

Finding the most fault-tolerant flat XOR-based erasure codes for storage

systems
Jay J. Wylie

HP Laboratories

HPL-2011-218

Abstract:
We describe the techniques we developed to efficiently find the most fault-tolerant flat XOR-based

erasure codes for storage systems. These techniques substantially reduce the search space for finding

fault-tolerant codes (e.g., by a factor of over 52 trillion in one case). This reduction in the search space

has allowed us to find the most fault-tolerant codes for larger codes than was previously thought feasible.

The result of our effort to find the most fault-tolerant flat XOR-based erasure codes for storage systems

has yielded a corpus of 49,215 erasure codes that we are making public.

External Posting Date: December 15, 2011 [Fulltext] Approved for External Publication

Internal Posting Date: December 15, 2011 [Fulltext]

 Copyright 2011 Hewlett-Packard Development Company, L.P.

Finding the most fault-tolerant flat XOR-based
erasure codes for storage systems

Jay J. Wylie
HP Labs

jay.wylie@hp.com

Abstract—We describe the techniques we developed to effi-
ciently find the most fault-tolerant flat XOR-based erasure codes
for storage systems. These techniques substantially reduce the
search space for finding fault-tolerant codes (e.g., by a factor
of over 52 trillion in one case). This reduction in the search
space has allowed us to find the most fault-tolerant codes for
larger codes than was previously thought feasible. The result of
our effort to find the most fault-tolerant flat XOR-based erasure
codes for storage systems has yielded a corpus of 49,215 erasure
codes that we are making public.

I. I NTRODUCTION

In this paper, we describe the techniques we used to find the
most fault-tolerant flat XOR-based erasure codes for storage
systems. By “find”, we mean exhaustive computational search
of the code space. By “most fault-tolerant”, we literally mean
the most fault-tolerant codes. I.e., the codes with the best
Hamming Distance, and in the case of two codes with the
same Hamming Distance, the one with fewer possible failure
sets at the Hamming Distance. By “flat”, we mean an erasure
code in which exactly one element (data or parity) is stored
on each device (e.g., hard disk drive, SSD, or flash memory).
By “XOR-based” we mean erasure codes in which each parity
element is the XOR-sum of some subset of data elements. By
“for storage systems”, we mean systematic erasure codes for
small values ofk (the number of data elements) andm (the
number of parity elements). The target audience for this paper
are other engineers, scientists, and theoreticians interested in
erasure codes for storage systems.

We provide some background on erasure codes for storage
systems and our prior work on evaluating flatXOR-based era-
sure codes (section II). We then describe our core contribution,
a computational approach to finding the most fault-tolerantflat
XOR-based erasure codes for storage systems (section III).We
describe, at a high level, the techniques we developed to (i)
efficiently explore all codes in a code space (i.e., for some
given number of data and parity elements), and (ii) efficiently
determine the fault-tolerance of each code in a code space. Our
effort to find the most fault-tolerant flat XOR-based erasure
codes for storage systems has yielded a corpus of 49,215
erasure codes that we are making public [1]. We hope that
other storage systems and coding theory researchers can ben-
efit from the codes we found. We summarize and discuss some
interesting properties of the codes in our corpus (section IV).
Finally, we discuss potential future work (section V).

II. BACKGROUND

An erasure code consists ofn symbols,k of which aredata
symbols, and m of which areredundant symbols. For XOR-
codes, we refer to redundant symbols asparity symbols. In
storage systems, symbols are packed into device blocks that
fail as a whole. A storage system converts any failure of such
a block into an erasure and so we use failure synonymously
with erasure. Instead of symbols, we refer toelements, which
correspond to the basic I/O unit of an underlying storage
device (e.g., a block).

We only considersystematicerasure codes: codes that store
the data elements and the parity elements. Systematic erasure
codes provide a common case read path that requires no de-
coding computation — data elements are simply concatenated
to recover the stored value. Such a read path also permits an
individual data element, or portion of a data element, to be
read and returned; this is important for some file system and
database workloads.

The fault-tolerance of an erasure code is defined byd its
Hamming distance. An erasure code of Hamming distanced

tolerates all failures of fewer thand elements. We use the
following terminology to talk more exactly about the fault-
tolerance of a specific erasure code. Anerasure patternis a
set of erasures (i.e., list of failed elements) that result in at least
one data element being irrecoverable. Theerasures listfor an
erasure code is the list of all its erasure patterns. The erasures
vector is a vector of lengthm in which the ith element is
the total number of erasure patterns of sizei in the erasures
list. Thedth entry of the erasures vector is the first non-zero
entry. A minimal erasureME is an erasure pattern in which
every erasure is necessary for it to be an erasure pattern; ifany
erasure is removed fromME, then it is no longer an erasure
pattern. Theminimal erasures list(MEL) for an erasure code
is the list of all its minimal erasures. Theminimal erasures
vector(MEV) is a vector of lengthm in which theith element
is the total number of minimal erasures of sizei in the MEL.
We believe that theMEV is the the most concise representation
of the exact fault-tolerance of an erasure code and so use it to
determine the most fault-tolerant erasure codes.

We originally defined the minimal erasures terminology in
[2] where we introduce the Minimal Erasures (ME) Algorithm.
The ME Algorithm uses the structure of a flatXOR-based
erasure code represented in its Tanner graph to efficiently
enumerate the code’s Minimal Erasures List. In this work, we

extend and improve the ME Algorithm to efficiently find the
most fault-tolerant erasure codes.

Flat XOR-based storage codes for storage are quite similar
to low-density parity-check (LDPC) codes [3]. FlatXOR-based
codes differ fromLDPC codes in that they are systematic codes
and have “small” values ofk andm. By small, we mean small
enough to be used in a storage system (e.g.,n = k + m ≤

30). Properties ofLDPC codes based on probabilistic and/or
asymptotic arguments that rely on large numbers of symbols
do not apply to the flatXOR-based codes we consider.

Even though flatXOR-based codes are similar toLDPC

codes, and we use the Tanner graph to determine theMEL,
our assessment of fault-tolerance is not based onstopping sets.
Stopping sets[4] are specific sets of failures that can prevent
iterative decodingfrom successfully decoding. In a storage
system, we expect to use comprehensive decode methods that
require a matrix to be inverted and so ignore stopping sets.

Because of space limitations, we discuss related work on
erasure codes for storage systems in a narrow manner. For
broader coverage of related work on flatXOR-based erasure
code constructions, and on evaluating erasure codes for stor-
age, please see Section II of our most recent paper [5]. Tradi-
tionally, LDPC codes are constructed by randomly generating
a Tanner graph based on some probability distributions of the
edge counts for data and parity elements. Plank and Thomason
survey and evaluate such constructions for storage systems[6];
they focus their investigation on a specific performance metric
(read overhead) and cover values ofk from small to moderate
(up to 150). We are interested in identifying the absolute
most fault-tolerant constructions for some values ofk and
m and so do not rely on randomized constructions. Plank
et al. built upon their initial work to find codes for small
values ofk andm with the best read overhead [7]. They used
both computational means and analytic means to produce a
substantial list of optimal and near-optimal codes for use in
systems research [8]. Their computational approach is similar
to ours, though the metric of interest is different.

In storage systems, many erasure codes are generated via
formulaic construction. I.e., an algorithm, based on some
mathematical insight and parameterized byk , m, and often
other values (e.g., some prime value), is used to construct
an erasure code with some known properties (e.g., a specific
fault-tolerance or with specific recovery properties). Seeour
prior work for examples and discussion of such parametric
formulaic constructions [5]. Such constructions tend to be
based on some regular structure, which in our opinion goes
against the “nature” ofLDPC-like codes. We believe that
parametric formulaic constructions can cover only a small
portion of the possible space of constructions. Our approach
to finding the most fault-tolerant flatXOR-based codes is
via exhaustive computational exploration of the space of all
possible such codes.

Our exhaustive computational approach to finding the most
fault-tolerant flatXOR-based codes is similar to the approach
Hafner used to find Weaver code constructions [9]. Hafner
discovered various regular, symmetric constructions of multi-

dimensional (i.e., not flat)XOR-based erasure codes for storage
systems by exhaustive search for patterns of offsets and stripe
widths that achieve desired level of fault-tolerance for a given
rate. Our starting point differs from Hafner’s in that we limit
ourselves to flat codes and do not constrain ourselves to codes
with rotational symmetry. The rationale for this is many-fold:
we are not convinced of the benefit of rotational symmetry for
erasure codes in storage systems; limiting our interest to flat
codes reduces the code space we need to exhaustively explore;
and, we think the corpus of flat codes may be more useful for
others to build upon than multi-dimensional codes.

III. F INDING THE MOST FAULT-TOLERANT CODES

To find the most fault-tolerant flatXOR-based codes, the
brute force approach would consist of two steps: One, generate
all possible such codes in the (k ,m)-code space; Two, try all
possible failure patterns to determine the exact fault-tolerance
of each (k ,m)-code in the code space. Such a brute force
approach is prohibitively expensive: for a given (k ,m), there
are 2k×(k+m) possible XOR codes, and each such code has
2k+m possible failure patterns. We followed the basic flow
of the brute force approach, but made each step significantly
more efficient.

A. Efficiently exploring the code space

There are many ways in which we reduced the (k ,m)-code
space explored while still ensuring that we found the most
fault-tolerant (k ,m)-code in the space. First, we note that there
are only2k×m possiblesystematicXOR codes which greatly
reduces the code space. Second, we note that many of the
2k×m possible codes are in fact isomorphic to one another.
Therefore, to fully explore the (k ,m)-code space, we only need
to enumerate all non-isomorphic systematic Tanner graphs for
the space.

Our Tanner graph representation is a bipartite graph with
data elements on one side, and parity elements on the other. A
parity element is connected to each data element that isXORed
in its calculation. Non-isomorphic bi-partite graph generation
is well understood [10] and thenauty tool can efficiently
generate all such graphs [11].

Thenauty tool provides many options that we used to fur-
ther reduce the portion of the (k ,m)-code space we explored.
First, we only needed to consider connected graphs, since a
Tanner forest is necessarily less fault-tolerant than a Tanner
graph for a given (k ,m). Second, thenauty tool can shard
the space of possible graphs using theres/mod option. This
provides a path to parallelization: up tomod distinct machines
can be used to explore the space. Such parallelization requires
the results from allmod shards to be aggregated after the fact,
but that step is trivial. Third, the weight and connectivityof
each node in the bipartite graph can be restricted fornauty.

We use the connectivity constraints to set a minimum con-
nectivity for data elements in the code. We set this minimum to
be an estimated Hamming distance of the code, less one. Our
rationale is that a data element connected toc parity elements
necessarily has a minimal erasure of sizec + 1 that consists

of itself and each parity element to which it is connected. We
estimate the Hamming distance conservatively, i.e., we erron
the side of too big an estimate. If our estimate is in fact too
big, then no codes are found and we try again with a smaller
Hamming distance estimate. If our estimate is too small, then
we still find the most fault-tolerant (k ,m)-code, but evaluate
more of the code space than strictly necessary.

We have not systematically evaluated the reduction of the
code space due to each of our optimizations. However, we did
track how many codes we evaluated for each (k ,m). For the
(9,9)-code space, we evaluated 45,706,861,459 distinct codes.
A simplistic brute force approach could have evaluated281

codes. Our approach reduced the code space, relative to a
simplistic brute force approach, by a factor of over 52 trillion.

B. Efficiently determining fault-tolerance

The key tool we use to determine the fault-tolerance of a flat
XOR-based erasure code ismea, our implementation of the ME
Algorithm. The ME Algorithm, as described previously [2],
uses the structure of the Tanner graph to enumerate the
Minimal Erasures List (MEL) for a specific code. Briefly, and
at a very high level, the ME Algorithm generates an initial set
of base minimal erasures, one for each data element, and uses
them to initialize theMEL. The ME Algorithm then recursively
takes each minimal erasure already in theMEL and generates
additional minimal erasures to add to theMEL; it does so
by iteratively substituting in base erasures for parity elements
in each minimal erasure. Using the structure of the code to
directly enumerate theMEL requires substantially less work
than the brute force approach of testing all possible failure
patterns by attempting to decode.

Beyond the ME Algorithm being more efficient than brute
force determination of fault-tolerance, we added many features
to mea to more efficiently evaluate large numbers of codes.
One key improvement in execution speed is to permitmea to
terminate as soon as it discovers that the code it is evaluating
cannot be the most fault-tolerant. There are two cases in which
mea terminates early: one, it is provided with an estimate of
the expected Hamming distance (as is done for improved graph
generation) and it finds a minimal erasure that is smaller than
the estimated Hamming distance; two, it tracks the bestMEV

it has found thus far and it determines that theMEV of the
current code is worse than the best.

A computationally expensive corner-case for the ME Algo-
rithm is confirming that a child erasure is in fact a minimal
erasure and not the union of two disjoint minimal erasures.
For the purposes of finding the most fault-tolerant code, this
corner case can be ignored; such child erasures are necessarily
longer than the smallest minimal erasures that distinguishthe
most fault-tolerant codes from the rest.

The parallelization of code space exploration has some
costs. First, the optimization in whichmea terminates early
is not as effective. This is becausemea only tracks the best
codes per shard of the code space being generated bynauty;
the variousmea instances processing different shards to not
share information during execution. Second, we made the early

termination even less effective by tracking the five most fault-
tolerant codes rather than the single most fault-tolerant code.
I.e., for each of the five best fault-tolerances achievable in a
code space,mea retains all the distinct codes that achieves
such fault-tolerance. We did this out of curiosity and so that
we could see the differences among the best few codes in a
(k ,m)-code space. Finally, a light-weight post-processing step
is required to collect the results from all shards of the code
space into a single list of most fault-tolerant (k ,m)-codes.

We have not systematically evaluated the efficiency of each
optimization we introduced to find the most fault-tolerant
codes. Two specific accomplishments put the efficiency of
these techniques into context though. Gaidioz et al. [12] used
Monte Carlo approaches to construct small codes because
exhaustive “techniques are not feasible for generating larger
codes, like the ones we are interested in using,” where larger
referred to k > 3 and m > 5. We used the techniques
described above to find a more fault-tolerant (8,6)-code than
Gaidioz et al. discovered in less than an hour on a laptop.
Woitaszek et al. [13] used a “test suite [that] contains exactly
962,144,153 test cases and requires about 34 CPU days to
execute for a single graph” to verify the fault-tolerance of
a small XOR-based code they wanted to use; we were able
to determine the fault-tolerance of the (48,48)-code foundby
Woitaszek et al. at a greater level of detail than the authorsin
a few CPU hours on a laptop.

IV. M OST FAULT-TOLERANT CODES

The result of our effort to find the most fault-tolerant flat
XOR-based erasure codes for storage systems has yielded a
corpus of 49,215 erasure codes that we are making public [1].
The corpus lists the most fault-tolerant flat XOR-based erasure
codes for storage systems for(k ≤ 5,m ≤ 10), (k ≤ 9,m ≤

9), (k ≤ 16,m ≤ 5), and (k ≤ 20,m ≤ 4). Over all of the
(k ,m)-code spaces we evaluated, the 2,670 codes that provide
the most fault-tolerance, as measured by theMEV, are listed.
We also include the 46,545 codes that provide the next four
best fault-tolerances, as measured by theMEV, over these code
spaces. We did this computational search in approximately 10
days a few years ago on a cluster of 300 HP DL360 computers
with 2.8 GHz Intel Xeon processor and 4 GB of RAM.

Since our corpus will be released in its entirety [1], we
focus on presenting summary statistics here and discussing
interesting features of the code corpus. First, we note thatthe
parts of the corpus that can be easily verified by inspection
are correct. For example, all replication codes, i.e., codes with
k = 1, in the corpus are listed correctly. Similarly, all codes
with (k > 1,m = 1) in the corpus correctly list RAID4 (a
single parity element that is the XOR-sum of all data elements)
as the most fault-tolerant code. These easily verified codesare
the only flatXOR-based codes that areMDS.

Table I lists the Hamming distance for the best codes (as
measured by theMEV) we found for each value ofk and
m. Note that all the most fault-tolerant codes we found for
k > 4 andm > 5 stand out in so far as others thought it to
be prohibitive to process such codes via “brute force” [13].

k m =1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10 11
2 2 2 3 4 4 5 6 6 7 8
3 2 2 3 4 4 4 5 6 6 7
4 2 2 3 4 4 4 5 6 6 7
5 2 2 2 3 4 4 4 5 6 7
6 2 2 2 3 4 4 4 5 6 -
7 2 2 2 3 4 4 4 5 6 -
8 2 2 2 3 4 4 4 5 6 -
9 2 2 2 3 4 4 4 5 6 -

10 2 2 2 3 4 - - - - -
11 2 2 2 3 4 - - - - -
12 2 2 2 2 3 - - - - -
13 2 2 2 2 3 - - - - -
14 2 2 2 2 3 - - - - -
15 2 2 2 2 3 - - - - -
16 2 2 2 2 3 - - - - -
17 2 2 2 2 - - - - - -
18 2 2 2 2 - - - - - -
19 2 2 2 2 - - - - - -
20 2 2 2 2 - - - - - -

TABLE I
HAMMING DISTANCE OF MOST FAULT-TOLERANT CODES.

The trend is as expected: asm increases, Hamming distance
increases.

Table II lists the number of distinct codes (i.e., non-
isomorphic Tanner graphs) that share the bestMEV. Results
like those for(k ,m) = (11, 3), (11, 4) and(11, 5) standout be-
cause only one distinct code achieves the most fault-tolerance
in these code spaces. Table III lists the number of distinct
codes that achieve the best Hamming distance for the code
space. Because we only tracked the five bestMEV for each
code space, we list a plus sign for any code spaces in which
the five bestMEV all have the same Hamming distance. Some
specific results stand out in this table. For(k ,m) = (11, 4) and
(11, 5), only one distinct code achieves the best Hamming
distance. For(k = 9,m = 9), a huge code space, only 19
distinct codes achieve the best Hamming distance.

As mentioned earlier, Plank et al. identified flatXOR-
based codes with the best read overhead [7], [8]. The (10,4)-
code they identified as having optimal overhead (of 10.6771)
has anMEV of (0, 1, 27, 72); compare this to theMEV of
the most fault-tolerant such code:(0, 0, 28, 77). In fact, the
read overhead optimal code identified by Plank et al., when
compared with our corpus of best codes, has the second best
fault-tolerance.

V. FUTURE WORK

We believe that some engineering effort and re-running
this analysis on more modern computers could find the most
fault-tolerant flatXOR-codes for even more code spaces. The
nauty tool is written in C and so likely runs efficiently.
However, ourmea tool set is written in python; a rewrite in C
and more careful design of some internal data structures could
yield a substantial execution speedup. Even if implementation
re-engineering provided a factor of ten speedup, and modern

k m =1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 1 2 2 1 2 2 1 2 2 1
3 1 2 2 1 3 6 7 3 6 3
4 1 1 1 1 3 6 10 3 7 3
5 1 2 3 3 2 12 8 6 3 2
6 1 2 6 6 7 5 57 47 13 -
7 1 1 7 10 8 57 20 162 401 -
8 1 2 3 3 6 59 162 859 102 -
9 1 2 6 7 3 13 17 102 19 -

10 1 1 3 3 2 - - - - -
11 1 2 1 1 1 - - - - -
12 1 2 3 4 3 - - - - -
13 1 1 6 13 10 - - - - -
14 1 2 7 33 24 - - - - -
15 1 2 3 51 42 - - - - -
16 1 1 6 14 19 - - - - -
17 1 2 3 33 - - - - - -
18 1 2 1 13 - - - - - -
19 1 1 3 4 - - - - - -
20 1 2 6 13 - - - - - -

TABLE II
NUMBER OF DISTINCT CODES THAT SHARE MOST FAULT-TOLERANT MEV.

compute hardware yielded another factor of ten speedup, the
exponential nature of the size of code spaces is still a barrier
to, for example, finding the most fault-tolerant (20,20)-code.
To reach such a goal, we believe further advances in our
understanding of how to prune a (k ,m)-code space and how to
efficiently determine the exact fault-tolerance of a (k ,m)-code
is necessary.

A. Efficiently exploring the code space

We used prior results to provide estimates of the expected
Hamming distance to guide the code space exploration. A
better Hamming distance estimator could improve code space
exploration.

We have experimented with estimating the Hamming weight
(i.e., number of edges in the Tanner graph) of the most fault-
tolerant code in a code space. We started with an estimate of
the exact Hamming weight of the most fault-tolerant code.
We then expand the Hamming weight range, i.e., from a
single initial number to a range from one less to one greater
than the initial number, and so on. We continue expanding
the Hamming weight range until we stop finding more fault-
tolerant codes. Unfortunately, our effort so far has not resulted
in any substantial reduction in the computation required to
explore a code space.

Thenauty tool provides theres/mod option that allows
us to parallelize code space exploration. We are not convinced
that this feature was designed to efficiently parallelize graph
generation. I.e., there may be overheads to this parallelization
that we do not understand. If so, then reducing the degree
to which we parallelize code space exploration, or improving
the means whichnauty uses to parallelize such work, could
make parallel code space exploration more efficient.

k m =1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 1 2 2 1 4 2 1 4 2 1
3 1 4+ 2 1 8 31+ 11 3 30+ 3
4 1 6+ 1 1 14 66+ 10 3 79+ 3
5 1 9+ 32+ 35+ 14 121+ 152+ 417+ 223+ 2
6 1 12+ 29+ 35 12 163+ 381+ 1633+ 565+ -
7 1 14+ 49+ 28 10 243+ 5386+ 4611+ 557 -
8 1 12+ 48+ 16 6 313+ 4271+ 859 102 -
9 1 12+ 70+ 7 3 370+ 366+ 102 19 -

10 1 17+ 57+ 3 2 - - - - -
11 1 12+ 53+ 1 1 - - - - -
12 1 12+ 67+ 352+ 595+ - - - - -
13 1 17+ 45+ 222+ 334+ - - - - -
14 1 12+ 70+ 417+ 630+ - - - - -
15 1 12+ 58+ 267+ 647+ - - - - -
16 1 17+ 83+ 213+ 497+ - - - - -
17 1 12+ 61+ 290+ - - - - - -
18 1 12+ 53+ 361+ - - - - - -
19 1 17+ 67+ 352+ - - - - - -
20 1 12+ 45+ 290+ - - - - - -

TABLE III
NUMBER OF DISTINCT CODES THAT ACHIEVE THE BESTHAMMING DISTANCE .

B. Efficiently determining fault-tolerance

In our tool chain,mea consumes the output of a single
instance ofnauty when code exploration is parallelized. The
optimizations to terminate early do not work as well in this
context. Some form of communication among instances of
mea that share the currently best knownMEV could improve
this optimization when code exploration is done in parallel.

We have experimented with having the ME Algorithm
determine a short prefix of theMEV of the code (i.e., the
first two non-zero entries in theMEV). The only cut off we
could determine to be correct though was the number of
symbol elements in the minimal erasure. I.e., for an estimated
Hamming distance of 3,mea had to evaluate all child erasures
up to the point that only minimal erasures with four or
more data elements in them remained. This effort has not yet
resulted in substantial reduction in code evaluation time.

We believe the main way to improve the efficiency of
determining fault-tolerance though is to improve the ME Algo-
rithm. Any techniques that can more efficiently find minimal
erasures at the Hamming distance could significantly improve
our ability to analyze larger code spaces.

ACKNOWLEDGMENTS

Thanks to my key collaborators on erasure codes research
over the last five years (Kevin Greenan, Jim Plank, Ram
Swaminathan) for feedback, ideas and discussions that lead
to these results. Thanks to Alex Dimakis for organizing the
Distributed Storage Systems session at the 45th Asilomar Con-
ference on Signals, Systems and Computers. Finally, thanksto
the other attendees that provided me with feedback and asked
me interesting questions.

REFERENCES

[1] J. J. Wylie, “List of most fault-tolerant flat XOR-based erasure codes
for storage systems,” HP Labs, Tech. Rep. HPL-2011-217, November
2011.

[2] J. J. Wylie and R. Swaminathan, “Determining fault tolerance of XOR-
based erasure codes efficiently,” inDSN-2007. IEEE, June 2007, pp.
206–215.

[3] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman,
and V. Stemann, “Practical loss-resilient codes,” inSTOC-1997. ACM
Press, 1997, pp. 150–159.

[4] M. Schwartz and A. Vardy, “On the stopping distance and the stopping
redundancy of codes,”IEEE Trans. on Inf. Theory, vol. 52, no. 3, pp.
922–932, 2006.

[5] K. M. Greenan, X. Li, and J. J. Wylie, “Flat XOR-based erasure codes
in storage systems: Constructions, efficient recovery, andtradeoffs.” in
26th IEEE Symposium on Massive Storage Systems and Technologies.
IEEE, May 2010.

[6] J. S. Plank and M. G. Thomason, “A practical analysis of low-density
parity-check erasure codes for wide-area storage applications,” in DSN-
2004. IEEE, June 2004, pp. 115–124.

[7] J. S. Plank, A. L. Buchsbaum, R. L. Collins, and M. G. Thomason,
“Small parity-check erasure codes - exploration and observations,” in
DSN-2005. IEEE, July 2005.

[8] J. S. Plank, “Enumeration of small, optimal and near-optimal parity-
check erasure codes,” Department of Computer Science, University of
Tennessee, Tech. Rep. UT-CS-04-535, November 2004.

[9] J. L. Hafner, “WEAVER Codes: Highly fault tolerant erasure codes for
storage systems,” inFAST-2005. USENIX Association, December 2005,
pp. 212–224.

[10] B. McKay, “Practical graph isomorphism,”Congressus Numerantium,
vol. 30, pp. 45–87, 1981.

[11] ——, “nauty version 2.2 (includinggtools),” http://cs.anu.edu.au/
∼bdm/nauty/.

[12] B. Gaidioz, B. Koblitz, and N. Santos, “Exploring high performance
distributed file storage using LDPC codes,”Parallel Computing, vol. 33,
pp. 264–274, May 2007.

[13] M. Woitaszek and H. M. Tufo, “Fault tolerance of Tornadocodes
for archival storage,” in15th IEEE International Symposium on High
Performance Distributed Computing, 2006.

