trators need focus only on those vulnerabilities that have the most significant im-
pact on their business. Additionally, our methods can also be used for “what-if”
analyses to track changes in security levels as changes are made to applications
and networks.

2 Related Work

A number of recent papers address the problem of evaluating network vulnera-
bility. The closest work in spirit to ours is the NetSpa system [4, 5]. Similar to
our approach, NetSpa also computes the reachability matrix of a network, albeit
using somewhat different techniques. The main difference is our definition of
the impact metric based on least-effort attack paths which captures multi-stage
attacks in an intuitive manner.



Singhal and Ou [10] suggest treating exploit metrics, such as CVSS scores,
as probabilities, but does not define an associated probability space, nor does it
justify assumptions in treating these metrics as probabilities.

We interpret the CVSS exploitability score from Section 3.2.1 of [1](not Sec-
tion 2.2.1) as a measure of effort rather than as probabilities, the latter being
hard to justify for various reasons. While we remain agnostic about the validity
of the CVSS scoring scheme itself, we take the operational view that since many
IT organizations are comfortable with the CVSS scores, it makes sense to build
on them.

Less closely related is the work on efficient generation of attack graphs [6–10].
These do not, however, explicitly model network router and firewall configura-
tions to calculate the end-to-end reachability matrix, and do not focus on the
problem of defining an aggregate impact metric.

A number of vendors, such as Qualys Guard, Red Seal Systems, and Skybox
offer vulnerability assessment products. Some of the publicly available literature
on these products claim to use “attack paths” in their assessment calculations,
but beyond that it is unclear exactly how their methods work.

3 Defining environmental metrics

We build on the CVSS metrics; our innovation is that our metrics also account
for the topological interconnections between components within the enterprise
network. This builds on previous work [2].

Another innovation of our work is that we account for the possibility of multi-
stage attacks. An attacker can launch an attack on any component if it has
end-to-end connectivity to the component. Once a component vulnerability has
been exploited and root access gained on the underlying machine, the attacker
can launch further attacks inside the enterprise. Such multi-stage attacks can
have devastating impact because exploited machines deep within the network
generally have greater network connectivity to internal machines than available
directly to the attacker.

Each application component can have multiple vulnerabilities. For each vul-
nerability, CVSS assigns an exploitability metric that captures the level of dif-
ficulty of exploiting the vulnerability. For this paper, we scale the CVSS ex-
ploitability metric to a number in the range [0,1]; smaller exploitability scores
indicate a less easily exploited vulnerability while a higher value indicates a more
easily exploited vulnerability.

In addition, we require that every component application be assigned a crit-
icality metric by an IT administrator; this metric can, for example, be based
on the relative criticality of business services that depend on this component.
For example, a service, such as corporate email service, a corporate portal, or
a general ledger system is made up of multiple applications. Our assumption is
that an IT organization can assign a criticality metric to each of the services it
provides that reflects the business priorities of the business functions supported
by each service. For example, we may determine that the accounts receivable



service is more important than the employee portal. Identifying services and
their associated priorities must be done manually by IT and business units. We
assume that the criticality metric is a number 0 or greater; larger criticality
scores indicate components that are more critical to the enterprise.

3.1 Exposure and Impact

For any component within an enterprise, there are two fundamental metrics that
we wish to capture:

– Exposure: how easy is it for the adversary to exploit the component vulner-
ability?

– Impact: what is the aggregate criticality of all the vulnerabilities that can
be exploited by the adversary?

To measure the exposure of a component, we consider all possible attack
paths from the adversary to the component. In order to do this, we first compute
the reachability graph of the enterprise.

Our abstract graph-theoretic model of an enterprise includes a node < a,m >
for every application component a deployed on a machine m. We include a
directed edge from node < a,m > to every node < a′,m > corresponding to
applications that share the same underlying machine. We also include directed
edges from < a,m > to < a′,m′ > if the port corresponding to application a′ on
machine m′ is reachable from machine m within the network. This calculation is
enabled by previous work, for example [2] which demonstrated how all end-to-
end connectivities can be computed efficiently from the configurations of network
routers and firewalls. Reachability calculations along similar lines, with some
minor differences, also appear in [4, 5].

Each component a can have multiple vulnerabilities. Let Ei,a,m denote the
CVSS exploitability score for vulnerability i that is associated with component
a and deployed on machine m. We define the quantity Wi,a,m = 1/(Ei,a,m + ε),
where ε > 0 is chosen to be extremely small (essentially to rule out the possibility
of division by 0).

The quantity Wi,a,m can be interpreted as the work required of an adversary
to exploit the vulnerability, assuming that the adversary has direct access to the
vulnerable application.

When the adversary does not have direct access to a component, it may still
have indirect access. The attacker can launch an attack on any component if it
has end-to-end connectivity to the component. Moreover, once a component vul-
nerability has been exploited and root access gained on the underlying machine,
the attacker can launch further attacks inside the enterprise. Such multi-stage
attacks can have devastating impact because exploited machines deep within the
network generally have greater network connectivity to internal machines than
available directly to the attacker.

We capture multi-stage attacks as paths in our graph from the adversary to
the component. In this paper we restrict attention to vulnerabilities whose suc-
cessful exploit results in privilege escalation, i.e., root access. Thus, an adversary



can launch an indirect, multi-stage attack by attacking components one-by-one
along the path. Of course, launching multi-stage attacks requires additional work,
and our goal is to capture the extra work in an intuitive way.

Consider a path p = v0, ...vk from the adversary v0 to a component vk. Let
Wi be the work required of the adversary to successfully exploit component vi
when he has direct access to vi. We define Wp the work required along path p
as:

Wp = W1 + cW2 + c2W3 + · · ·+ ck−1Wk,

where c > 1 is a constant amplification factor.
The amplification factor captures the additional step in a multi-stage attack

amplifies the work of an adversary to attack downstream nodes. The intuition
behind path weight is that the likelihood of a multi-stage attack depends not
only on the exploitability of the intermediate nodes, but also on the length of
the path; multi-stage exploits need to be much more sophisticated, and therefore
require more work, to succeed.

Next, we define the exposure of a component vk as exp(vk) = 1
minpWp

, the

minimum work path, over all paths from the adversary to the component. This
captures the intuition that any component is as exposed as the weakest attack
path to it from the adversary.

Note that the exposure metric can be efficiently computed for large networks
using well-known shortest path algorithms.

Finally, the impact of an adversary on a network is defined as

I(A,N) =
∑

v:nodes∈N

exp(v) ∗ C(v),

where C(v) is the criticality of node v. Using this measure as opposed to Col-
lateral Damage Potential in Section 2.3.1 of CVSS [1] has the advantage of
accounting for multistage attacks.

3.2 An application: Prioritizing patches

Suppose that we have computed the exposure of all nodes in a network, and the
impact of an adversary. How do we use these metrics to prioritize vulnerable
components for patching?

A simple method is to compute, for each patch, the reduction in adversarial
impact if the patch were applied. This requires recalculating all the shortest paths
and adversarial impact for each patch, and choosing the one which reduces the
impact by the largest amount. This process can be iterated in a greedy manner
to prioritize all patches.

Besides prioritizing patches, the metrics can also be used to evaluate alter-
native designs to update the network and applications.

4 Experimental Results

We have implemented our techniques above; specifically, in addition to algo-
rithms for computing the metrics outlined, we automatically scrape CVSS feeds



to gather exploitability metrics used in our calculations. On networks with sev-
eral thousand nodes, the algorithm to compute the metrics take under one
minute. This supports our view that our techniques can be useful for performing
what-if analyses as part of change management planning, and for re-evaluating
risks in response to new CVE reports in real time.

We have also run tests, described below, to validate that the scoring functions
are consistent with intuition. In an initial test on a simplified scenario, the met-
rics indicated that a component with lower CVSS vulnerability was given higher
patching priority than another component with a higher CVSS score. This was
indeed correct, as the component with lower CVSS score was easier to exploit
and, unlike the other component, was upstream of critical components.

4.1 Network Description

The networks we tested our ideas on were synthetically generated from a tem-
plate; the topology and applications were designed to be representative of large
enterprise networks.

The network template has components consisting of one adversary, and end-
users connected to a mirrored infrastructure. Each mirror consists of a 3-tier
architecture (replicated copies of web, application, and data base servers), and
different categories of administrator machines connected via a separate adminis-
trator network. The number of end-users, mirrors, and administrators and servers
within each mirror are parameterized so we can easily scale the sizes of the net-
works for our purposes. For example, for the experiments reported here, each mir-
ror site consisted of fifty data base servers, twenty five application servers (ASA,
ASB), and twenty five web servers(WSA, WSB). These mirrors were adminis-
tered by three categories of administrators with ten(admS), twenty(admDb) and
five machines(admAll) respectively. The number of end-users was one thousand.

A schematic diagram of the network is depicted in Figure 1. The network has
three compartments: (a) the end-users network, (b) the infrastructure network
and (c) the administrative network. The connectivity (number of reachable pairs)
between nodes varied by experiment; a typical set of numbers is shown in Table 1.
In this table each cell (other than in the first row or first column) contains the
number of edges that connect the source component(the first cell of its row) with
the destination component (first cell of its column).

For a fixed choice of the connectivity matrix, we generated 25 test networks,
with randomly chosen edges according to the connectivity requirements. Thus,
each data point in our result corresponds to 25 runs.

This network schema is meant to represent the network structure of a medium
size enterprise. It captures the kind of compartmentalization and connectivity
encountered in in-house networks. The connectivity numbers can be adjusted as
desired. The adversary is a single node with connectivity to the internal parts
of the enterprises – all of them, and varied by experiment.



Fig. 1. Schema for synthetic experimental networks.

4.2 Experimental Approach

Our goal is to validate our metric by showing that the formalism yields plausible
results for a variety of networks that resemble enterprise networks under our
assumptions about how malware propagates and how critical administration
deem their resources such as server and end user machines to be.

In particular we want to show that the downstream impact of the adversary
varies with respect to input parameters in a manner consistent with our intu-
ition. The specific question we address is: how many end-user machines must an
adversary be able to directly exploit in order to have the same impact that he
can achieve by exploiting one web server directly?

The experiment was to measure the downstream impact of varying the num-
ber of edges from the adversary to (a)end user machines versus (b) web servers.
This experiment was carried out for various average values of exploitability of
end user machines and various average values of exploitability of web server
machines.

In generating our networks we specified the average criticality of different
component types. For example, while the average criticality of an end user node
was 0.202, individual end user node criticialities deviated from the mean ran-
domly. For completeness, the criticalities of all the component types were set



End WSA WSB ASA ASB DBA DBB admS admDb admAll
Users

Adversary 1 - 10 1-10 1-10 1

EndUsers 100k 40k 40k 1k 1k

WSA 500 50 50 50 50 50

WSB 500 50 50 50 50 50

ASA 250 50 250 50 200 25

ASB 50 250 50 250 200 25

DBA 250 50 250 50 200 25

DBB 50 250 50 250 200 25

admS 2000 500 500 50 50 5

admDb 1000 500 500 10 50 5

admAll 5000 125 125 125 125 250 250 100 50 25
Table 1. Typical connectivities for the synthetic test networks.

as follows – endUsers:0.20239, WSA:85.68, WSB:85.44, ASB:83.56, ASA:86.0,
DBA:843.6, DBB:848.8, adminDB:677.0, adminS:724.0, adminAll: 743.0. ) Thus,
for example, the average web server was 425 times more critical than an end user
node. Choosing different numbers affected the magnitude, but not the nature of
the results.

We carried out two series of experiments – one in which the number of edges
from the adversary to the end user was varied in steps of 100 and another in
which the number of edges between the adversary to the web servers was added
in steps of 2. In Figure 2(a) the average user exploitability takes values from
the set {0.01, 0.21, 0.29, 0.42. 0.63, 0.76}. In Figure 2(b) the average web-server
exploitability takes the values from the set {0.002, 0.133, 0.26, 0.47, 0.67, 1.0}.
As noted earlier, for each choice of parameters and connectivity, we computed
the metrics over 25 networks generated at random according to the connectivities
chosen.

For running the experiments we chose c = 1.25. Changing the value of c
between 1.1 and 1.75 did not significantly alter the nature of the results.

4.3 Results and their interpretation

The graphs in Figure 2 show how increasing the exposure of web servers has much
greater impact than increasing the exposure of end user nodes. Each experiment
was run 25 times with the edges between the adversary and web-servers or end-
user machines generated at random. Each dot in the figure is actually a composite
of twenty five values, one from each run.

In the first graph the impact saturates. This can be explained by the fact that
end user nodes are not particularly highly connected. The advantage gained by
the adversary by connecting to more end users quickly tapers off. On the other
hand web servers are well connected and hence the impact scales linearly.

The graphs can also answer the question: How much should the average
vulnerability of a web-server be decreased in order to bound adversarial impact



in case of a web server compromise to a desired level? From these figures it can
be seen that to have the same downstream impact as increasing the connectivity
between the web server and the adversary by about ten connections, it takes
roughly two orders of magnitude of increased connectivity between the adversary
and the end users.

This is in line with our intuitive expectations. Firstly, the web servers are
more critical. Secondly, they are well connected to other critical components
such as application servers and database servers. Thus our metric quantifies the
advantage the adversary gains by connecting to web servers as opposed to end
users.

(a) (b)

Fig. 2. Changes in downstream impact of adversary as a result of changing the number
of edges from the adversary to (a)End user machines and (b) Web servers. The implicit
family of curves in (a) and (b) represent the effect of changing average exploitability
– in (a) the average user machine exploitability takes values from the set {0.01, 0.21,
0.29, 0.42. 0.63, 0.76}, and in (b) the average web server exploitability takes values
from the set the set {0.002, 0.133, 0.26, 0.47, 0.67, 1.0}.

Conclusions

In this paper we proposed a new way to define the CVSS environmental metric.
The definition we propose can be efficiently computed, and the experiments show
that the metric behaves in an intuitive way as network parameters are varied.
Further evaluation on large-scale production networks is needed to see if these
ideas can be fruitful in practice.

In the future, we anticipate that such metrics could be computed by integrat-
ing the analysis algorithms (reachability and metric evaluation) with an asset
management system such as a Universal CMDB (Common Management Data
Base), to get access to each of the components and their configurations,and with
CVE feeds, for example from the National Vulnerability Database.
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