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Abstract

Efficient enumerative coding for tree sources is, in general, surprisingly intricate—a simple uniform

encoding of type classes, which is asymptotically optimal in expectation for many classical models such as

FSMs, turns out not to be so in this case. We describe an efficiently computable enumerative code that is

universal in the family of tree models in the sense that, for a string emitted by an unknown source whose

model is supported on a known tree, the expected normalized code length of the encoding approaches

the entropy rate of the source with a convergence rate (K/2)(logn)/n, where K is the number of free

parameters of the model family. Based on recent results characterizing type classes of context trees, the

code consists of the index of the sequence in the tree type class, and an efficient description of the class

itself using a non-uniform encoding of selected string counts. The results are extended to a twice-universal

setting, where the tree underlying the source model is unknown.

∗This paper was presented in part at the 2008 International Symposium on Information Theory (ISIT’08), Toronto, Canada,

2008, and part of it was included in the Festschrift in Honor of Jorma Rissanen on the Occasion of his 75th Birthday, 2008.
†Supported by grant PDT - S/C/IF/63/147.



I. INTRODUCTION

In the method of types [1], given a parametric model family, the set of sequences of length n over a

finite alphabet A is partitioned into type classes, where two sequences belong to the same class if and only

if they are assigned the same probability by all models in the family.1 Since all sequences in a class are

equiprobable, the universal probability assignment problem for the given model family reduces to optimally

assigning probabilities to type classes.

This reduction is optimally performed by the Normalized Maximum Likelihood (NML) code [3], which

can be interpreted as a description of the type, generated by assigning to it a probability proportional

to its ML probability, followed by an enumeration of the sequences in the type class. Unfortunately, in

general, implementing the NML code is difficult for most popular model families, including the family of

tree models studied in this paper (see [4] and references therein for efficient implementation of NML for

some specific model families). Other universal methods, based, for example, on the Krichevskii-Trofimov

sequential probability assignment [5], are computationally efficient, and also assign the same code length

to all the sequences of a given type. They do not, however, provide a separate and identifiable description

of the type. In this paper, we are interested in universal enumerative codes that possess both qualities:

they provide a separate description of the type class of the encoded sequence, and this description can

be efficiently computed. By “universal” we mean codes whose normalized average length differs from the

entropy rate of the source by K logn
2n plus lower order terms,2 where K is the number of free statistical

parameters in the family, matching Rissanen’s lower bound [6, Theorem 1]. By “efficient computation”

we mean one whose encoding time is polynomial in the length of the input sequence, and with code

construction time that is also polynomial in the number of free parameters of the family.3

For (non-curved) exponential families of probability distributions (see, e.g., [7]) satisfying some mild

regularity conditions, most type classes have, to first approximation, the same ML probability [8, Appendix

A]. This observation leads to enumerative source codes that are universal (in expectation), and for which

uniform coding is used both for the set of type classes and for the set of sequences of each type class. In

particular, for finite–state machine (FSM) models [9],4 such a code can be efficiently implemented. Indeed,

1Type classes were defined in terms of empirical distributions for memoryless models in [1]. The more general definition of type

class used here was introduced in [2, Sec. VII], where extensions of the method of types to wider model families are considered.
2Unless specified otherwise, logarithms are to base two.
3Our complexity requirement will focus on the description of the type class, as there are known efficient methods to do the

enumeration of the class itself for most cases of interest. Notice that, since the number of types in the cases of interest is generally

exponential in the number of free parameters of the family, a construction of the NML code relying on the computation of the ML

probability of each type would be very inefficient.
4Although FSM models are not strictly exponential families (they are curved exponential families), conditioning on a fixed final

state s does define an exponential family of probability distributions over the length-n sequences with final state s (see, e.g., [10]).

Since all sequences in an FSM type class share the same final state, conditioning the probability of a type class on its final state,

say s, amounts to dividing the probability of the type class by the probability of observing state s at time n. This division does not

affect the mentioned approximate equiprobability of the ML probability for most type classes.
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Fig. 1. Tree models over A = {0, 1}

for an FSM F with a finite set of states S and alphabet of size α, there are5 Θ
(
n|S|(α−1)

)
type classes

of sequences of length n [11, attributed to N. Alon]. Thus, a uniform encoding of the type class gives

a normalized cost of up to |S|(α − 1) logn
n + O( 1

n ). Moreover, upper bounding the size of a type class

by a trivial combinatorial expression, using Stirling’s formula, and bounding the expectation as in [12],

one obtains, for the type class of a random sequence, that the expected normalized logarithm of the class

size is upper-bounded by H− |S|(α− 1) logn
2n + O( 1

n ), where H is the entropy rate of the source. Thus,

the term subtracted from H compensates for half the cost of describing the type class, yielding an overall

penalty of |S|(α− 1) logn
2n +O(1/n) over H, which is universal, as it matches the bound of [6]. Since the

description of the type class is not difficult in this case, and efficient methods exist for enumerating the

class, the resulting enumerative code satisfies our requirements.

The question arises: Is a similar technique applicable to useful model families where approximate ML

equiprobability of the type classes may not hold? In this paper, we address this question for the popular

tree models [12], [13], [14], which, in general, do not induce an exponential family of distributions [15]

or equiprobable types, and have proven very valuable as modeling tools in data compression and other

applications in information theory and statistics (cf. [12], [13], [14], [16], [17]).

A tree model over a finite alphabet A of size |A| = α consists of a full α-ary tree6 T and a set of

conditional probability distributions on A, one associated with each leaf of the tree. Each edge of the

tree is labeled with a symbol from A and each node is labeled with the concatenation of the edge labels

found on the way from the root to that node. The probability of the next symbol, xi+1, of a sufficiently

long string given all the past, xi, is determined by the conditional probability distribution associated to the

unique leaf in the tree whose reversed label is a suffix of xi, i.e., the leaf obtained by descending from

the root, matching the labels of the edges with the symbols in the string, starting from the last symbol

and progressing in reverse order. The leaves of the tree are called, thereby, the states of the model. In the

5We use conventional asymptotic notation: O(f(n)) denotes a function g(n) such that |g(n)| ≤ c|f(n)| for a positive constant c

and sufficiently large n, Θ(f(n)) a function g(n) such that g(n) = O(f(n)) and f(n) = O(g(n)), and o(f(n)) a function g(n)

such that limn→∞ g(n)/f(n) = 0.
6We say that an α-ary tree T is full if every internal node of T has exactly α children.
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binary tree T1 of Figure 1, for example, all strings ending with 0 select State 0, while in tree T2, strings

ending with 00 select State 00 and strings ending with 10 select State 01.

The number of type classes for a tree model with set of states ST grows polynomially as nk, but the

exponent k may be larger than (α−1)|ST |, which would be the exponent in the FSM case. The asymptotic

number of type classes for a tree model is fully characterized in [18], generalizing the corresponding result

for FSMs. A simple example that illustrates the discrepancy with the FSM case is easy to construct:

Consider the binary trees T1 and T2 of Figure 1. Since the number of occurrences of symbol 1 in states 00

and 01 of T2 are determined, respectively, by the number of occurrences of states 100 and 101, it is not

difficult to see that each type class of T1 is partitioned into up to a constant number of type classes in T2.

Now, the tree T2 has the “FSM property” (in the sense that the occurrence of a symbol in a state defines

the next state), so the number of type classes, by the above discussion on FSMs, is Θ(n5) for both trees,

even though T1 has four states. Since, as noted, the partitions are essentially the same, lower-bounding the

average code length appropriately, we can readily see that an enumerative scheme using a uniform code

for the type classes would not exploit the reduction in the number of model parameters of T1 with respect

to T2. Notice, however, that a type class with significantly different conditional empirical distributions for

states 00 and 01 of T2 will have small probability under the model T1 for any choice of model parameters,

which suggests that the savings in code length might be recovered with a non-uniform code for the type

classes.

In this paper, we construct such non-uniform code, leading to an efficient enumerative coding scheme

which is universal (in expectation) for the family of tree models. Furthermore, in the twice–universal

setting, in which a tree is not given and optimality is rather required for any possible tree, we show that,

by suitably estimating a tree from the data, the sequences in the aforementioned “atypical” type classes

for each given tree would in fact estimate a different tree. These type classes can thus be discarded from

the coding space, leading to a twice–universal enumerative code in the family of tree models.

Our implementation of the second part of the enumerative code, namely, the index of xn in its type

class, will be based on the enumeration of tree type classes from [18]. As for the first part, namely, the

description of the type class, a key building block in our scheme will be a collection of codes for encoding

counts of occurrences of certain patterns within the input sequence. In the example of Figure 1, given the

empirical conditional distribution, p̂, in state 0 of T1, and the number of occurrences, ns, of the pattern

00, we can estimate the number of occurrences, n(a)s , of symbol a in state 00 of T2 as n̂(a)s = nsp̂(a). If

ns and p̂ have already been described to the decoder, we can then encode the difference n(a)s − n̂(a)s by

assigning high probability to small absolute differences. This observation will be generalized to encode,

efficiently, a collection of pattern counts that uniquely determines the type class of a sequence.

The rest of the paper is organized as follows. In Section II we introduce our notation and formal setting,

and review some results from [16] and [18]. In Section III we present a universal enumerative code for

tree models, for which we introduce variable length codes for the encoding of pattern counts, following
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the observation above. These codes, which are based on Golomb codes [19] and dubbed string count codes

(SCC), will be used for the encoding of type classes and will also help us obtain a precise asymptotic

upper bound on the expected size of the type class of a sequence with respect to a given tree. Finally,

in Section IV we present two approaches for the twice-universal setting. The first approach is a standard

plug-in scheme where the tree is first estimated, and then the previously derived universal enumerative

code is applied as-is, using the estimated tree in lieu of a given one. In the second approach, we take

advantage of the observation above that for any given tree, there will be sequences that are “atypical”

for the tree, and will not estimate it regardless of the model parameters. Thus, the enumerative code is

significantly simplified in the twice-universal setting by excluding such sequences from the coding space

for the estimated tree.

II. BACKGROUND AND PRELIMINARIES

A. Tree models

Let A be an alphabet of α ≥ 2 symbols and let A∗, A+, and An denote, respectively, the set of finite

strings, positive-length strings, and length-n strings over A. We denote by ukj the string ujuj+1 . . . uk

over A, with ukj = λ, the empty string, when j > k. We omit the subscript when j = 1. For a string

u = uk, we let u = ukuk−1 . . . u1 denote its reverse, |u| = k its length, and we write head(u) = u1, and

tail(u) = uk2 ; |S| also denotes the cardinality of a set S. Concatenation of u and v is denoted uv, and

u�v (resp. u≺v) denotes the prefix (resp. proper prefix) relation.

Our models will be based on directed full α-ary trees (or simply, trees), in which each of the α edges

departing from an internal node is labeled with a different symbol from A, and each node is labeled with

the string formed by concatenating the edge labels on the path from the root (labeled by λ) to the node.

We identify a tree T with its set of nodes, and each node with its label, e.g., u ∈ T indicates that there

is a node of T labeled u. The leaves of T are called states. The set of states is denoted ST and we let

I (T ) = T \ ST denote the set of internal nodes of T . For a set of nodes of a tree, W , we let P (W )

denote the set or parents of nodes in W , i.e.,

P (W ) = {u ∈ A∗ : ua ∈W for some a ∈ A} . (1)

Although the definition (1) can be applied to an arbitrary set of strings W , we will always regard W as

a subset of some tree.

For a sufficiently long sequence xn, we refer to the (unique) prefix of xn in ST , denoted σ(xn), as

the state selected by xn (the dependence of σ on T will be assumed from the context). For the purpose

of selecting states, we assume that xn is preceded by an arbitrary fixed semi-infinite string x0−∞. This

convention uniquely determines, for any given tree, an initial state s0 “selected” by λ, and guarantees that

any (short) sequence selects a state. Thus, xn uniquely determines a state sequence s0, s1, . . . , sn, with

si = σ(xi), 0 ≤ i ≤ n. We refer to sn as the final state of xn with respect to T and we say that the symbol
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xi+1 occurs in state si, 0 ≤ i < n. The notion of occurrence is extended to arbitrary strings, namely, if

for u = uk and some index i, 0 ≤ i < n, we have xii−k+1 = u, we say that xi+1 occurs in context u in

xn (notice that, for consistency with our state labeling convention, the reverse of u is matched with xn).

Trees do not necessarily define a next-state function. In the tree T1 of Figure 1, for example, the

occurrence of symbol 1 in state 0 does not determine whether the next state will be 100 or 101. When a

next state function exists for a tree T we say, concisely, that T is FSM. The following theorem characterizes

FSM trees.

Theorem 1 ([16, Theorem 2]): A tree T is FSM if and only if every suffix of a state of T is in T .

A tree T ′ is an extension of T if T ⊆ T ′. If a state s of T is an internal node of an extension T ′, we

say that T ′ extends s. The tree TF obtained from T by adding all the suffixes of states of T is called its

FSM closure; TF is the minimal FSM extension of T [16]. In Figure 1, T2 is the FSM closure of T1.

A model parameter for a tree T , denoted pT , is a set of |ST | conditional probability distributions over

A, one associated to each state of T . The tree T and the model parameter pT define a tree model, denoted

by 〈T, pT 〉, which in turn defines a probability assignment [20] P〈T,pT 〉(·) given by

P〈T,pT 〉(λ) = 1; P〈T,pT 〉(x
n) =

n∏
i=1

pT (xi|si−1), n ≥ 1 . (2)

For each n ≥ 0, the assignment (2) determines a probability distribution on An and, thus, 〈T, pT 〉

completely defines a stochastic process or source. We use the notation P〈T,pT 〉 {·} to refer to the probability

of an event that depends on a random sequence Xn ∈ An drawn with probability P〈T,pT 〉(·), where n will

be clear from the context. For example, we write P〈T,pT 〉 {f(Xn) = 0}, for some function f , to denote

the probability
∑
xn:f(xn)=0 P〈T,pT 〉(x

n).

Different trees and sets of conditional probabilities can generate the probability assignment (2); a tree

model 〈T, pT 〉 is minimal if for every internal node u of T there exist states uv and uw such that pT (·|uv) 6≡

pT (·|uw). In the sequel, when there is no ambiguity, we will loosely use the symbol T to refer both to

a tree model and to its underlying tree. For example, we will simplify the notation P〈T,pT 〉 {·} to PT {·}.

All expectations E [ · ] will be with respect to P〈T,pT 〉 {·}, where 〈T, pT 〉 will be clear from the context.

B. Tree type classes and enumerative coding

For a sequence xn, a string u, and a symbol a ∈ A, define

n(a)u (xn) = |{ i : 0 ≤ i < n, xii−|u|+1 = ū, xi+1 = a }| , (3)

namely, the number of occurrences of a in context u (or, if u ∈ ST , in state u) in xn. Define also

nu(xn) =
∑
a∈A

n(a)u (xn) . (4)

We omit the dependence of counts on xn when clear from the context. Notice that, by (3), we have

n(a)u =
∑
b∈A

n
(a)
ub (5)
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and, summing (5) over all a ∈ A, by (4), we obtain

nu =
∑
b∈A

nub . (6)

Furthermore, denoting by i(w) and f(w) the indicator functions of the predicates w = x0−|w|+1 and

w = xnn−|w|+1, respectively, we have

nau + f(au) = n(a)u + i(au) , (7)

for every string u and every a ∈ A. To simplify expressions, we will use a generic constant δ to account

for border adjustments due to terms of the form i(w) and f(w). In coding situations these terms will be

known to the decoder, and in any case border effects will have no bearing on the asymptotic results.

From (2), using a simple algebraic argument, it follows that for sequences xn and yn, we have

P〈T,pT 〉(x
n) = P〈T,pT 〉(y

n)

for all choices of the model parameter pT , if and only if n(a)s (xn) = n
(a)
s (yn) for all s ∈ ST , a ∈ A.

Thus, in the case of tree models (as in other cases of interest), the notion of type defined in probabilistic

terms in Section I admits a combinatorial characterization. For a tree T , and a sequence xn, we denote by

K(T, xn) the collection of counts {n(a)s }s∈ST , a∈A. The type class of xn with respect to T can then be

defined as

T (T, xn) = { yn ∈ An : K(T, yn) = K(T, xn) } .

An encoding of xn with an enumerative (source) code for T is comprised of two parts: a description

of K(T, xn), and an index of xn within T (T, xn). By using a trivial bound

|T (T, xn)| ≤
∏
s∈ST

ns!∏
a∈A n

(a)
s !

,

Stirling’s formula, and applying bounds on expectations from [12], we obtain the following lemma, which

bounds the length of the second part of the enumerative code.

Lemma 1: Let T be a tree model with all conditional probabilities nonzero, and let H be the entropy

rate of the corresponding source. Then,

1

n
E [ log |T (T, xn)| ] ≤ H− |ST |(α−1)

log n

2n
+O

(
1

n

)
. (8)

The following theorem states that we can efficiently implement the second part of the enumerative code,

which involves computing an enumeration of T (T, xn), i.e., a one-to-one mapping f from T (T, xn) to

the set of indexes { 0, 1, . . . , |T (T, xn)|−1 }, and its inverse, f−1.

Theorem 2: Given K(T, xn), an enumeration of T (T, xn) and its inverse can be computed in time that

is polynomial in n and in |T |.

Proof: It is shown in [18, Theorem 3] that, given the so-called pseudo-state transition matrix [18] of

xn with respect to T , an enumeration f of T (T, xn) and its inverse, f−1, can be computed in time that

is polynomial in n. Given K(T, xn), the construction of the pseudo-state transition matrix, in turn, can be

done in time polynomial in |T |, as it follows from [18, Lemma 14].
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C. Minimal canonical extension

We say that a state s ∈ ST is forgetful if as ∈ I (T ) for all a ∈ A. In a forgetful state, a next-state

transition cannot be determined for any occurring symbol a ∈ A. A tree with no forgetful states is called

canonical. It can be shown [18, Lemma 2] that, by sequentially extending forgetful states until no such

state is left, a tree T is brought to a unique minimal canonical extension, which will be denoted Tc. Any

canonical extension of T is an extension of Tc. In a sense, forgetful states are the farthest away from

satisfying the FSM property, and Tc brings a tree T “closer” to its FSM closure TF . Thus, we have the

following relation among T , Tc, and TF .

Lemma 2: The trees T , Tc, and TF satisfy T ⊆ Tc ⊆ TF , and they are all of the same depth.

Proof: Since Tc is an extension of T , we have T ⊆ Tc. TF is also an extension of T and it is clearly

canonical, as it defines a next-state function. Since any canonical extension of T is an extension of Tc, we

must have Tc ⊆ TF . Finally, since TF is obtained from T by adding all the suffixes of states of T , TF

and T are the same depth.

We denote by σc(u) the state selected by u in Tc. The following lemma follows immediately from [18,

Lemma 8] and [18, Corollary 2].

Lemma 3: K(Tc, x
n) can be reconstructed from a description of K(T, xn) and σc(x

n). This computation

takes a number of operations on registers of length O(log n) bits that is polynomial in |T |.

D. The number of tree type classes

We define the state transition support graph GT=(VT , ET ) of a tree T , with vertex set VT=ST , and

edge set ET comprising all state pairs (s, t) such that some sequence xn causes a direct transition from

s to t in T . By the definition of state selection in trees, the symbol xi+1 causes such a transition if and

only if head(t) = xi+1 and the reverse of both s and tail(t) are prefixes of xi. Thus, we have

ET = { (s, t) : s � tail(t) or tail(t) ≺ s } . (9)

The following theorem establishes the asymptotic number of type classes induced by a tree T on

sequences of length n, in terms of the state transition support graph of Tc.

Theorem 3 ([18, Theorem 4]): The number of type classes induced by T on sequences of length n is

NT = Θ
(
n|ETc |−|VTc |

)
. (10)

When T is FSM, T is also canonical, and there are exactly α edges departing from each state in T .

Thus, in this case, the exponent in (10) is |ETc |− |VTc | = |ST |(α−1). Thus, (α−1)|ST | log n+O(1) bits

suffice to describe T (T, xn) when T is FSM and, therefore, by (8), an enumerative code for an FSM tree

T , based on uniform coding of the type class, is universal (in expectation). Moreover, such an enumerative

code can be efficiently implemented, as it follows from Theorem 2 and Lemma 4 below. We denote by

Kb(T, xn), b∈A, the collection of |ST |(α− 1) counts

Kb(T, xn) = {n(a)s }s∈ST , a∈A\{b} . (11)

8



Lemma 4: If a tree T is FSM, then for any b ∈ A, Kb(T, xn) and the final state, σ(xn), of xn in T

completely determine K(T, xn). The computation of K(T, xn) takes a number of operations on registers

of length O(log n) bits that is polynomial in |T |.

Lemma 4 follows by applying [18, Lemma 15(ii)] to the state transition support graph of a tree that

is FSM. For a general tree model, however, Kb(T, xn) and σ(xn) are insufficient to determine K(T, xn).

The exponent |ETc | − |VTc | in (10) may be larger than |ST |(α − 1) and, as discussed in Section I, an

enumerative code with a uniform encoding of type classes may be suboptimal.

III. UNIVERSAL ENUMERATIVE CODING

In this section, we present an efficiently computable description of the type class T (T, xn) (or, equiva-

lently, the counts K(T, xn)). By Theorem 2, the index of a sequence within its type class can be computed

and uniformly encoded, efficiently, using the combinatorial characterization of the tree type class in [18].

These descriptions of K(T, xn) and the index of xn within its type class, together, yield an enumerative code

for tree models. We also analyze the expected code length of this code showing that it is universal in the

family of tree models. For this purpose, we study the expected length of the the proposed description

of K(T, xn) (code length of the first part of the enumerative code), and the asymptotic behavior of

E [ log |T (T,Xn)| ] (code length of the second part of the enumerative code). We assume, throughout,

that the tree is not trivial, i.e., |ST | > 1.

A. Outline

Our encoding of type classes will consist of two parts: a description of Kb(T, xn) as defined in (11) for

some b ∈ A (which is generally insufficient to characterize the type class), and a set of additional counts

that completes the description of K(T, xn). These additional counts can be efficiently described, as stated

in the following lemma.

Lemma 5: Let T be a tree model with all conditional probabilities different from zero and let Xn be a

random sequence emitted by the corresponding source. Then, there exists a code for describing K(T, xn)

whose code length, L(Xn), satisfies

E [ |L(Xn)| ] ≤ 1

2
(α− 1)|ST | log n+

1

2
(|ETc | − |VTc |) log n+O(1) . (12)

Moreover, such a code can be obtained by encoding Kb(T, xn), using |ST |(α−1) counts of log n bits7 each,

the final state of xn in Tc, using a constant number of bits, and an additional |ETc | − |VTc | − |ST |(α− 1)

counts, requiring on average 1
2 log n + O(1) bits of description each. The overall encoding of K(T, xn)

requires a number of operations on registers of length O(log n) that is polynomial in |T | and in n.

The crux of the proof of Lemma 5 will be to find a minimum set of counts, and the order in which they

are described, that suffice to determine K(T, xn), and, at the same time, can be described economically.

7To simplify discussions, we will sometimes ignore integer constraints on code lengths, referring, for example, to logn bits instead

of the more precise “at most dlogne bits.” This loose convention will be immaterial to the main asymptotic results of the paper.

9



In Subsection III-B we present our enumerative code by defining, for the first part, algorithmically, the set

of counts to be encoded, the order in which they are encoded, and how K(T, xn) can be reconstructed by

the decoder. The encoding of the counts themselves is defined in Subsection III-C, where we introduce

string count codes (SCC). As mentioned, the second part of the enumerative code will be based on the

enumeration of the tree type class in [18].

SCC will also serve as a tool, in a coding argument, to analyze the asymptotic behavior of the expected

type class size in Subsection III-D. When T is FSM, the bound (8) on the expected type class size leads

readily, by means of Lemma 4, to the optimality of enumerative coding where type classes are encoded

uniformly. For general trees, however, describing the type class requires, by Lemma 5, an average of
1
2 (|ETc | − |VTc | − (α− 1)|ST |) log n additional bits with respect to the (α−1)|ST | log n+O(1) bits that,

by Lemma 4, suffice in the FSM case. Thus, we need a tighter upper-bound on E [ log |T (T,Xn)| ] to

offset the length increase of the type class description part. In Subsection III-D, we prove the bound in

Theorem 4 below, which satisfies our requirements.

Theorem 4: Let T be a tree model with all conditional probabilities different from zero, H the entropy

rate of the corresponding source, and GTc=(VTc , ETc) the state transition support graph of Tc. Then, for

a random sequence Xn emitted by this source,

1

n
E [ log |T (T,Xn)| ] ≤ H− |ETc | − |VTc |

2n
log n+O

(
1

n

)
.

Notice that, again, when T is FSM, we have |ETc | − |VTc | = |ST |(α − 1), bringing Theorem 4 in

agreement with Lemma 1. Theorem 4 complements, by providing an asymptotic interpretation, the exact

combinatorial characterization of the tree type class in [18]. While the combinatorial characterization is

instrumental in implementing the enumerative code, the asymptotic result helps us estimate the average

code length.

We prove Lemma 5 in Subsection III-E. Together with Theorems 2 and 4, these results will show that

the proposed enumerative code is universal and efficiently implementable, as summarized in Theorem 5

below, which is our main result. This theorem is also proved in Subsection III-E.

Theorem 5: Let T be a tree model with all conditional probabilities different from zero and let H be

the entropy rate of the corresponding source. Then, there exists an enumerative code for T , which can

be efficiently implemented, and whose code length, L(Xn), for a random sequence Xn emitted by this

source, satisfies

E
[
L(Xn)

n

]
≤ H+

|ST |(α− 1) log n

2n
+O

(
1

n

)
. (13)

B. Algorithmic description of the enumerative code

Let h and d denote, respectively, the minimal and maximal depth of leaves in T . For h ≤ k ≤ d, let T [k]

denote the truncation of T to depth k, and T [k]
c the canonical extension of T [k]. Notice that, by Lemma 2,

T
[k]
c has depth k. We denote by S

[k]
c the set of states of T [k]

c , and by σ
[k]
c (u) the state selected by u in

T
[k]
c .

10



Algorithm EncodeTypeClass(T, xn)

1. Choose b ∈ A; encode Kb(T, x
n) and the final state of xn in Tc.

/∗By Lemma 4 and the fact that T [h+1] is FSM,

this completely describes K(T [h+1], xn). ∗/
2. Set h = min{|s| : s ∈ ST } and d = max{|s| : s ∈ ST }.
3. For k = h+ 2 to d

4. Encode K(T
[k]
c , xn) given K(T

[k−1]
c , xn).

Fig. 2. Encoding of K(T, xn)

To encode the type class of xn with respect to T we will describe K(Tc, x
n), which, since Tc is an

extension of T , suffices to reconstruct K(T, xn). This description, in turn, will be done by truncation levels,

starting from a description of K(T
[h+1]
c , xn), and progressively describing each count set K(T

[k]
c , xn), for

h+ 2 ≤ k ≤ d, based on the previous description of the count set K(T
[k−1]
c , xn).

Algorithm EncodeTypeClass, shown in Figure 2, lists the main steps in the proposed encoding of

K(T, xn). The algorithm starts by encoding, uniformly, the counts in Kb(T, xn) for an arbitrary b ∈ A

with log n bits per count, and the final state of xn in Tc, using a constant number of bits. It then iterates

to describe, incrementally, each count set K(T
[k]
c , xn) given a previously described set K(T

[k−1]
c , xn), for

h + 2 ≤ k ≤ d. Notice that since T [h] is a full balanced tree, T [h+1] is FSM, and, hence, T [h+1]
c =

T [h+1]. By Lemma 4, K(T [h+1], xn) is completely determined by Kb(T, xn) (which, clearly, describes

also Kb(T [h+1], xn)) and the given final state. Thus, a decoder can reconstruct K(T
[h+1]
c , xn) from the

information provided in Step 1 of EncodeTypeClass, and can recover K(T
[d]
c , xn) from the information

encoded in the loop of Steps 3–4 of the algorithm. As mentioned, since T [d]
c is an extension of T , this is

sufficient to reconstruct K(T, xn).

Clearly, the crucial step in EncodeTypeClass is the encoding of the refinement of counters from T
[k−1]
c

to T [k]
c in Step 4. For u, v ∈ A∗, we denote by Nu,v the number of times a transition from context u to

context v occurs in xn (i.e., the number of indexes i, 0 < i < n, such that xi occurs in context u and

xi+1 occurs in context v). In particular, when u and v are states of a tree, Nu,v denotes the number of

times state v is selected immediately after state u. Notice that, for a state t, we have

nt =
∑
s∈ST

Nt,s =
∑
s∈ST

Ns,t + δ . (14)

Our implementation of Step 4 will amount to describing all state transition counts Ns,t, with s, t ∈ S[k]
c .

This set of counts is sufficient to determine K(T
[k]
c , xn) since n(a)s =

∑
au∈S[k]

c
Ns,au. However, not all

the counters in the set will be explicitly described, since some will be derivable from K(T
[k−1]
c , xn) and

earlier portions of the description of K(T
[k]
c , xn). All explicit encodings will be for counts Ns,t with

s, t ∈ S
[k]
c satisfying s � tail(t) (which, by (9), is a subset of all state transitions), for which we will

11



make use of the following lemma.

Lemma 6: Let s and t be states of a tree such that s � tail(t). Then, Ns,t = nt + δ.

Proof: Notice that s is the only source of state transitions into t and apply (14).

The proposed encoding of K(T
[k]
c , xn) given K(T

[k−1]
c , xn) will rely on relations between the consecutive

truncations, T [k−1] and T [k], of T , and their respective canonical extensions, T [k−1]
c and T [k]

c . We investigate

these relations next. We define the truncation increment,

∆T [k] = T [k] \ T [k−1] , h < k ≤ d , (15)

namely the set of nodes of T [k] at level k. The following lemma is an immediate consequence of the

definition of T [k]. We recall that I (T ) denotes the set of internal nodes of a tree T , and P (W ), defined

in (1), denotes the set of parents of a set of nodes W .

Lemma 7: Let h < k ≤ d. Then, we have

∆T [k] = ST [k] \ ST [k−1] , and P
(

∆T [k]
)

= ST [k−1] \ ST [k] = {r ∈ I
(
T [k]

)
: |r| = k − 1} .

In analogy to (15), we define the canonical truncation increment,

∆T
[k]
c = T

[k]
c \ T [k−1]

c , h < k ≤ d . (16)

Notice that, in general, T [k]
c is different from (Tc)

[k] and, therefore, ∆T
[k]
c is not necessarily the set of

nodes of Tc at level k. It is true, however, that T [k]
c is an extension of T [k−1]

c , as stated in the following

lemma, whose proof is deferred to Appendix A.

Lemma 8: Let h < k ≤ d. Then, T [k]
c is an extension of T [k−1]

c .

By Lemma 8, T [k]
c is obtained from T

[k−1]
c by adding the nodes in ∆T

[k]
c . We distinguish between nodes

in ∆T
[k]
c that are added to T

[k−1]
c for they belong to T [k] (but not to T [k−1]), and nodes in ∆T

[k]
c that

arise in T [k]
c in order to take T [k] to canonical form. The latter set, called the canonization increment, is

given by

∆cT
[k]
c = ∆T

[k]
c \ T [k] , h < k ≤ d . (17)

The following lemma will be instrumental in identifying an appropriate set of counts to describe

K(T
[k]
c , xn) given K(T

[k−1]
c , xn).

Lemma 9: For h < k ≤ d, a ∈ A, and r ∈ P
(

∆cT
[k]
c

)
, we have ar ∈ I

(
T

[k]
c

)
.

Proof: Since r ∈ P
(

∆cT
[k]
c

)
, by (17) and (16), r is the parent of a node in T [k]

c \T [k] and, therefore,

by the definition of canonical tree, r is a forgetful state of some tree T ′ built in the process of making T [k]

canonical (recall the process for making a tree canonical from Subsection II-C). Thus, by the definition of

forgetful state, ar is an internal node of some tree T ′ satisfying T [k] ⊆ T ′ ⊆ T [k]
c .

The following lemma establishes some relations among the objects in the foregoing definitions. The

proof is deferred to Appendix A.

Lemma 10: Let h < k ≤ d. Then,
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Procedure RefineTypeClass

1. For each r ∈ P
(
S

[k]
c

)
taken in non-decreasing order of length |r|:

2. If r ∈ P
(

∆cT
[k]
c

)
/∗Since P

(
∆cT

[k]
c

)
⊆ P

(
∆T

[k]
c

)
, by (19), this implies r ∈ S[k−1]

c . ∗/

3. Take d ∈ A such that dr 6∈ I
(
T

[k−1]
c

)
.

/∗Such d must exist (see proof of Lemma 12). ∗/
4. Use P(r, c) to describe counts Ns,t

for every s ∈ S[k]
c (r), c ∈ Ad, and t ∈ S[k]

c such that c = head(t).

5. [Let Ns,ds = n
(d)
s = ns −

∑
c6=d n

(c)
s , for all s ∈ S[k]

c (r).]
/∗We have ds ∈ S[k]

c and ns is known (see proof of Lemma 12).

The last equality follows from (4). ∗/
6. else, If r ∈ I

(
T

[k−1]
c

)
7. For each c ∈ A such that cr 6∈ I

(
T

[k]
c

)
,

8. [For each s ∈ S[k]
c (r), s′ = σ

[k]
c (cs) is well-defined, thus Ns,s′ = n

(c)
s .]

/∗Since r ∈ I
(
T

[k−1]
c

)
, the child s of r belongs to T

[k−1]
c ,

therefore n
(c)
s is known from K(T

[k−1]
c , xn). ∗/

9. For each c ∈ A such that cr ∈ I
(
T

[k]
c

)
,

10. Use P(r, c) to describe counts Ns,t

for every s ∈ S[k]
c (r), and every t ∈ S[k]

c such that c = head(t).

11. else, /∗By Lemma 11, r ∈ P
(

∆T [k]
)
. ∗/

12. For each s ∈ S[k]
c (r), /∗By Lemma 7, s ∈ ST [k] and |s| = k. ∗/

13. [For each a ∈ Ab, let s′ = σ
[k]
c (as) and therefore Ns,s′ = n

(a)
s .]

/∗Since s ∈ ST [k], n
(a)
s is known from Kb(T, x

n). ∗/
14. [For s′ = σ

[k]
c (bs), take Ns,s′ = n

(b)
s = ns −

∑
a6=b n

(a)
s .]

/∗ns is known (see proof of Lemma 12).

The last equality follows from (4). ∗/

Fig. 3. Encoding and decoding of K(T
[k]
c , xn) from K(T

[k−1]
c , xn)

(i) T
[k]
c extends states of T [k−1]

c by at most one level, i.e., I
(
T

[k]
c

)
⊆ T [k−1]

c .

(ii) Given r ∈ A∗ and a ∈ A, we have r ∈ P
(

∆T
[k]
c

)
if and only if ra ∈ ∆T

[k]
c .

(iii) The sets ∆T
[k]
c and P

(
∆T

[k]
c

)
satisfy

∆T
[k]
c = S

[k]
c \ S[k−1]

c , (18)

P
(

∆T
[k]
c

)
= S

[k−1]
c \ S[k]

c = S
[k−1]
c ∩ I

(
T

[k]
c

)
= I

(
T

[k]
c

)
\ I
(
T

[k−1]
c

)
. (19)

We now present the implementation of Step 4 of EncodeTypeClass, which is shown as Procedure

RefineTypeClass in Figure 3. Decoding steps are shown in brackets, to verify the losslessness of the

code. In RefineTypeClass, b is the same symbol as in Step 1 of EncodeTypeClass. For d ∈ A, we let

Ad = A\{d}. For h ≤ k ≤ d and r ∈ P
(
S
[k]
c

)
, we denote by S[k]

c (r) the subset of S[k]
c that are children

13



of r, i.e.,

S
[k]
c (r) = {s ∈ S[k]

c : s = ra for some a ∈ A} . (20)

Procedure RefineTypeClass iterates over nodes r ∈ P
(
S
[k]
c

)
, and for each s ∈ S[k]

c (r), it describes all

potentially nonzero state transition counts Ns,t with t ∈ S[k]
c . The actual encodings in the procedure will

be done through an auxiliary procedure P, to be defined later in Figure 4. Given a node r and a symbol c,

P(r, c) will describe Ns,t for every s ∈ S[k]
c (r), and every t ∈ S[k]

c such that c = head(t). The correctness

of the procedure is established in Lemma 12 below. The code length is analyzed later, when we prove

Lemma 5. We make use of the following auxiliary lemma, whose proof is deferred to Appendix A.

Lemma 11: Let h < k ≤ d. Then,
(
P
(
S
[k]
c

)
\ P

(
∆cT

[k]
c

))
\ I
(
T

[k−1]
c

)
= P

(
∆T [k]

)
. Thus, by the

conditions of Steps 2 and 6 of RefineTypeClass, we must have r ∈ P
(
∆T [k]

)
in Step 11.

Lemma 12: Assume that Kb(T, xn), K(T
[k−1]
c , xn), and σc(x

n) are known, and assume that P(r, c)

correctly describes Ns,t for every s ∈ S[k]
c (r), and every t ∈ S[k]

c such that c = head(t). Then, Procedure

RefineTypeClass fully describes K(T
[k]
c , xn).

Proof: The procedure iterates over all nodes r ∈ P
(
S
[k]
c

)
. Then, in each of the three cases distin-

guished by the conditions of Step 2 (nodes in P
(

∆cT
[k]
c

)
, which, by (19) and the fact that P

(
∆cT

[k]
c

)
⊆

P
(

∆T
[k]
c

)
, are in S[k−1]

c ), Step 6 (nodes in I
(
T

[k−1]
c

)
), and Step 11 (all remaining nodes r ∈ P

(
S
[k]
c

)
),

its computations (possibly involving the use of Procedure P) allow the decoder to recover the counts for

all state transitions that depart from every child of r that is a state of T [k]
c . Notice that the conditions

of Steps 2 and 6 imply that s ∈ ST [k] and |s| = k in Step 12. Indeed, by Lemma 11, we must have

r ∈ P
(
∆T [k]

)
. Therefore, by Lemma 7, we have |r| = k − 1 and the child s of r is a state of T [k] at

depth k. We next show that conditions required at various points of the computation are satisfied.

In Step 3 we ask for a symbol d such that dr 6∈ I
(
T

[k−1]
c

)
. The condition r ∈ P

(
∆cT

[k]
c

)
satisfied in

Step 2 and the fact that P
(

∆cT
[k]
c

)
⊆ P

(
∆T

[k]
c

)
, imply, by (19), that r ∈ S[k−1]

c . If dr ∈ I
(
T

[k−1]
c

)
for all d ∈ A, then r would be a forgetful state of T [k−1]

c , contradicting the definition of T [k−1]
c . Hence,

the symbol d called for in Step 3 must exist.

In Step 5 we compute Ns,ds as n(d)s , implicitly assuming that ds is a state of T [k]
c . Indeed, since

r ∈ P
(

∆cT
[k]
c

)
(as tested in Step 2), by Lemma 9, dr is an internal node of T [k]

c . However, by its

definition in Step 3, dr is not an internal node of T [k−1]
c . Therefore, by Lemma 10(ii)–(iii), we must have

ds ∈ S[k]
c .

The computations in Steps 5 and 14 require the knowledge of ns. We claim that when picking an element

r of P
(
S
[k]
c

)
in an iteration of Step 1, the description provided up to that point suffices for the decoder

to reconstruct ns for every s ∈ S[k]
c (r). Consider a state s ∈ S[k]

c (r), and let v = tail(s). If v ∈ I
(
T

[k]
c

)
,

by Lemma 10(i), we have v ∈ T [k−1]
c , and with a = head(s) we have ns = n

(a)
v + δ, which is known,

given the final state in Tc. Otherwise, if v 6∈ I
(
T

[k]
c

)
, all transitions into s come from the unique state

s′ of T [k]
c such that s′ � v. Then, by Lemma 6, we have ns = Ns′,s + δ, and, since s′ is shorter than s,

Ns′,s has already been computed in a previous iteration of the loop in Step 1, as the elements of P
(
S
[k]
c

)
14



are taken in non-decreasing length order. Thus, the claim is proven, showing the validity of the decoding

computations in Steps 5 and 14.

The fact that all states s ∈ S[k]
c (r) in Step 12 belong to T [k] and have length k validates the use of

Kb(T, xn) to determine n(a)s in Step 13, as well as the definition of s′ in Steps 13 and 14, since the depth

of T [k]
c is k and, thus, as is sufficiently long to determine a state in T [k]

c for every symbol a.

We next define Procedure P. The following lemma establishes a condition that will be assumed in the

procedure.

Lemma 13: When P(r, c) is invoked in Step 4 or Step 10 of RefineTypeClass, the node r and the symbol

c satisfy r ∈ P
(
S
[k]
c

)
and cr ∈ I

(
T

[k]
c

)
.

Proof: The condition r ∈ P
(
S
[k]
c

)
is satisfied in both Step 4 and Step 10 since it is imposed in

Step 1. Now, in Step 4, we have r ∈ P
(

∆cT
[k]
c

)
, since this condition is imposed in Step 2, and the claim

follows from Lemma 9. In Step 10, the condition cr ∈ I
(
T

[k]
c

)
is imposed in Step 9.

For w ∈ I
(
T

[k]
c

)
, we denote by ∆T

[k]
c (w) the subset of nodes in the canonical truncation increment,

∆T
[k]
c , that descend from w, i.e.,

∆T
[k]
c (w) = {t ∈ ∆T

[k]
c : w � t} , h < k ≤ d . (21)

It is readily verified that the set of parent nodes of ∆T
[k]
c (w), P

(
∆T

[k]
c (w)

)
, is, in fact, the subset of

nodes in P
(

∆T
[k]
c

)
that descend from w.

Procedure P is shown in Figure 4. In the procedure, b is an arbitrary but fixed symbol. Again, decoding

steps are shown in brackets, to verify the losslessness of the code. The following lemma establishes the

correctness of the procedure.

Lemma 14: Let r ∈ P
(
S
[k]
c

)
and c ∈ A such that cr ∈ I

(
T

[k]
c

)
(see Lemma 13). Assuming that

K(T
[k−1]
c , xn) and σc(x

n) are known, P(r, c) correctly describes Ns,t for every s ∈ S
[k]
c (r), and every

t ∈ S[k]
c such that c = head(t).

Proof: Since cr ∈ I
(
T

[k]
c

)
, all possibly non-zero state transition counts, Ns,t, such that s ∈ S[k]

c (r)

and c = head(t), satisfy tail(t) 6≺ s. Therefore, by (9), s � tail(t). We claim that all such state transition

counts are correctly described.

We first analyze the case in which the condition in Step 1 is satisfied. In this case, since Step 1 checks

that cr is a state of T [k−1]
c , the count ncr required in Step 3 is known from K(T

[k−1]
c , xn). Notice that,

by the condition in Step 1, we have r ∈ S[k−1]
c and cr ∈ S[k−1]

c , and also, by the assumptions, we have

r ∈ I
(
T

[k]
c

)
and cr ∈ I

(
T

[k]
c

)
. Therefore, for d ∈ A, by Lemma 10(ii)–(iii), rd and crd belong to

S
[k]
c . Hence, all state transitions from s ∈ S[k]

c (r) to t ∈ S[k]
c such that c = head(t) must be of the form

s = rd, t = crd, d ∈ A, as implicitly assumed in Step 4. The reconstruction Ns,t=ncrd + δ in the same

step follows from Lemma 6.

When the condition in Step 1 is not satisfied, the procedure starts a loop in Step 5, and, for each

s ∈ S[k]
c (r), it checks whether cs ∈ I

(
T

[k]
c

)
. If cs ∈ I

(
T

[k]
c

)
, the procedure describes all state transition

counts, Ns,t, with t of the form t = csv, v ∈ A+, distinguishing those destinations t that do not belong to

15



Procedure P(r, c)

Assumptions: r ∈ P
(
S

[k]
c

)
, cr ∈ I

(
T

[k]
c

)
.

1. If r and cr are states of T
[k−1]
c

2. Encode α−1 counts ncrd, d ∈ Ab.

3. [By (6), reconstruct ncrb = ncr −
∑

d6=b ncrd .]
/∗ncr is known (see proof of Lemma 14). ∗/

4. [ Reconstruct Ns,t=ncrd + δ for all d∈A, with s = rd, t = crd .]
/∗All state transitions from s ∈ S[k]

c (r) to t ∈ S[k]
c such that c = head(t)

are of the form s = rd, t = crd, d ∈ A (see proof of Lemma 14). ∗/
5. else,

6. for each s ∈ S[k]
c (r)

7. If cs ∈ I
(
T

[k]
c

)
8. For each csu ∈ P

(
∆T

[k]
c (cs)

)
9. Encode α−1 counts ncsud, d ∈ Ab .

10. [By (6), reconstruct ncsub = ncsu −
∑

d6=b ncsud .]
/∗ncsu is known (see proof of Lemma 14). ∗/

11. [ Reconstruct Ns,t = ncsud + δ for all d ∈ A, with t = csud.]
/∗ csud ∈ S[k]

c for all d ∈ A (see proof of Lemma 14). ∗/
12. For each state t = csv 6∈ ∆T

[k]
c (cs) of T

[k]
c

13. [Reconstruct Ns,t = ncsv + δ.]
/∗ncsv is known (see proof of Lemma 14). ∗/

14. else

15. [Reconstruct Ns,t = ncs+δ, for t=cs]
/∗ cs ∈ S[k]

c and ncs is known (see proof of Lemma 14). ∗/

Fig. 4. Encoding of state transition counts

T
[k−1]
c (t ∈ ∆T

[k]
c (cs)), from those that do belong to T [k−1]

c (t 6∈ ∆T
[k]
c (cs)). Transition counts for those t

that belong to ∆T
[k]
c (cs) are described in the loop of Step 8, which iterates over P

(
∆T

[k]
c (cs)

)
, the set of

all parent nodes of elements in ∆T
[k]
c (cs). Now, if csu ∈ P

(
∆T

[k]
c (cs)

)
, by (19), we have csu ∈ S[k−1]

c .

Thus, the count ncsu, required in Step 10, is known from K(T
[k−1]
c , xn). Moreover, by Lemma 10(ii)

and (18), we have csud ∈ S
[k]
c for all d ∈ A, as implicitly assumed in Step 11. The reconstruction

Ns,t = ncsud + δ in Step 11 follows from Lemma 6. Transition counts for those t not in ∆T
[k]
c (cs)

are described in the loop of Step 12. By the definition of ∆T
[k]
c (cs), if csv is a state of T [k]

c such that

csv 6∈ ∆T
[k]
c (cs), then we must have csv ∈ T [k−1]

c . Hence, the value ncsv required in Step 13 is known

from K(T
[k−1]
c , xn). Again, Lemma 6 is used for the reconstruction in this step.

Finally, if cs 6∈ I
(
T

[k]
c

)
in Step 7, then, by the assumption cr ∈ I

(
T

[k]
c

)
, we must have cs ∈ S[k]

c .

Therefore, Ns,cs is the only transition count departing from s that needs to be described, which, by

Lemma 6, can be obtained as Ns,cs = ncs+δ. Now, we must have either cs ∈ T [k−1]
c , or s ∈ T [k−1]

c , for
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EnumCodeT(T, xn)

1. Encode K(T, xn) with EncodeTypeClass

2. Encode the index of xn within T (T, xn)

Fig. 5. Enumerative code for tree models

otherwise, their respective parents cr and r, would belong to P
(

∆T
[k]
c

)
, which, by (19), implies that cr

and r belong to S[k−1]
c and Step 1 would not have branched to Step 5. Therefore, the count ncs is known

from K(T
[k−1]
c , xn), either directly or via n(c)s .

The overall scheme of an enumerative code for tree models is summarized in Figure 5. The enumeration

of the type class for Step 2 is studied in [18]. In Subsection III-E we show that EnumCodeT can be

implemented efficiently and that the code is universal for tree models. To prove the universality, in the

next subsection, we will show that, using SCC, the encoding of each count that is explicitly described

in Procedure P takes, on the average, 1
2 log n + O(1) bits. We finish the current subsection with a

characterization of these counts, which will be useful for this purpose.

Lemma 15: All counts explicitly encoded in Procedure P are of the form nt, where t ∈ S[k]
c satisfies

s′ ≺ tail(t) for some state s′ of T .

Proof: All encodings take place in Steps 2 and 9. In Step 2, as argued in the proof of Lemma 14,

t = crd is a state of T [k]
c , which, since T [k]

c is a tree of depth k, implies that |r| < k − 1. Now, by the

condition in Step 1, we have r ∈ S[k−1]
c and, since T [k−1] ⊆ T [k−1]

c , there exists a state s′ of T [k−1] such

that s′ � r. Moreover, since |r| < k − 1 and T [k−1] is the truncation of T to depth k − 1, s′ must also

be a state of T . Thus, s′ ≺ tail(t) = rd as claimed. Similarly, in Step 9, t = csud is encoded, where,

as argued in the proof of Lemma 14, csud ∈ S[k]
c . By the condition imposed in Step 7, we must have

|cs| < k. Thus, by the condition in Step 6, s is a state of T [k]
c and it satisfies |s| < k, which, again, implies

that there exists a state s′ in T that is a prefix of s. Thus, s′ ≺ tail(t) = sud.

C. String count codes

We introduce string count codes (SCC), a class of non-uniform codes, which will be used in all explicit

encodings in Procedure P and, also, as a tool to bound the expected size of the tree type classes in

Subsection III-D. To this end, we describe counts nt (as characterized in Lemma 15) by encoding the

difference between nt and an estimate of nt based on values that will be known to the decoder. We start

with some definitions and a lemma, and then describe the codes.

Let t be a string of length q such that s′ ≺ tail(t) = tq2 for some state s′ of T . By our assumption of

T being non trivial, we assume q > 2. If t is a suffix of a string xj , then, tail(t) is a suffix of xj−1 and,

thus, xj−1 must select the state s′. Further, let `(t) be the largest integer such that each suffix tq`(t)−i+1
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of t, 0 < i < `(t), has a (necessarily unique) state si as a proper prefix (at least `(t) = 2 satisfies this

condition), i.e.,

`(t) = max { j : ∀i, 1 < i ≤ j, ∃s′ ∈ ST s.t. s′ ≺ tqi } , (22)

where we notice that, since T is non trivial, we have `(t) < q. In the sequel, to lighten notation, we

omit the dependence of `(t) on t, and write simply `. Then, the occurrence of t in xn implies also the

occurrence of tq` , which selects state s1, followed by the sequence of symbols t`−1, t`−2 . . . t1, where each

symbol t`−i, 0 < i < `, occurs in state si. Thus, with the short-hand notations

m1 = ntq` , ni = nsi , nαi = n(t`−i)si , 0 < i < ` , (23)

we expect the estimate m1

∏`−1
i=1

nαi
ni

to be close to nt for a typical sequence of the source. For example,

in the tree T1 of Figure 1, for t = 100, we have q = 3 and ` = 2, since t33 = 0 ∈ T . We have s1 = 0, and

the symbol t1 = 1 occurs in state s1 whenever t occurs in xn.

The following lemma states that the estimate m1

∏`−1
i=1

nαi
ni

is available to the decoder when a count nt

is encoded in Procedure P.

Lemma 16: When a count nt, for some t ∈ A∗, is encoded in Procedure P, invoked from RefineType-

Class, the values m1, ni, and nαi , 0 < i < `, are available to the decoder.

Proof: Procedure P is invoked from RefineTypeClass to encode some of the counts involved in the

description of K(T
[k]
c , xn) given K(T

[k−1]
c , xn), for some k, h+ 2 ≤ k ≤ d. By Lemma 15, these counts

are of the form nt, where t is a state of T [k]
c . Since, for 0 < i < `, si is a state of T that is strictly shorter

than t, and the length of t is at most the depth k of T [k]
c , we must have si ∈ ST [k−1] . Therefore, since

T [k−1] ⊆ T [k−1]
c , the counts ni and nαi , 0 < i < `, can be recovered from K(T

[k−1]
c , xn). Similarly, since,

by (22), tq`+1 belongs to T and it is strictly shorter than t, we also have tq`+1 ∈ T
[k−1]
c and, thus, by (7),

m1 can be recovered from K(T
[k−1]
c , xn).

In view of Lemma 16, we next specify how we can efficiently describe nt to a decoder that knows the

values of m1 and nαi , ni, for all i, 0 < i < `. Given m1, we can estimate nt by m1

∏`−1
i=1

nαi
ni

, provided

ni > 0 for all i, 0 < i < ` (otherwise we must have nt = 0, which can be reconstructed by the decoder

with no need for encoding). Assume the condition ni > 0 holds for all i, 0 < i < `, and define

zt = nt −m1

`−1∏
i=1

nαi
ni

, Zt = |zt| , and sgt =

 1 zt > 0 ,

0 otherwise .

As customary, denote by bzc (resp. dze) the largest (resp. smallest) integer satisfying bzc ≤ z ≤ dze.

Clearly,

nt =


bZtc+

⌈
m1

∏`−1
i=1

nαi
ni

⌉
, sgt = 1 ,

⌊
m1

∏`−1
i=1

nαi
ni

⌋
− bZtc , otherwise .

(24)

Hence, encoding bZtc and sgt suffices for the decoder to reconstruct nt. Thus, we define a SCC for nt,

denoted Ct(nt), as follows:
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• The sign sgt is described plainly using one bit.

• The integer bZtc is encoded using a Golomb code [19] of parameter
⌈√

m1

⌉
. Specifically, we use a

unary code for the integer division bZtc> = bZtc /
⌈√

m1

⌉
, which takes bZtc> + 1 bits, and encode

bZtc⊥ = bZtc mod
⌈√

m1

⌉
uniformly with log

(⌈√
m1

⌉)
bits. When ni = 0 for some i, 0 < i < `,

or when m1 = 0, we also have nt = 0, and the decoder can reconstruct nt with no need for encoding;

we define bZtc> = 0 in this case, to simplify discussions on expectations.

The intuition behind the SCC Ct(nt) is that we can think of Zt as the absolute difference between nt

and its estimate, m1

∏`−1
i=1

nαi
ni

, which the decoder could guess from the known counters m1 and nαi , ni,

for all i, 0 < i < `. The probability of the estimate differing from the true value decays exponentially fast,

which leads to a constant expectation of bZtc>, as stated in the following lemma.

Lemma 17: Let T be a tree model with all conditional probabilities different from zero. Then, the

expectation E
[
bZtc>

]
is upper-bounded by a constant independent of n.

The proof of Lemma 17 is deferred to Appendix B.

Lemma 17 and the fact that log
⌈√

m1

⌉
≤ 1 + 1

2 log n yield the following corollary.

Corollary 1: The expected code length of Ct(nt) is upper-bounded by 1
2 log n+O(1) bits.

D. The expected size of T (T,Xn).

In this subsection we study the asymptotic behavior of E [ log |T (T,Xn)| ] and prove Theorem 4. We

first show how an economic description of K(TF , x
n) can be obtained by means of SCC from one of

K(T, xn), where we recall that TF denotes the FSM closure of T . This description, together with the

bound (8) applied to TF , and a coding argument, will lead to the bound claimed in Theorem 4.

Let

κT = −(|ETc |−|VTc |) + |STF |(α−1) . (25)

By Theorem 3, the asymptotic number of type classes in T and TF is Θ
(
n|ETc |−|VTc |

)
and Θ

(
n|STF |(α−1)

)
,

respectively. Hence, by (25), there is, asymptotically, a factor of nκT more type classes in TF than in T ,

which suggests that roughly κT counts of O(log n) bits each would suffice to describe K(TF , x
n) from

K(T, xn). Lemma 19 below confirms this intuition, and establishes the fact that the counts can be encoded

economically. We make use of the following auxiliary Lemma 18, whose proof is deferred to Appendix C.

Lemma 18: For every tree T we have

κT =
∑

v∈I(TF )\I(Tc)

(α− 1)(κv − 1) , (26)

where, for a node v ∈ I (TF ) \I (Tc), we let

κv = |{a ∈ A : at 6∈ I (Tc)}| . (27)

Lemma 19: Given K(T, xn), the collection K(TF , x
n) can be described with κT counts nt, t ∈ A+,

plus a constant number of bits used to describe σF(x
n), the final state of xn in TF . Each of the κT counts,

nt, can be encoded using a SCC, Ct(nt), as defined in Section III-C, requiring 1
2 log n+O(1) bits.
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Proof: Since σF(x
n) determines σc(x

n), by Lemma 3, K(Tc, x
n) can be recovered from K(T, xn)

and σF(x
n). Hence, in order to recover K(TF , x

n), it suffices to recover the counts n(a)vc for every v in the

set D = I (TF ) \I (Tc) and every a, c ∈ A. By (7), any such count n(a)vc can be reconstructed from one

of the form nt, t = avc, as n(a)vc = nt + δ, where we recall that δ is a (known) constant that accounts for

border adjustments. We claim that nt can be encoded using SCC. Indeed, since v ∈ D, then v 6∈ I (T )

and, therefore, tail(t) = vc 6∈ T , which implies that there exists some state s′ of T that is a proper prefix

of tail(t). In addition, since K(T, xn) is known, all counts ni, nαi , 0 < i < `, are available to the decoder,

where `, ni, and nαi are defined in (22) and (23). It remains to check that m1, defined in (23), is also

available. By (22), tq`+1 belongs to T and, thus, by (7), m1 can be recovered from K(T, xn).

Now, we claim that, if we describe these counts n(a)vc taking the strings v from D in ascending order

of |v|, nvc can already be available at the time n(a)vc is described. Let v = bu ∈ D, with b ∈ A, and

assume that, for all w ∈ D such that |w| < |v| and all a, c ∈ A, n(a)wc has already been recovered. Suppose

first that u ∈ I (Tc). Then, n(b)uc is known from K(Tc, x
n) for every c ∈ A and, thus, by (7), nvc can be

reconstructed as nvc = nbuc = n
(b)
uc + δ. Suppose now that u 6∈ I (Tc). Since, by Theorem 1, every suffix

of a state of TF belongs to TF [16] and bu ∈ D ⊆ I (TF ), we must have u ∈ I (TF ) and, therefore,

u ∈ D. Hence, since u is shorter than v, by the assumed order of description, n(b)uc is known for every

c ∈ A, and nvc can be reconstructed as nvc = nbuc = n
(b)
uc + δ.

Next, we show how to recover the counts n(a)vc , for every v ∈ D and every a, c ∈ A, by explicitly

describing a specific choice of κT of these counts. As shown, by taking the strings v from D in ascending

order of length of v, nvc is available at the time of describing n(a)vc . For every symbol a such that av ∈ I (Tc)

and every c ∈ A, since avc ∈ Tc, navc is known from K(Tc, x
n) and, therefore, we can reconstruct

n
(a)
vc = navc + δ. Thus, n(a)vc requires no further description in this case. Now, since v ∈ D, there exists

s ∈ STc such that s � v and, since Tc is canonical, there exists a symbol b ∈ A such that bs 6∈ I (Tc),

implying that, also, bv 6∈ I (Tc). Select one such symbol b. For each symbol c different from b, we describe

κv − 1 counts, each of the form n
(a)
vc , with a 6= b such that av 6∈ I (Tc) (by (27), there exist κv − 1 such

symbols a). Since, by the claim above, nvc is known, we can compute, by (4), n(b)vc = nvc −
∑
a6=b n

(a)
vc

and then, by (5), n(a)vb = n
(a)
v −

∑
c6=b n

(a)
vc , for every a ∈ A. Overall, we obtain K(TF , x

n) from K(Tc, x
n)

and σF(x
n) by providing (α − 1)(κv − 1) counts for each v ∈ D, which, by Lemma 18, sum up to κT

counts.

Next, we apply the results of Lemma 19 in a coding argument to complete the proof of Theorem 4.

Proof of Theorem 4: A sequence in T (T, xn) can be encoded by describing the subset T (TF , x
n) to

which the sequence belongs, and then, uniformly, its index within that subset. The expected code length

is upper-bounded using Lemma 19 and is lower-bounded by the conditional entropy of the sequence given

its type with respect to T , yielding

E [ log |T (T,Xn)| ] ≤ E [ log |T (TF , X
n)| ] +

1

2
κT log n+O(1) , (28)

where we use the fact that the sequences in T (T,Xn) are equiprobable. Applying Lemma 1 to TF , we
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obtain
1

n
E [ log |T (TF , X

n)| ] ≤ H− |STF |(α− 1)

2n
log n+O

(
1

n

)
,

which, together with (28) and Lemma 18, yields

1

n
E [ log |T (T,Xn)| ] ≤ H− |ETc | − |VTc |

2n
log n+O

(
1

n

)
.

E. Universality and efficiency of EnumCodeT

In this subsection we show that the proposed enumerative code is universal for tree models and it can be

efficiently implemented, thus proving Theorem 5. We also present an alternative enumerative code, which

is also universal for a given tree T , although the enumeration of sequences is with respect to type classes

of TF , the FSM closure of T . We start by analyzing the number of counts that are explicitly encoded in

Steps 3–4 of EncodeTypeClass. We make use of the following auxiliary lemma, whose proof is deferred

to Appendix D.

Lemma 20: The number of counts described in the iteration corresponding to k, h + 2 ≤ k ≤ d, in

Steps 3-4 of EncodeTypeClass (Figure 2) is

Ck =
(
|E
T

[k]
c
| − |V

T
[k]
c
|
)
−
(
|E
T

[k−1]
c
| − |V

T
[k−1]
c
|
)
− (α− 1) (|ST [k] | − |ST [k−1] |) .

The total number of counts that are actually encoded is stated in the following lemma.

Lemma 21: The number of counts encoded by EncodeTypeClass as the algorithm iterates through the

loop in Steps 3-4 is (|ETc | − |VTc |)− |ST |(α− 1).

Proof: By Lemma 20, the total number of counts described by EncodeTypeClass as the algorithm

iterates through the loop in Steps 3-4 is
d∑

k=h+2

Ck =
d∑

k=h+2

[(
|E
T

[k]
c
| − |V

T
[k]
c
|
)
−
(
|E
T

[k−1]
c
| − |V

T
[k−1]
c
|
)
− (α− 1) (|ST [k] | − |ST [k−1] |)

]
.

(29)

Recalling that T [d] = T and T [d]
c = Tc, the telescopic sum in (29) reduces to

(|ETc | − |VTc |)−
(
|E
T

[h+1]
c
| − |V

T
[h+1]
c
|
)
− (α− 1) (|ST | − |ST [h+1] |) . (30)

Now, since T [h+1] is FSM, V
T

[h+1]
c

= VT [h+1] = ST [h+1] , E
T

[h+1]
c

= ET [h+1] , and |ET [h+1] | = α|ST [h+1] |,

so that |E
T

[h+1]
c
| − |V

T
[h+1]
c
| = (α− 1)|ST [h+1] | and (30) becomes

(|ETc | − |VTc |)− (α− 1)|ST | .

The number of counts in Lemma 21 is precisely the one sought in Lemma 5 and, by Lemmas 15

and 16, SCC can be applied for the encoding of counts in Procedure P, yielding the claim on code length

of Lemma 5. To prove the claim on algorithmic complexity we will make use of the following lemma.
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Lemma 22: For a tree T we have |Tc| < |ETc | = |ET | = O(|ST |).

Proof: Since Tc is a full tree, we have |Tc| = (α|STc |−1)/(α−1) < α|STc |. Therefore, since there are

at least α edges in ETc departing from each state of |STc |, we have |Tc| < |ETc |. Now, if we obtain a tree

T ′ by extending a forgetful state s of a tree T̃ , since the edges of ET̃ departing from s are in one-to-one

correspondence with the edges of ET ′ departing from the children of s in T ′, we have |ET ′ | = |ET̃ |. Thus,

we must have |ETc | = |ET |. Finally, notice that the number of pairs (s, t) in (9) satisfying s � tail(t) is

at most |ST | (at most one for each t), and at most α|ST | pairs satisfy tail(t) ≺ s (at most α for each s).

Therefore, we have |ET | = O(|ST |).

Proof of Lemma 5: In Step 1, EncodeTypeClass describes Kb(T, xn) using |ST |(α − 1) counts of

log n bits each, and the final state of xn in Tc using a constant number of bits. In the loop of Steps 3–4,

EncodeTypeClass completes the encoding of K(T, xn) by describing an additional set of counts using

SCC. By Lemma 21, SCC are used (|ETc | − |VTc |)− (α−1)|ST | times taking, by Corollary 1, an average

of at most 1
2 log n+O(1) bits each.

Turning to the computational complexity claim, we first observe that, by Lemma 4, the decoder can

efficiently reconstruct K(T, xn) given Kb(T, xn). Thus, it remains to check that the loop in Steps 3–4 of

EncodeTypeClass, and the corresponding decoding steps, can be performed with a number of operation

that is polynomial in n and |T |. By Lemma 22, we can equivalently check that the number of required

operations is polynomial in n and |Tc|.

By Lemma 8 and Lemma 10(i), constructing T [k]
c given T [k−1]

c ammounts to checking, for each state s

of T [k−1]
c , wheteher s is forgetfull in T [k]

c and, if so, adding a full complement of children to s. Therefore,

since T [k−1]
c ⊆ Tc, the construction of the sequence of canonical trees, T [h+1]

c . . . T
[d]
c , requires checking

wheteher a state is forgetfull a number of times that is upper-bounded by d|STc |, where d < |Tc|. Thus,

it remains to verify that for each iteration k of the loop in Step 3, the invokation to RefineTypeClass in

Step 4 requires a number of operation that is polynomial in n and |Tc|.

RefineTypeClass consists of a loop that iterates over nodes r ∈ P
(
S
[k]
c

)
in non-decreasing order of

length, where, by definition,
∣∣∣P (S[k]

c

)∣∣∣ < |T [k]
c |. Except for invocations to Procedure P, it is straightforward

to verify that all other operations executed by RefineTypeClass in an iteration of the loop in Step 1 take

polynomial time in |T [k]
c |, where we recall that T [k]

c ⊆ Tc. Procedure P involves, possibly, a partial traversal

of the tree T [k]
c in the loops of Step 8 and Step 12, and encoding Ct(nt), for all t in certain subset of S[k]

c .

Encoding Ct(nt) requires calculating the estimate zt, which takes O(d) multiplications, plus operations

that do not depend on |T |, associated to the Golomb encoding of bZtc, which can be executed in time

that is polynomial in n.

Proof of Theorem 5: Applying Lemma 5 and Theorem 4 to bound the expected code length of Steps 1

and 2 of EnumCodeT, respectively, we arrive at (13). Moreover, by Lemma 5 and Theorem 2, Steps 1

and 2, respectively, require a computation time polynomial in |T | and n.

The foregoing results yield the following corollary.
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Corollary 2: Let T be a tree model with all conditional probabilities different from zero. Then, for

a random sequence Xn emitted by the corresponding source, the type class of Xn relative to the FSM

closure, TF , of T , can be described using, on average, 1
2 (α− 1) (|ST |+ |STF |) log n+O(1) bits.

Proof: By Lemma 19, given a description of K(T, xn), we can obtain one of K(TF , x
n) with a cost

of 1
2κT log n+O(1) additional bits on average, where we recall the definition of κT in (25). Accounting

for the cost of the description of K(T, xn) from (12) yields the claimed result.

The result of Corollary 2 suggests the following alternative enumerative coding strategy: To encode xn,

encode K(TF , x
n) as described in the corollary, and then describe the index of xn in an enumeration of

T (TF , x
n). Using the bound of Lemma 1, applied to TF , for the expected code length of this index, we

obtain an upper bound on the expected total normalized code length of H+ 1
2 (α− 1)|ST | lognn +O(1/n).

Notice that although the enumeration is done on T (TF , x
n), the expected redundancy is still optimal with

respect to the smaller model T . Since enumerating T (TF , x
n) is simpler than enumerating T (T, xn) when

T is not FSM, this alternative yields a simpler implementation of the second part of an enumerative code,

at the cost of a more complex description of the type class.

IV. TWICE-UNIVERSAL CODING

In this section we switch to a twice-universal setting in which the tree T is unknown. Our first approach

follows a conceptually simple, standard plug-in strategy in which we estimate a tree T̂ and then use

EnumCodeT with T̂ as if it were the true tree underlying the model. Later, we will demonstrate an

alternative approach in which EnumCodeT can be simplified for the twice-universal setting, at the cost of

an increment of redundancy of order log log n, which is negligible with respect to the main redundancy

term.

A. Plug-in approach

A tree T and a sequence xn determine an (empirical) probability distribution on sequences of length n,

P̂T , defined by T and a model parameter p̂T (a|s) = n
(a)
s (xn)/ns(x

n) (as before, we omit the dependence

of the distribution P̂T on xn when clear from the context); P̂T (xn) is the maximum-likelihood probability

of xn under T . We consider a class of penalized maximum-likelihood tree model estimators. Specifically,

given a sequence xn, we assign to a tree T a cost K(T, xn) = − log P̂T (xn) + C(T ) logn, where the

penalization function C(T ) is increasing with |ST |. We have

K(T, xn) = −
∑

s∈ST ,a∈A
n(a)s log

n
(a)
s

ns
+ C(T ) log n .

The tree estimate T̂ (xn) for xn is defined as the tree that minimizes the cost function K(T, xn) over

all possible trees, that is,

T̂ (xn) = arg min
T
{K(T, xn)} . (31)

Efficient algorithms are known for finding the minimizing tree T̂ (xn); see, e.g., [16], [21].
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Twice-EnumCodeT(xn)

1. Compute the estimate T̂ (xn) of T.

2. Describe T̂ to the decoder.

3. Encode xn using EnumCodeT with respect to the tree T̂.

Fig. 6. Twice universal enumerative code for tree models

We define the code Twice-EnumCodeT algorithmically in Figure 6.8

Using a natural code [22] for describing the full tree T̂ (xn), Step 2 of Twice-EnumCodeT requires one

bit per node. To estimate the cost of Step 3, we must analyze the code length of EnumCodeT when applied

to T̂ (xn) rather than T . The analysis will rely on upper bounds on the probabilities of over-estimation

and under-estimation of T , which are stated in the two lemmas below. Similar bounds are well known for

several estimators. Proofs for the lemmas can be readily adapted from [13], and are omitted here.

Lemma 23: Let T be a tree model and consider a penalization function of the form C(T ) = β|ST | with

β > α(α+1)+1
α−1 . Let On ⊆ An be the set of strings for which a state of T is internal to the estimated tree T̂ .

Then, for a random sequence Xn emitted by the source modeled by T , we have PT {Xn ∈ On} ≤ |ST |n−γ

with γ = β(α− 1)− α(1 + α)− 1 > 0.

Lemma 24: Let T be a minimal tree model and consider a penalization function of the form C(T ) =

β|ST |. Let Un ⊆ An be the set of sequences whose estimated tree T̂ has a state that is internal to T .

Then, for a random sequence Xn emitted by the source modeled by T , we have PT {Xn ∈ Un} ≤ ρ2−nγ

for positive constants ρ, γ.

It follows from Lemma 23 and Lemma 24 that we can choose β to make the contribution of sequences

with estimated tree T̂ 6= T to the expected code length negligible, provided that the code length is upper-

bounded by a polynomial in n for every sequence of length n. We show such a bound in the proof of the

following theorem.

Theorem 6: Let T be a tree model with all conditional probabilities different from zero and let H be

the entropy rate of the corresponding source. Then, taking a penalization function C(T ) = β|ST | with β

sufficiently large, the normalized expected code length of Twice-EnumCodeT satisfies

E
[
L(Xn)

n

]
≤ H+

|ST |(α− 1) logn

2n
+O

(
1

n

)
.

Proof: It suffices to show that L(xn) is upper-bounded by a polynomial in n for every sequence xn.

8The enumeration of type classes presented in [18] requires fixing an initial state s0 of maximal depth in the tree. Since T̂ is not

known in advance, the leading string x0−∞ used to determine the empirical probabilities upon which the estimate T̂ is based in (31)

may turn out to select a state that is not of maximal depth in T̂ . Therefore, for the purpose of Step 3, we will derive counts based on

an initial state ŝ0 of maximal depth in T̂ , selected with some fixed deterministic policy (say, the smallest lexicographically among

maximal depth states). These counts may be different from those used for estimating T̂ .
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In Twice-EnumCodeT we describe K(T̂ , xn) by encoding the final state of xn with respect to T̂c, encoding

Kb(T̂ , xn) with |ST̂ |(α− 1) counts of log n bits each, and finally giving, by Lemma 21, an additional set

of |ET̂c |−|VT̂c |−|ST̂ |(α−1) counts described with SCC, which take O(
√
n) bits each. Thus, the complete

description of K(T̂ , xn) takes O
((
|ET̂c | − |VT̂c |

)√
n
)

bits, or, by Lemma 22, O(|ST̂ |
√
n) bits. Since the

index of xn within its class takes no more than n bits, we upper-bound L(Xn) by O
(
|ST̂ |
√
n+ n

)
.

To obtain the desired polynomial bound on the total code length, it remains to bound |ST̂ |. Since T̂

minimizes K(T, xn), comparing it with the single node tree (i.e., a zero-order model) we get,

− log P̂T̂ (xn) + β|ST̂ | log n ≤ nĤ(xn) + β log n ,

where Ĥ(xn) is the zero-order empirical entropy of xn. Since − log P̂T̂ (xn) ≥ 0 and Ĥ(xn) ≤ logα, we

conclude that |ST̂ | = O(n/ log n). Thus, we have L(Xn) = O(n3/2).

B. Simplified scheme

We present an alternative code EnumCodeT ′, which is a simplification of EnumCodeT, applicable when

the target tree is an estimate T̂ , as in Step 3 of Twice-EnumCodeT. Recall that a fundamental tool in

EnumCodeT is the use of SCC for encoding certain counts, which, by Corollary 1, require 1
2 log n+O(1)

bits on average each. The following lemma leads to an analogue of Corollary 1 in the twice-universal

setting, for which we recall the definitions of `, m1, ni, and nαi from (22) and (23).

Lemma 25: Let T̂ be a tree estimate for xn according to (31) with a penalization function C(T ) = β|ST |,

and let t be a string such that s′ ≺ tail(t) for some s′ ∈ ST̂ and ni > 0 for all i, 0 < i < `. Then,

|zt| =

∣∣∣∣∣nt −m1

`−1∏
i=1

nαi
ni

∣∣∣∣∣ ≤ (`− 1)
(√

2βα|t|ns lnn+ 1
)
. (32)

The assumptions on t of Lemma 25 are required conditions for the application of a SCC, Ct(nt), to

encode nt, as defined in Section III-C, to a decoder that knows the values of m1, nαi , and ni, for all i,

0 < i < `. Clearly, zt suffices for such a decoder to recover nt. Thus, by Lemma 25, we can replace Ct(nt)

with a uniform code Ut(nt) for zt in the range given by (32), when applying EnumCodeT to encode xn with

respect to T̂ . We prove Lemma 25 in Appendix E. The following corollary is an immediate consequence

of the lemma.

Corollary 3: Let T̂ be a tree estimate for xn according to (31) with a penalization function C(T ) =

β|ST |, and let t be a string satisfying the assumptions of Lemma 25. Then, the code length of Ut(nt) is
3
2 log |t|+ 1

2 log n+O(log logn) bits.

Proof: Since ` < |t| and ns ≤ n in (32), we have

|zt| ≤ |t|3/2
(√

2βαn lnn+ |t|−1/2
)
≤ |t|3/2

(√
2βαn lnn+ 1

)
.

Corollary 3 is an analogue of Corollary 1 in the twice-universal setting. Notice, however, that the upper

bound here is pointwise, and not just in expectation.
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We now define the code EncodeTypeClass ′ exactly as EncodeTypeClass, but replacing the use of SCC,

Ct(nt), by an encoding of zt with Ut(nt). We also define EnumCodeT ′ as the code obtained by substituting

EncodeTypeClass ′ for EncodeTypeClass in EnumCodeT and, analogously, we define Twice-EnumCodeT ′

as the code obtained by substituting EnumCodeT ′ for EnumCodeT in Twice-EnumCodeT.9 These variants

take advantage of the idea suggested in Section I, namely, that for some type classes of T̂ , no sequence in

the class will estimate T̂ . Therefore, these “atypical” classes can be excluded from the coding space, which

is reflected in the limited range for the uniform encoding of zt with Ut(nt). The result is a twice-universal

enumerative code for tree models, as stated in the following theorem.

Theorem 7: Let T be a tree model with all conditional probabilities nonzero and let H be the entropy

rate of the corresponding source. Estimating T̂ (xn) according to (31) with a penalization function C(T ) =

β|ST | for sufficiently large β, the normalized expected code length of Twice-EnumCodeT ′, for a random

sequence Xn emitted by this source, satisfies

E
[
L(Xn)

n

]
≤ H+

|ST |(α− 1) log n

2n
+O

(
log logn

n

)
. (33)

Proof: In EncodeTypeClass, SCC are applied to encode occurrence counts of states of the canonical

extension of a truncation of T . Hence, when we use Ut(nt) in EncodeTypeClass ′, |t| is bounded by the

depth of T̂ (xn) (since, by Lemma 2, for any tree T , Tc and T have the same depth). For sequences that

estimate T̂ (xn) = T , |t| is bounded by the depth of T (a constant), and the encoding of zt with Ut(nt),

by Corollary 3, takes 1
2 log n+O(log log n) bits. Thus, for sequences in the set Φ = {xn : T̂ (xn) = T},

the code length of EncodeTypeClass ′ satisfies∣∣∣EncodeTypeClass ′(T̂ , xn)
∣∣∣ ≤

≤ (α− 1)|ST | log n+
(

(|ETc | − |VTc |)− (α− 1)|ST |
)1

2
log n+O(log logn) , (34)

where the first term in (34) corresponds to the description of Kb(T, xn) in Step 1 in Figure 2, and the second

and third terms to the encodings Ut(nt), which, by Lemma 21, are used (|ETc | − |VTc |) − (α − 1)|ST |

times taking, by Corollary 3, 1
2 log n+O(log log n) bits each. Thus, applying Theorem 4 and using (34),

we conclude that the right-hand side of (33) is an upper bound on the contribution of sequences in Φ to

the normalized expected code length of Twice-EnumCodeT ′. To complete the proof, by Lemma 23 and

Lemma 24, it suffices to show that L(xn) is upper-bounded by a polynomial in n for every sequence xn.

9As with Twice-EnumCodeT, Twice-EnumCodeT ′ requires a fixed deterministic policy for the selection of the initial state, since,

in principle, the leading string x0−∞ may turn out to select a state that is not of maximal depth in T̂ . In this case, a count n(a)
w may

change to ñ(a)
w after fixing the new initial conditions, and the range of ñ(a)

w is not necessarily given by (32). It is not difficult to

adapt Lemma 25 to yield a suitable range for ñ(a)
w . Alternatively, we can describe T (T̂ , xn) by giving the original counts K(T̂ , xn)

with respect to x0−∞, together with additional information that allows the reconstruction of the counts that result after fixing the

new initial conditions. For example, we could use log |I
(
T̂
)
|+ logα bits to describe the longest internal node of T̂ , u, such that

u ≺ xn, and the symbol x|u|+1. This additional information does not affect the asymptotic normalized expected code length of the

algorithm.
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This follows from the fact that, by Corollary 3, each encoding Ut(nt) takes 1
2 log n+ 3

2 log |t|+O(log log n)

bits, recalling that |t| is upper-bounded by the depth of T̂ , and using the same arguments as in Theorem 6.

Notice that, since Twice-EnumCodeT ′ is universal with respect to any fixed tree model T such that all

conditional probabilities are different from zero, Twice-EnumCodeT ′ could be used in place of Enum-

CodeT even if T is known, taking advantage of the simplification of Ut(nt) with respect to Ct(nt).

This simplification, however, would come at the cost of unnecessarily estimating T̂ and a penalty on the

redundancy of order O(log log n).

APPENDIX A

PROOFS OF LEMMAS 8, 10 AND 11

Proof of Lemma 8: Suppose that T [k−1]
c 6⊆ T

[k]
c . We recall, from Subsection II-C, that the minimal

canonical extension of a tree is obtained by sequentially extending forgetful states until no such state is

left. Let v1, v2, . . . , vm be the sequence of forgetful states extended in the process of constructing T [k−1]
c

from T [k−1]. There must be some node in this sequence that is not in I
(
T

[k]
c

)
(otherwise we would have

T
[k−1]
c ⊆ T

[k]
c ). Let vj be the first such node in the sequence. We must have vj ∈ S[k]

c , for otherwise vj

would not belong to T
[k]
c and, therefore, since T [k−1] ⊆ T

[k]
c , vj would have been created by extending

some vi, with i < j such that vi 6∈ I
(
T

[k]
c

)
, contradicting the definition of j. Let T ′j be the tree in the

sequence of extensions leading to T [k−1]
c at the time vj was chosen for extension. Since vj is forgetful in

T ′j and, by the definition of vj , T ′j ⊆ T
[k]
c , vj must also be a forgetful state in T [k]

c , in contradiction to the

fact that this tree is canonical. Thus, we must have T [k−1]
c ⊆ T [k]

c .

We next prove two auxiliary lemmas and then proceed to prove Lemma 10 and Lemma 11.

Lemma 26: For h < k ≤ d, the set of parents of nodes in the canonization increment, P
(

∆cT
[k]
c

)
,

satisfies P
(

∆cT
[k]
c

)
⊆ S[k−1]

c .

Proof: Suppose the claim is not true, i.e., P
(

∆cT
[k]
c

)
6⊆ S

[k−1]
c for some k, h < k ≤ d. By (17),

every element of ∆cT
[k]
c is of the form su, with s ∈ S[k−1]

c and u ∈ A+, where, by our assumption of

T being non-trivial, we must have |s| ≥ 1. Therefore, λ 6∈ P
(

∆cT
[k]
c

)
and, thus, we can pick z ∈ A∗

and c ∈ A such that zc ∈ P
(

∆cT
[k]
c

)
is of maximal length among those elements of P

(
∆cT

[k]
c

)
that

are not states of T [k−1]
c . By Lemma 9, we know that azc ∈ I

(
T

[k]
c

)
for every a ∈ A. We claim that

az ∈ I
(
T

[k−1]
c

)
for every a ∈ A. If azc ∈ P

(
∆cT

[k]
c

)
, since azc is longer than zc, azc is a state of

T
[k−1]
c . Therefore, az ∈ I

(
T

[k−1]
c

)
. If, on the other hand, azc 6∈ P

(
∆cT

[k]
c

)
, then, for d ∈ A, we have

azcd 6∈ ∆cT
[k]
c and also, since azc ∈ I

(
T

[k]
c

)
, we have azcd ∈ T

[k]
c . Hence, by the definition of the

canonization increment, ∆cT
[k]
c , in (17), either azcd ∈ T [k−1]

c or azcd ∈ T [k]. In either case azc ∈ T [k−1]
c ,

i.e., az is an internal node of T [k−1]
c . We conclude that az ∈ I

(
T

[k−1]
c

)
for every a ∈ A, as claimed.

As a consequence, z ∈ I
(
T

[k−1]
c

)
, for otherwise the state s ∈ S[k−1]

c such that s � z would be forgetful

in T
[k−1]
c . This implies that zc ∈ T [k−1]

c . Furthermore, since zc ∈ P
(

∆cT
[k]
c

)
, zcd ∈ ∆cT

[k]
c for some

d ∈ A. Therefore, zcd 6∈ T [k−1]
c , implying that zc is a state of T [k−1]

c , a contradiction.
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Lemma 27: For h < k ≤ d, {P
(
∆T [k]

)
,P
(

∆cT
[k]
c

)
} is a partition of P

(
∆T

[k]
c

)
.

Proof: Since, by (15) and (17), the truncation increment, ∆T [k], and the canonization increment,

∆cT
[k]
c , are disjoint, then P

(
∆T [k]

)
and P

(
∆cT

[k]
c

)
must also be disjoint, for otherwise, there would

exist some r ∈ P
(
∆T [k]

)
and symbols a, b ∈ A, such that ra ∈ ∆T [k] and rb ∈ ∆cT

[k]
c , implying that

ra ∈ T [k] but rb 6∈ T [k], contradicting the fact that T [k] is a full tree. Therefore, we need to show that

P
(

∆T
[k]
c

)
= P

(
∆T [k]

)
∪ P

(
∆cT

[k]
c

)
, for which it suffices to show that ∆T

[k]
c = ∆T [k] ∪ ∆cT

[k]
c ,

or, since ∆cT
[k]
c ⊆ ∆T

[k]
c , that ∆T [k] = ∆T

[k]
c \ ∆cT

[k]
c . Now, if u ∈ ∆T

[k]
c \ ∆cT

[k]
c , then, by the

definitions (17) and (16), u ∈ T [k] \ T [k−1]
c , which, since T [k−1] ⊆ T

[k−1]
c , implies that u ∈ ∆T [k].

Conversely, if u ∈ ∆T [k], by Lemma 7, we have |u| = k and, therefore, since T [k−1]
c has depth k − 1,

u 6∈ T [k−1]
c . Thus, we have u ∈ ∆T

[k]
c and, furthermore, since u ∈ T [k], we must have u ∈ ∆T

[k]
c \∆cT

[k]
c .

Proof of Lemma 10: (i) We claim that P
(

∆T
[k]
c

)
⊆ S[k−1]

c . By Lemma 26, we have P
(

∆cT
[k]
c

)
⊆

S
[k−1]
c . On the other hand, if r ∈ P

(
∆T

[k]
c

)
\ P

(
∆cT

[k]
c

)
, by Lemma 27, we have r ∈ P

(
∆T [k]

)
,

which, by Lemma 7, implies that r ∈ ST [k−1] and |r| = k−1. Thus, since T [k−1]
c has depth k−1, we must

also have r ∈ S[k−1]
c . We conclude that P

(
∆T

[k]
c

)
⊆ S[k−1]

c . Moreover, since, by definition, P
(

∆T
[k]
c

)
is a subset of I

(
T

[k]
c

)
, we have

P
(

∆T
[k]
c

)
⊆ S[k−1]

c \ S[k]
c . (35)

If u ∈ ∆T
[k]
c , then we must have u ∈ S[k]

c , for otherwise, the children of u would also belong to ∆T
[k]
c ,

implying that both u and its parent belong P
(

∆T
[k]
c

)
, in contradiction with (35) and the fact that no state

in S[k−1]
c is a proper prefix of another state in S[k−1]

c . Thus, we must have

∆T
[k]
c ⊆ S[k]

c , (36)

which implies that I
(
T

[k]
c

)
⊆ T [k−1]

c , as claimed.

(ii) Let r ∈ A∗ and a ∈ A. By the definition (1), r ∈ P
(

∆T
[k]
c

)
if and only if there exists a symbol

b ∈ A such that rb ∈ ∆T
[k]
c . The claim then follows from the fact that T [k]

c and T [k−1]
c are full trees.

(iii) We first prove (19). The fact that, by Lemma 8, T [k−1]
c ⊆ T [k]

c , implies that

S
[k−1]
c \ S[k]

c = S
[k−1]
c ∩ I

(
T

[k]
c

)
, (37)

and the fact that, by (i), I
(
T

[k]
c

)
⊆ T [k−1]

c , implies that

S
[k−1]
c ∩ I

(
T

[k]
c

)
= I

(
T

[k]
c

)
\ I
(
T

[k−1]
c

)
. (38)

Since u ∈ S[k−1]
c ∩I

(
T

[k]
c

)
implies that the children of u belong to ∆T

[k]
c , we have S[k−1]

c ∩I
(
T

[k]
c

)
⊆

P
(

∆T
[k]
c

)
, which, together with (35), (37) and (38), prove (19).

It remains to show (18). By the definition (16), we have S[k]
c \ T [k−1]

c ⊆ ∆T
[k]
c , and by (16) and (36)

we also have ∆T
[k]
c ⊆ S[k]

c \ T [k−1]
c . Thus,

∆T
[k]
c = S

[k]
c \ T [k−1]

c .
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Also, since T [k−1]
c ⊆ T [k]

c , we have S[k]
c ∩T [k−1]

c = S
[k]
c ∩S[k−1]

c and, therefore, S[k]
c \T [k−1]

c = S
[k]
c \S[k−1]

c ,

which proves (18).

Proof of Lemma 11: By Lemma 27, we know that P
(
∆T [k]

)
is a subset of P

(
∆T

[k]
c

)
that has

empty intersection with P
(

∆cT
[k]
c

)
. Thus, since, by (18), the elements in P

(
∆T

[k]
c

)
are parents of states

of T [k]
c , we have P

(
∆T [k]

)
⊆ P

(
S
[k]
c

)
\ P

(
∆cT

[k]
c

)
and, moreover, using (19), we conslude that

P
(

∆T [k]
)
⊆
(
P
(
S
[k]
c

)
\ P

(
∆cT

[k]
c

))
\ I
(
T

[k−1]
c

)
. (39)

Conversely, since P
(
S
[k]
c

)
⊆ I

(
T

[k]
c

)
, the right-hand side of (39) is a subset of

(
I
(
T

[k]
c

)
\P
(

∆cT
[k]
c

))
\

I
(
T

[k−1]
c

)
, which, by (19), equals P

(
∆T

[k]
c

)
\ P

(
∆cT

[k]
c

)
. Thus, by Lemma 27, we conclude that(

P
(
S
[k]
c

)
\ P

(
∆cT

[k]
c

))
\ I
(
T

[k−1]
c

)
⊆ P

(
∆T [k]

)
,

which completes the proof.

APPENDIX B

PROOF OF LEMMA 17

For the proof of Lemma 17 we make use of the following theorem from [23] that we present in a

simplified form, which is nevertheless suitable for our setting.

Theorem 8 ([23, Theorem 2]): Suppose {Mn} is an ergodic finite-state Markov chain with a set of

states S and a stationary distribution π. Let F : S → R be any bounded function and F̄ = sups |F (s)|.

Then, for any ε > 0, we have

P

{
n−1∑
i=0

(
F (Mi)− Eπ

[
F
])
≥ nε M0 = m

}
≤ exp

{
−n− 1

2

(
ε

dF̄
− 3

n− 1

)2
}
,

provided n ≥ 1 + 3dF̄ /ε, where m is any fixed initial state, d is a positive constant, and Eπ
[
F
]

is the

expectation of F (Mi) under the distribution π.

We will rely on Theorem 8 in the proof of the following auxiliary lemma.

Lemma 28: Let T be a tree model such that all conditional probabilities are different from zero. Consider

a symbol a and a fixed string w such that s ≺ w for some state s of T . Then, there is a constant N such

that for every k ≥ 1 and n > N , we have

PT

{∣∣∣∣naw − nas
ns

nw

∣∣∣∣ ≥ k√nw nw > 0

}
≤

4 exp
{
−Ck2

}
PT {nw > 0}

, (40)

where C is a positive constant independent of k.

Proof: Notice that, since all conditional probabilities of T are different from zero, then PT {nw > 0}

is positive. The left-hand side of (40) is

PT

{∣∣∣∣naw − nas
ns

nw

∣∣∣∣ ≥ k√nw nw > 0

}
= PT

{∣∣∣∣nawnw − nas
ns

∣∣∣∣ ≥ k
√
nw

nw > 0

}
.
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Now, recalling that pT (a|s) denotes the probability of symbol a conditioned on state s, we have

PT

{∣∣∣∣naw − nas
ns

nw

∣∣∣∣ ≥ k√nw nw > 0

}
=

= PT

{∣∣∣∣nawnw − pT (a|s) + pT (a|s)− nas
ns

∣∣∣∣ ≥ k
√
nw

nw > 0

}

≤ PT

{∣∣∣∣nawnw − pT (a|s)
∣∣∣∣+

∣∣∣∣pT (a|s)− nas
ns

∣∣∣∣ ≥ k
√
nw

nw > 0

}

≤ PT

{∣∣∣∣nawnw − pT (a|s)
∣∣∣∣+

∣∣∣∣pT (a|s)− nas
ns

∣∣∣∣ ≥ k√
n

nw > 0

}
(41)

≤ PT

{∣∣∣∣nawnw − pT (a|s)
∣∣∣∣ ≥ k

2
√
n

nw > 0

}
+ PT

{∣∣∣∣pT (a|s)− nas
ns

∣∣∣∣ ≥ k

2
√
n

nw > 0

}
, (42)

where (41) follows from n ≥ nw and (42) from a trivial union bound.

Since nw > 0 implies ns > 0, the second term on the right-hand side of (42) can be transformed and

upper-bounded as follows:

PT

{∣∣∣∣pT (a|s)− nas
ns

∣∣∣∣ ≥ k

2
√
n

nw > 0

}
=

PT
{∣∣∣pT (a|s)− nas

ns

∣∣∣ ≥ k
2
√
n
, nw > 0

}
PT {nw > 0}

≤
PT
{∣∣∣pT (a|s)− nas

ns

∣∣∣ ≥ k
2
√
n
, ns > 0

}
PT {nw > 0}

=

PT

{∣∣∣pT (a|s)− nas
ns

∣∣∣ ≥ k
2
√
n

ns > 0

}
PT {ns > 0}

PT {nw > 0}
.

Substituting in (42), we obtain

PT

{∣∣∣∣naw − nas
ns

nw

∣∣∣∣ ≥ k√nw nw > 0

}
≤ PT

{∣∣∣∣nawnw − pT (a|s)
∣∣∣∣ ≥ k

2
√
n

nw > 0

}
+

+

PT

{∣∣∣pT (a|s)− nas
ns

∣∣∣ ≥ k
2
√
n

ns > 0

}
PT {ns > 0}

PT {nw > 0}
. (43)

We now bound PT

{∣∣∣nawnw − pT (a|s)
∣∣∣ ≥ ε nw > 0

}
for any fixed string w with s � w, and ε > 0.

Notice that this includes the case w = s, and, thus, the derived bound will apply to both the first term and

the numerator of the second term on the right-hand side of (43).

Let {Mi} be a Markov chain defined on the set of states S = Aq , where q is the maximum between

|w|+ 1 and the depth of T , with a state transition matrix given by

P (Mi+1 = v|Mi = u) =

 pT (b|t), where b = head(v) and t = σ(u) , if tail(v) ≺ u ,

0 , otherwise.
(44)

If we let {Mi} generate a random sequence {Xi} by taking M0 = x0x−1 . . . x−q+1 and Xi = head(Mi)

for all i > 0, this Markov chain defines exactly the same probability assignment as that defined by T
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in (2). Notice that, since pT (b|t) > 0 for all b ∈ A and all t ∈ ST , {Mi} is irreducible and aperiodic and,

therefore, it has a unique steady state distribution π.

Let pw =
∑
u∈S:w�u π(u) and paw =

∑
u∈S:aw�u π(u), i.e., the probabilities of emitting the symbol

sequences w and wa, respectively, under the steady state distribution π. We have pT (a|s) = paw/pw, and

therefore
naw
nw
− pT (a|s) =

naw/n

nw/n
− paw

pw
. (45)

Let 0 < δ < pw. When paw − δ < naw
n < paw + δ, and pw − δ < nw

n < pw + δ, we have

paw − δ
pw + δ

<
naw/n

nw/n
<
paw + δ

pw − δ
.

Thus, the event
{∣∣naw

n − paw
∣∣ < δ

}
∩
{∣∣nw

n − pw
∣∣ < δ

}
implies

paw
pw
−
(
paw
pw
− paw − δ

pw + δ

)
<
naw/n

nw/n
<
paw
pw

+

(
paw + δ

pw − δ
− paw

pw

)
,

or,
paw
pw
− δ(pw + paw)

pw(pw + δ)
<
naw/n

nw/n
<
paw
pw

+
δ(pw + paw)

pw(pw − δ)
.

Since we have
δ(pw + paw)

pw(pw + δ)
<
δ(pw + paw)

pw(pw − δ)
, the condition above further implies,

paw
pw
− δ(pw + paw)

pw(pw − δ)
<
naw/n

nw/n
<
paw
pw

+
δ(pw + paw)

pw(pw − δ)
,

which in turn, by (45), yields ∣∣∣∣nawnw − pT (a|s)
∣∣∣∣ < δ(pw + paw)

pw(pw − δ)
. (46)

Now, given 0 < ε ≤ 1, we take δ = ε
p2w

pw+paw+1 , which satisfies the condition 0 < δ < pw assumed for

the derivation of (46). Then, δ ≤ ε
p2w

pw+paw+εpw
, and therefore δ(pw+paw)

pw(pw−δ) ≤ ε. Thus, from (46) it follows

that the event
{∣∣naw

n − paw
∣∣ < δ

}
∩
{∣∣nw

n − pw
∣∣ < δ

}
implies

∣∣∣nawnw − pT (a|s)
∣∣∣ < ε. Hence, we have

PT

{∣∣∣∣nawnw − pT (a|s)
∣∣∣∣ < ε nw > 0

}
≥ PT

{{∣∣∣naw
n
− paw

∣∣∣ < δ
}
∩
{∣∣∣nw

n
− pw

∣∣∣ < δ
}

nw > 0

}
,

or,

PT

{∣∣∣∣nawnw − pT (a|s)
∣∣∣∣ ≥ ε nw > 0

}
≤ PT

{{∣∣∣naw
n
− paw

∣∣∣ ≥ δ} ∪ {∣∣∣nw
n
− pw

∣∣∣ ≥ δ} nw > 0

}

=
PT
{{∣∣naw

n − paw
∣∣ ≥ δ} ∪ {∣∣nwn − pw∣∣ ≥ δ} , nw > 0

}
PT {nw > 0}

≤
PT
{{∣∣naw

n − paw
∣∣ ≥ δ} ∪ {∣∣nwn − pw∣∣ ≥ δ}}

PT {nw > 0}

≤
PT
{∣∣naw

n − paw
∣∣ ≥ δ}

PT {nw > 0}
+

PT
{∣∣nw

n − pw
∣∣ ≥ δ}

PT {nw > 0}
. (47)

We now apply Theorem 8 to both terms of the right-hand side of (47). Specifically, for {Mi} as in (44)

and M0 = x0x−1 . . . x−q+1 as before, we define F (Mi) as the indicator function of the condition aw �Mi.
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Then, we have F̄ = 1 and, by (4), we also have naw =
∑n−1
i=0 F (Mi). Therefore, for the numerator of

the first term on the right-hand side of (47) we obtain

PT
{∣∣∣naw

n
− paw

∣∣∣ ≥ δ} ≤ exp

{
−n− 1

2

(
δ

d1
− 3

n− 1

)2
}
, (48)

provided n ≥ 1 + 3d1
δ , where δ = ε

p2w
pw+paw+1 as before, and d1 is a positive constant. Similarly, for the

numerator of the second term we obtain

PT
{∣∣∣nw

n
− pw

∣∣∣ ≥ δ} ≤ exp

{
−n− 1

2

(
δ

d2
− 3

n− 1

)2
}
, (49)

provided n ≥ 1 + 3d2
δ , where d2 is a positive constant. Taking d = max{d1, d2}, and combining (48)

and (49) with (47), we obtain

PT

{∣∣∣∣nawnw − pT (a|s)
∣∣∣∣ ≥ ε nw > 0

}
≤ 2

PT {nw > 0}
exp

{
−n− 1

2

(
δ

d
− 3

n− 1

)2
}
, (50)

provided n ≥ 1 + 3d
δ . Recalling the definition of δ above, we can rewrite (50) as

PT

{∣∣∣∣nawnw − pT (a|s)
∣∣∣∣ ≥ ε nw > 0

}
≤ 2

PT {nw > 0}
exp

{
−n− 1

2

(
rε− 3

n− 1

)2
}
, (51)

provided n ≥ 1 + r′

ε , where r and r′ are positive constants. We now apply the bound in (51) to both the

first term and the numerator of the second term on the right hand side of (43) (with w = s for the latter

case) and obtain for 1 ≤ k ≤ 2
√
n, with ε = k

2
√
n

, for all n satisfying n ≥ 1 + r′ 2
√
n
k ,

PT

{∣∣∣∣naw − nas
ns

nw

∣∣∣∣ ≥ k√nw nw > 0

}
≤ 4

PT {nw > 0}
exp

{
−n− 1

2

(
r
k

2
√
n
− 3

n− 1

)2
}
.

(52)

Now, there exist positive constants N,C, independent of k, such that, for every n > N , the magnitude of

the exponent in (52) is bounded as

n− 1

2

(
r
k

2
√
n
− 3

n− 1

)2

≥ Ck2 ,

and, simultaneously, the condition n ≥ 1 + r′ 2
√
n
k holds. Thus, (40) is satisfied for all n > N and all k,

1 ≤ k ≤ 2
√
n. On the other hand, for k > 2

√
n, it follows from (42) that the left-hand side of (40) is

zero and, therefore, the inequality in (40) is also satisfied in this case.

Proof of Lemma 17:

We generalize the definition of m1 in (23) as

mi = nu , where u = tq`−i+1 , 0 < i ≤ ` . (53)

Thus, mi counts the number of occurrences in xn of the suffix u = tq`−i+1 of t, and ni, defined in (23),

counts the number of occurrences of the state selected by u, si. Notice that, if i < j, then tq`−i+1 is a

substring of tq`−j+1 and, therefore, we have

mi ≥ mj , 0 < i < j ≤ ` . (54)
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Suppose
∣∣∣mi −

nαi−1

ni−1
mi−1

∣∣∣ < k
√
m1 for some positive number k and all i, 1 < i ≤ `. Then, we have

nαi−1
ni−1

mi−1 − k
√
m1 < mi <

nαi−1
ni−1

mi−1 + k
√
m1 . (55)

If i > 2, we can apply the same inequalities for mi−1, and combining with (55), we obtain

nαi−1
ni−1

(
nαi−2
ni−2

mi−2 − k
√
m1

)
− k
√
m1 < mi <

nαi−1
ni−1

(
nαi−2
ni−2

mi−2 + k
√
m1

)
+ k
√
m1 ,

or
nαi−1
ni−1

nαi−2
ni−2

mi−2 −
(

1 +
nαi−1
ni−1

)
k
√
m1 < mi <

nαi−1
ni−1

nαi−2
ni−2

mi−2 +

(
1 +

nαi−1
ni−1

)
k
√
m1 .

Proceeding in the same fashion, starting from i = ` and iterating down to i = 2, we obtain

m1

`−1∏
i=1

nαi
ni
−

1 +
`−1∑
j=2

`−1∏
i=j

nαi
ni

 k
√
m1 < m` < m1

`−1∏
i=1

nαi
ni

+

1 +
`−1∑
j=2

`−1∏
i=j

nαi
ni

 k
√
m1 .

Since nαi
ni
≤ 1 for all i, we further bound

m1

`−1∏
i=1

nαi
ni
− (`− 1)k

√
m1 < m` < m1

`−1∏
i=1

nαi
ni

+ (`− 1)k
√
m1 .

Hence, the event
{∣∣∣mi −

nαi−1

ni−1
mi−1

∣∣∣ < k
√
m1 for all i, 1 < i ≤ `

}
implies that{∣∣∣m` −m1

∏`−1
i=1

nαi
ni

∣∣∣ < k(`− 1)
√
m1

}
. Recalling that Zt =

∣∣∣nt −m1

∏`−1
i=1

nαi
ni

∣∣∣ and, by (53), m` = nt,

applying a union bound, we conclude that

PT

{
Zt ≥ k(`− 1)

√
m1 m`−1 > 0

}
≤
∑̀
i=2

PT

{∣∣∣∣mi −
nαi−1
ni−1

mi−1

∣∣∣∣ ≥ k√m1 m`−1 > 0

}
, (56)

where we notice that, by (54), the condition m`−1 > 0 ensures that mi > 0 for all i, 0 < i < ` and,

therefore, also ni > 0 for all i, 0 < i < `, so that Zt is well defined. Moreover, also by (54), for all i,

1 < i ≤ `, we have m1 ≥ mi−1. Therefore, from (56) we obtain

PT

{
Zt ≥ k(`− 1)

√
m1 m`−1 > 0

}
≤
∑̀
i=2

PT

{∣∣∣∣mi −
nαi−1
ni−1

mi−1

∣∣∣∣ ≥ k√mi−1 m`−1 > 0

}
. (57)

Since m`−1 > 0 implies that mi−1 > 0 for all i, 1 < i ≤ `, each term of the summation in (57) can be

transformed and bounded as follows:

PT

{∣∣∣∣mi −
nαi−1
ni−1

mi−1

∣∣∣∣ ≥ k√mi−1 m`−1 > 0

}

=
PT
{∣∣∣mi −

nαi−1

ni−1
mi−1

∣∣∣ ≥ k√mi−1,m`−1 > 0
}

PT {m`−1 > 0}

≤
PT
{∣∣∣mi −

nαi−1

ni−1
mi−1

∣∣∣ ≥ k√mi−1,mi−1 > 0
}

PT {m`−1 > 0}

=

PT

{∣∣∣mi −
nαi−1

ni−1
mi−1

∣∣∣ ≥ k√mi−1 mi−1 > 0

}
PT {mi−1 > 0}

PT {m`−1 > 0}
. (58)
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Now, with w = tq`−i+2 and a = t`−i+1, we have mi−1 = nw and mi = naw. Also, recalling the definition

of si just before (22), for s = si−1, we have s ≺ w and, by (23), ni−1 = ns and nαi−1 = n
(a)
s . Therefore,

we have ∣∣∣∣mi −
nαi−1
ni−1

mi−1

∣∣∣∣ =

∣∣∣∣∣naw − n
(a)
s

ns
nw

∣∣∣∣∣ ≤
∣∣∣∣naw − nas

ns
nw

∣∣∣∣+

∣∣∣∣∣nasns nw − n
(a)
s

ns
nw

∣∣∣∣∣
≤

∣∣∣∣naw − nas
ns

nw

∣∣∣∣+ 1 ,

where the last inequality follows from the fact that, since s ≺ w, nw/ns ≤ 1 and, by (7), |nas−n(a)s | ≤ 1.

As a consequence, we have

PT

{∣∣∣∣mi −
nαi−1
ni−1

mi−1

∣∣∣∣ ≥ k√mi−1 mi−1 > 0

}
≤ PT

{∣∣∣∣naw − nas
ns

nw

∣∣∣∣ ≥ k√nw − 1 nw > 0

}

≤ PT

{∣∣∣∣naw − nas
ns

nw

∣∣∣∣ ≥ (k − 1)
√
nw nw > 0

}
.

Thus, by Lemma 28, for k ≥ 2 we obtain

PT

{∣∣∣∣mi −
nαi−1
ni−1

mi−1

∣∣∣∣ ≥ k√mi−1 mi−1 > 0

}
≤

4 exp
{
−Ci(k − 1)2

}
PT {mi−1 > 0}

, k ≥ 2 ,

provided n > Ni, where Ni and Ci are positive constants independent of k. Replacing in the right-hand

side of (58), we obtain

PT

{∣∣∣∣mi −
nαi−1
ni−1

mi−1

∣∣∣∣ ≥ k√mi−1 m`−1 > 0

}
≤

4 exp
{
−Ci(k − 1)2

}
PT {m`−1 > 0}

, k ≥ 2 .

We now take C = min{Ci : 1 < i ≤ `}, where, since ` is no greater than the length of the fixed string t,

the minimum is over a finite set and, thus, we have C > 0. Then, using (57), we obtain, for n sufficiently

large,

PT

{
Zt ≥ k(`− 1)

√
m1 m`−1 > 0

}
≤

(`− 1)4 exp
{
−C(k − 1)2

}
PT {m`−1 > 0}

, k ≥ 2 ,

or,

PT

{
Zt√
m1
≥ k(`− 1) m`−1 > 0

}
PT {m`−1 > 0} ≤ (`− 1)4 exp

{
−C(k − 1)2

}
, k ≥ 2 . (59)

Now, the expectation of bZtc> is

E
[
bZtc>

]
=
∑
i≥1

PT
{
bZtc> ≥ i

}
,

or, since, by definition, bZtc> ≤ n for sequences of length n,

E
[
bZtc>

]
=
n+1∑
i=1

PT
{
bZtc> ≥ i

}
. (60)

We bound each term of (60) as

PT
{
bZtc> ≥ i

}
≤ PT

{
bZtc> ≥ i,m`−1 > 0

}
+ PT {m`−1 = 0}

= PT
{
bZtc> ≥ i

∣∣∣ m`−1 > 0
}

PT {m`−1 > 0}+ PT {m`−1 = 0} . (61)
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By the definition of bZtc>, we have

PT

{
bZtc> ≥ i m`−1 > 0

}
≤ PT

{
Zt√
m1
≥ i m`−1 > 0

}
,

so that replacing in (61) and combining with (60), we obtain

E
[
bZtc>

]
≤

(
n+1∑
i=1

PT

{
Zt√
m1
≥ i m`−1 > 0

}
PT {m`−1 > 0}

)
+ (n+ 1)PT {m`−1 = 0} . (62)

Since PT {m`−1 = 0} decays exponentially fast with n and, for n sufficiently large, we can bound all but

the first 2(`−1) terms in the summation of (62) using (59), we conclude that E
[
bZtc>

]
is upper-bounded

by a constant.

APPENDIX C

PROOF OF LEMMA 18

Proof: Consider a string v ∈ I (TF ) \ I (Tc). Clearly, we must have v = sw, where s ∈ STc and

sw ∈ I (TF ). For s ∈ STc , let W (s) = {w ∈ A∗ : sw ∈ TF }, which can be regarded as a subtree of TF

rooted at s. Thus, we can rewrite the right-hand side of (26) as∑
v∈I(TF )\I(Tc)

(α− 1)(κv − 1) =
∑
s∈STc

∑
w∈I(W (s))

(α− 1)(κsw − 1)

= (α− 1)
∑
s∈STc

 ∑
w∈I(W (s))

κsw

− ∣∣∣I (W (s))
∣∣∣
 . (63)

For a ∈ A and s ∈ STc , let Wa(s) = {w ∈ A∗ : asw ∈ Tc}. Notice that Wa(s) is either empty, if as 6∈ Tc,

or, since Tc is full, Wa(s) can be regarded as a full tree rooted at as. We let I (Wa(s)) be the set of

internal nodes of Wa(s), with the convention that I (Wa(s)) is empty if Wa(s) is empty. Then, by (27),

we have, for s ∈ STc and w ∈ I (W (s)),

κsw = α−
∑
a∈A

1asw∈I(Tc) = α−
∑
a∈A

1w∈I(Wa(s)) , (64)

where 1p denotes the indicator function of the predicate p. Since TF is FSM, Wa(s) is a subset of W (s),

for otherwise there would exist w such that asw ∈ Tc ⊆ TF but sw 6∈ TF , implying that a suffix of a node

in TF is not in TF , in contradiction with Theorem 1. Thus, summing (64) over w ∈ I (W (s)), we obtain∑
w∈I(W (s))

κsw = α
∣∣I (W (s))

∣∣−∑
a∈A

∣∣I (Wa(s))
∣∣ ,

and, replacing in (63),∑
v∈I(TF )\I(Tc)

(α− 1)(κv − 1) = (α− 1)
∑
s∈STc

[
(α− 1)

∣∣I (W (s))
∣∣−∑

a∈A

∣∣I (Wa(s))
∣∣] . (65)

Let SW (s) = W (s) \ I (W (s)), i.e., the set of leafs of TF that descend from s. Since W (s) is full, we

must have (α − 1)|I (W (s)) | = |SW (s)| − 1. Also, clearly, we have STF =
⋃
s∈STc

SW (s). Hence, we
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can rewrite (65) as∑
v∈I(TF )\I(Tc)

(α− 1)(κv − 1) = (α− 1)
∑
s∈STc

[∣∣SW (s)
∣∣− 1−

∑
a∈A

∣∣I (Wa(s))
∣∣] (66)

= (α− 1)
∣∣STF ∣∣− (α− 1)

∑
s∈STc

[
1 +

∑
a∈A

∣∣I (Wa(s))
∣∣] . (67)

Now, let La(s) be the number of edges of the graph GTc = (VTc , ETc) associated to the emission of

symbol a in state s. Notice that, if Wa(s) is not empty, the emission of symbol a in state s of Tc causes

a transition to a state of the form asw, where w is a leaf of Wa(s). If Wa(s) is empty, a determines a

unique next state transition from s in Tc. Thus, since Wa(s) is either a full tree or the empty set, in which

case we have defined I (Wa(s)) as empty, we have

La(s) = (α− 1)
∣∣I (Wa(s))

∣∣+ 1 . (68)

Summing (68) over a ∈ A, we obtain the total number of edges in ETc departing from s, which is

D(s) =
∑
a∈A

[
(α− 1)

∣∣I (Wa(s))
∣∣+ 1

]
= α+ (α− 1)

∑
a∈A

∣∣I (Wa(s))
∣∣ . (69)

Combining (69) with (67), we obtain∑
v∈I(TF )\I(Tc)

(α− 1)(κv − 1) = (α− 1)
∣∣STF ∣∣− ∑

s∈STc

[
D(s)− 1

]
= (α− 1)

∣∣STF ∣∣− (ETc − VTc) ,

which, by (25), completes the proof.

APPENDIX D

PROOF OF LEMMA 20

We first introduce some notation and show two auxiliary lemmas. We recall the definition of S[k]
c (r)

in (20). For r ∈ P
(
S
[k]
c

)
, where h < k ≤ d, we let

S[k]
c (r) = {σ[k−1]

c (s) : s ∈ S[k]
c (r)} , (70)

where we recall that σ[k−1]
c (s) denotes the state selected by s in T

[k−1]
c , which, by Lemma 8, is well

defined. We also define

Ak(r) = {(s, t) ∈ E
T

[k]
c

: s ∈ S[k]
c (r)} ,

Ak(r) = {(s, t) ∈ E
T

[k−1]
c

: s ∈ S[k]
c (r)} ,

and, for c ∈ A,

A
(c)
k (r) = {(s, t) ∈ Ak(r) : c = head(t)} , (71)

A
(c)
k (r) = {(s, t) ∈ Ak(r) : c = head(t)} . (72)
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Lemma 29: Let r ∈ P
(
S
[k]
c

)
, where h < k ≤ d. Then,

(i) If r 6∈ S[k−1]
c , we have S[k]

c (r) = S
[k]
c (r).

(ii) If r ∈ S[k−1]
c , we have S[k]

c (r) = {r} and S
[k]
c (r) = {ra : a ∈ A}. If, in addition, c ∈ A is such

that cr ∈ P
(

∆T
[k]
c

)
, then A(c)

k (r) = {(r, cr)} and A(c)
k (r) = {(ra, cra) : a ∈ A}.

Proof: If r 6∈ S[k−1]
c , since r ∈ P

(
S
[k]
c

)
⊆ I

(
T

[k]
c

)
and, by Lemma 10(i), I

(
T

[k]
c

)
⊆ T

[k−1]
c , we

must have r ∈ I
(
T

[k−1]
c

)
and, therefore, σ[k−1]

c (s) = s for all s ∈ S
[k]
c (r). Thus, by (70), we obtain

S[k]
c (r) = S

[k]
c (r).

If r ∈ S
[k−1]
c , since r ∈ I

(
T

[k]
c

)
, then, by Lemma 10(ii)–(iii), all the children of r are states of

T
[k]
c . Hence, the first claim of (ii) follows from the defintions (70) and (20). If also c ∈ A is such that

cr ∈ P
(

∆T
[k]
c

)
, then, by Lemma 10(ii)–(iii), cr ∈ S[k−1]

c and all the children of cr are states of T [k]
c .

Thus, the second claim follows from (9) and the definitions (72) and (71).

Now, we recall that all explicit encoding of counts in RefineTypeClass are done through Procedure P.

Thus, in the following lemma, we analyze the number of counts described in an invocation of P(r, c).

Lemma 30: Consider the k-th execution of RefineTypeClass, h + 1 < k ≤ d, which is invoked from

the k-th iteration of the loop in EncodeTypeClass (Figure 2). Then, the number of counts described in

an invocation of P(r, c), to encode Ns,t for every s ∈ S[k]
c (r), and every t ∈ S[k]

c such that c = head(t),

equals |A(c)
k (r)| − |A(c)

k (r)|.

Proof: When the condition in Step 1 of Procedure P holds true, the procedure describes α− 1 counts

in Step 2. Since, by the assumptions of Procedure P, cr ∈ I
(
T

[k]
c

)
and, by the condition in Step 1,

cr ∈ S[k−1]
c , then, by (19), we have cr ∈ P

(
∆T

[k]
c

)
. Since, also by the condition in Step 1, r ∈ S[k−1]

c ,

then, by Lemma 29(ii), we conclude that the number of counts described in this case, α − 1, coincides

with |A(c)
k (r)| − |A(c)

k (r)|.

If the condition of Step 1 is false, then all explicit descriptions of counts take place in Step 9, where

α − 1 counts are encoded. Thus, by the loop in Step 6, the condition in Step 7, and the loop in Step 8,

we have to prove that, if the condition of Step 1 is false, then

|A(c)
k (r)| − |A(c)

k (r)| = (α− 1)
∑

s∈S[k]
c (r):cs∈I

(
T

[k]
c

)
∣∣∣P (∆T

[k]
c (cs)

)∣∣∣ . (73)

To prove (73), we will show that

|A(c)
k (r)| = |U(r)|+

∑
s∈S[k]

c (r):cs∈I
(
T

[k]
c

)
( ∣∣∣P (∆T

[k]
c (cs)

)∣∣∣+ |Q(cs)|
)
, (74)

and

|A(c)
k (r)| = |U(r)|+

∑
s∈S[k]

c (r):cs∈I
(
T

[k]
c

)
(
α
∣∣∣P (∆T

[k]
c (cs)

)∣∣∣+ |Q(cs)|
)
, (75)

where

U(r) = {s ∈ S[k]
c (r) : cs ∈ S[k]

c } ,
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and

Q(cs) = {t ∈ S[k]
c ∩ S[k−1]

c : t = csv, v ∈ A∗} . (76)

We start with (74), and we consider first the case in which cr ∈ S[k−1]
c . Since the condition of Step 1

is false, we have r 6∈ S[k−1]
c . Therefore, by Lemma 29(i), we have S[k]

c (r) = S
[k]
c (r) and, hence, A(c)

k (r)

is comprised of |S[k]
c (r)| edges, each departing from some s ∈ S[k]

c (r) and arriving at cr, implying that

the left-hand side of (74) equals |S[k]
c (r)|. On the other hand, since cr ∈ S[k−1]

c and, by the assumptions

of Procedure P, cr ∈ I
(
T

[k]
c

)
, then, by Lemma 10(ii)–(iii), cs ∈ S[k]

c for all s ∈ S[k]
c (r). Hence, we have

|U(r)| = |S[k]
c (r)|, and the summation in the right-hand side of (74) vanishes, which shows the validity

of (74) when cr ∈ S[k−1]
c .

We consider now the case in which cr 6∈ S[k−1]
c . Since, by the assumptions of Procedure P, cr ∈ I

(
T

[k]
c

)
and, by Lemma 10(i), I

(
T

[k]
c

)
⊆ T

[k−1]
c , the condition cr 6∈ S[k−1]

c implies that cr ∈ I
(
T

[k−1]
c

)
. We

claim that

|A(c)
k (r)| =

∑
s∈S[k]

c (r)

|{t ∈ S[k−1]
c : t = csv, v ∈ A∗}| . (77)

If r ∈ S[k−1]
c , then, by Lemma 29(ii), we have S[k]

c (r) = {r} and, therefore, A(c)
k (r) is comprised of as

many edges as states of T [k−1]
c that descend from cr, because each of these states is the destination of

one and only one edge of A(c)
k (r). Equivalently, since cr ∈ I

(
T

[k−1]
c

)
,

|A(c)
k (r)| =

∑
d∈A

|{t ∈ S[k−1]
c : t = crdv, v ∈ A∗}| . (78)

Now, since r ∈ S[k−1]
c and r ∈ P

(
S
[k]
c

)
, recalling that P

(
S
[k]
c

)
⊆ I

(
T

[k]
c

)
and using Lemma 10(ii)–

(iii), we conclude that all the children of r belong to S[k]
c , implying that S[k]

c (r) = {rd : d ∈ A}. Thus,

from (78) we obtain (77). If, instead, r 6∈ S
[k−1]
c , then, by Lemma 29(i), we have S[k]

c (r) = S
[k]
c (r).

Hence, since cr ∈ I
(
T

[k−1]
c

)
, A(c)

k (r) is comprised of as many edges as states of T [k−1]
c that descend

from each cs, s ∈ S[k]
c (r), because each of these states is the destination of one and only one edge of

A
(c)
k (r), proving (77) also in this case.

Having proved (77), we now split the summation therein according to whether s ∈ U(r). If s ∈ U(r), i.e.,

cs ∈ S[k]
c , then, since cr ∈ I

(
T

[k−1]
c

)
and, by Lemma 8, T [k−1]

c ⊆ T [k]
c , we must also have cs ∈ S[k−1]

c .

Therefore, each term corresponding to s ∈ U(r) in (77) contributes 1 to the sum, and the total contribution

of these terms is, thus, |U(r)|. If s 6∈ U(r), then, by (76), we must have cs 6∈ S[k]
c . We also have cs ∈ T [k]

c

because, by the assumptions of Procedure P, the parent r of s satisfies cr ∈ I
(
T

[k]
c

)
. As a consequence,

we must have cs ∈ I
(
T

[k]
c

)
. We can then write

|A(c)
k (r)| = |U(r)|+

∑
s∈S[k]

c (r):cs∈I
(
T

[k]
c

)
(
|{t ∈ S[k−1]

c \ S[k]
c : t = csv, v ∈ A∗}|

+ |{t ∈ S[k−1]
c ∩ S[k]

c : t = csv, v ∈ A∗}|
)
,

from which (74) follows by (19) and (76).
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Next, we prove (75). Since, by the assumptions of Procedure P, we have cr ∈ I
(
T

[k]
c

)
, A(c)

k (r) is

comprised of as many edges as states of T [k]
c that descend from each cs, s ∈ S[k]

c (r), because each of

these states is the destination of one and only one edge of A(c)
k (r), i.e.,

|A(c)
k (r)| =

∑
s∈S[k]

c (r)

|{t ∈ S[k]
c : t = csv, v ∈ A∗}| . (79)

Again, we split the summation in (79) according to whether s ∈ U(r). If s ∈ U(r), the set in each addend

in (79) is comprised of a single element, so that the partial summation equals |U(r)|. If s 6∈ U(r), we

have again cs ∈ I
(
T

[k]
c

)
, which implies

|A(c)
k (r)| = |U(r)|+

∑
s∈S[k]

c (r):cs∈I
(
T

[k]
c

)
(
|{t ∈ S[k]

c \ S[k−1]
c : t = csv, v ∈ A∗}|

+ |{t ∈ S[k]
c ∩ S[k−1]

c : t = csv, v ∈ A∗}|
)
,

or, by (76) and (18),

|A(c)
k (r)| = |U(r)|+

∑
s∈S[k]

c (r):cs∈I
(
T

[k]
c

)
( ∣∣∣∆T [k]

c (cs)
∣∣∣+ |Q(cs)|

)
.

By Lemma 10(ii) and the definition (21), we have
∣∣∣∆T [k]

c (cs)
∣∣∣ = α

∣∣∣P (∆T
[k]
c (cs)

)∣∣∣, from which (75)

follows. Subtracting (74) from (75) we obtain (73), which completes the proof of the lemma.

Proof of Lemma 20:

We analyze the number of counts described in RefineTypeClass (Figure 3), which implements Step 4 of

EncodeTypeClass. RefineTypeClass consists of a main loop in Step 1 that iterates over all r ∈ P
(
S
[k]
c

)
.

We denote by Ck(r) the number of counts described in the iteration corresponding to r ∈ P
(
S
[k]
c

)
.

When r ∈ P
(

∆cT
[k]
c

)
, RefineTypeClass takes a symbol d such that dr 6∈ I

(
T

[k−1]
c

)
in Step 3, and

invokes P(r, c) in Step 4 for every c ∈ Ad = A \ {d}. Since, by Lemma 30, each of these invocations

describes |A(c)
k (r)| − |A(c)

k (r)| counts, the number of counts described in Step 4 is

Ck(r) =
∑
c∈Ad

[
|A(c)
k (r)| − |A(c)

k (r)|
]
. (80)

Now, by Lemma 9 and the definition of the symbol d, we have dr ∈ I
(
T

[k]
c

)
\I
(
T

[k−1]
c

)
and, therefore,

by (19), dr ∈ P
(

∆T
[k]
c

)
. Since r ∈ P

(
∆cT

[k]
c

)
and, by the definition (17), P

(
∆cT

[k]
c

)
⊆ P

(
∆T

[k]
c

)
,

then, by (19), we have r ∈ S[k−1]
c . Thus, by Lemma 29(ii), we have |A(d)

k (r)| − |A(d)
k (r)| = α − 1 =

|S[k]
c (r)| − |S[k]

c (r)| and, therefore, (80) can be written as

Ck(r) = (|Ak(r)| − |S[k]
c (r)|)− (|Ak(r)| − |S[k]

c (r)|) . (81)

We now consider the case in which r 6∈ P
(

∆cT
[k]
c

)
and r ∈ I

(
T

[k−1]
c

)
, so that the condition in Step 6

is satisfied. We claim that the number of described counts, Ck(r), is given by (81) also in this case. Since

all counts are described in Step 10, by Lemma 30 and the loop in Step 9, we need to show that∑
c∈A:cr∈I

(
T

[k]
c

)
[
|A(c)
k (r)| − |A(c)

k (r)|
]

= (|Ak(r)| − |S[k]
c (r)|)− (|Ak(r)| − |S[k]

c (r)|) . (82)
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By Lemma 29(i), we have S
[k]
c (r) = S[k]

c (r). Therefore, by (82), the claim is proved if we show that

|A(c)
k (r)| = |A(c)

k (r)| for all c ∈ A such that cr 6∈ I
(
T

[k]
c

)
. Indeed, for such c ∈ A, and s ∈ S[k]

c (r),

cs is sufficiently long to determine a state σ[k]
c (cs) in T

[k]
c and, a fortiori, it is also sufficiently long to

determine a state σ[k−1]
c (cs) in T [k−1]

c . Thus, both A(c)
k (r) and A(c)

k (r) are comprised of exactly |S[k]
c (r)|

edges, one departing from each element of S[k]
c (r).

Finally, we analyze the case in which RefineTypeClass skips to Step 12, which, by the conditions in

Steps 2 and 6, and by Lemma 11, occurs if and only if r ∈ P
(
∆T [k]

)
. Since no counts are described in

this case, the left-hand side of (81) is zero. We claim that the right-hand side of (81) satisfies

(|Ak(r)| − |S[k]
c (r)|)− (|Ak(r)| − |S[k]

c (r)|) = (α− 1)2 . (83)

Indeed, since r ∈ P
(
∆T [k]

)
, by Lemma 7, r is a state of maximal depth in T [k−1]

c and S[k]
c (r) is comprised

of α states of maximal depth in T [k]
c . Therefore, we have |S[k]

c (r)| = 1, |S[k]
c (r)| = α, Ak(r) is comprised

of exactly α edges that depart from r, and Ak(r) is comprised of α2 edges (exactly α departing from each

s in S[k]
c (r)).

From the above analysis of cases, we conclude that the number of counts described for each r ∈

P
(
S
[k]
c

)
, Ck(r), is given by (81), except when r ∈ P

(
∆T [k]

)
, in which case RefineTypeClass skips to

Step 12, where no counts are described and, by (83), the right-hand side of (81) evaluates to (α − 1)2.

Thus, over all, the number of counts described by RefineTypeClass is

Ck =

 ∑
r∈P

(
S

[k]
c

)(|Ak(r)| − |S[k]
c (r)|)− (|Ak(r)| − |S[k]

c (r)|)

− ∣∣∣P (∆T [k]
)∣∣∣ (α− 1)2 . (84)

By the definition of the truncated trees T [k], a state of T [k−1] is either also a state in T [k], or it is the parent

of a full complement of α siblings that are states of T [k]. Since, by Lemma 7, P
(
∆T [k]

)
= ST [k−1] \ST [k] ,

we have

|ST [k] | = |ST [k−1] |+
∣∣∣P (∆T [k]

)∣∣∣ (α− 1),

and (84) becomes

Ck =

 ∑
r∈P

(
S

[k]
c

)(|Ak(r)| − |S[k]
c (r)|)− (|Ak(r)| − |S[k]

c (r)|)

− (|ST [k] | − |ST [k−1] |
)

(α− 1) . (85)

Now, by the definitions (20) and (71), we have

V
T

[k]
c

=
⋃

r∈P
(
S

[k]
c

)S[k]
c (r) , E

T
[k]
c

=
⋃

r∈P
(
S

[k]
c

)Ak(r) .

Also, by (19), a state s in S[k−1]
c is either in S[k]

c or in P
(

∆T
[k]
c

)
. In the former case, for the parent r of

s, we have s ∈ S[k]
c (r). In the latter case, by (18), s is the parent of a state in S[k]

c . Therefore, s ∈ P
(
S
[k]
c

)
and, by the definition (70), s ∈ S[k]

c (s). In any case, we have s ∈ S[k]
c (r) for some r ∈ P

(
S
[k]
c

)
. Thus,
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again,

V
T

[k−1]
c

=
⋃

r∈P
(
S

[k]
c

)S[k]
c (r) , E

T
[k−1]
c

=
⋃

r∈P
(
S

[k]
c

)Ak(r) .

Hence, the summation in (85) simplifies to(
|E
T

[k]
c
| − |V

T
[k]
c
|
)
−
(
|E
T

[k−1]
c
| − |V

T
[k−1]
c
|
)
,

which completes the proof.

APPENDIX E

PROOF OF LEMMA 25

We make use of the following lemma and corollary. Recall that C(T ) denotes a penalization function

that increases with |ST |.

Lemma 31: Let T̂ be a tree estimate for xn according to (31), and let s and w be strings such that

s ∈ ST̂ , s ≺ w, and ns > 0. Then, for any extension T ′ of T̂ that contains w and any a ∈ A, we have∣∣∣∣∣n(a)w − n
(a)
s

ns
nw

∣∣∣∣∣ ≤
√

2(C(T ′)− C(T̂ ))ns lnn .

Proof:

Since C(T ) is increasing in |ST |, it is sufficient to consider the case in which T ′ is the smallest extension

of T̂ (xn) that contains w, i.e., the tree that results from extending T̂ (xn) by adding w′b for all proper

prefixes w′ of w and all symbols b ∈ A. Let W = {su : su ∈ ST ′}. Since T̂ (xn) minimizes the cost

function K(T, xn), we have

−
∑

t∈ST̂ ,a∈A
n
(a)
t log

n
(a)
t

nt
+ C(T̂ ) logn ≤ −

∑
t∈ST ′ ,a∈A

n
(a)
t log

n
(a)
t

nt
+ C(T ′) log n .

Therefore,

−
∑

t∈ST̂ ,a∈A
n
(a)
t log

n
(a)
t

nt
+

∑
t∈ST ′ ,a∈A

n
(a)
t log

n
(a)
t

nt
≤ (C(T ′)− C(T̂ )) log n ,

which reduces to

−
∑
a∈A

n(a)s log
n
(a)
s

ns
+

∑
su∈W,a∈A

n(a)su log
n
(a)
su

nsu
≤ (C(T ′)− C(T̂ )) log n .

Now, since ns > 0, we further obtain

−
∑
a∈A

n
(a)
s

ns
log

n
(a)
s

ns
+
∑
su∈W

nsu
ns

∑
a∈A

n
(a)
su

nsu
log

n
(a)
su

nsu
≤ (C(T ′)− C(T̂ ))

log n

ns
. (86)

Let p̂(·|s) be the empirical probability distribution over A given by p̂(a|s) = n
(a)
s /ns and analogously

for su ∈W , p̂(a|su) = n
(a)
su /nsu. Consider also a probability distribution p̂(·) over W given by p̂(su) =

nsu/ns. Let A,B be random variables such that B takes values in W with B ∼ p̂(·), and A takes values
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in A with conditional distribution P (A = a|B = su) = p̂(a|su). Then, the joint distribution of A and B

is

P (A = a,B = su) = P (A = a|B = su)P (B = su) = p̂(a|su)p̂(su) =
n
(a)
su

nsu

nsu
ns

=
n
(a)
su

ns
,

and, thus, the marginal distribution of A is A ∼ p̂(·|s). With these random variables, Equation (86) takes

the form

I(A;B) = H(A)−H(A|B) ≤ (C(T ′)− C(T̂ ))
log n

ns
,

where I and H denote the usual mutual information and entropy functions. Let Q be a joint distribution

given by the product of the marginal distributions of A,B, i.e.,

Q(A = a,B = su) = P (A = a)P (B = su) =
n
(a)
s

ns

nsu
ns

.

Then, by Pinsker’s inequality [24, Lemma 12.6.1], we have

1

2 ln 2
‖P −Q‖21 ≤ D(P ||Q) = I(A;B) ≤ (C(T ′)− C(T̂ ))

log n

ns
.

Therefore,  ∑
a∈A,su∈W

|P (a, su)−Q(a, su)|

2

≤ 2(C(T ′)− C(T̂ ))
lnn

ns
,

which takes the form ∑
a∈A,su∈W

∣∣∣∣∣n(a)suns − n
(a)
s

ns

nsu
ns

∣∣∣∣∣ ≤
√

2(C(T ′)− C(T̂ ))
lnn

ns
. (87)

In particular, taking only the term corresponding to su = w and a specific a ∈ A in the summation on the

left-hand side of (87), we conclude that, for any a ∈ A,∣∣∣∣∣n(a)w − n
(a)
s

ns
nw

∣∣∣∣∣ ≤
√

2(C(T ′)− C(T̂ ))ns lnn .

With a linear penalization function of the form C(T ) = β|ST |, Lemma 31 yields the following corollary.

Corollary 4: Let T̂ be a tree estimate for xn according to (31) with a penalization function C(T ) =

β|ST |, s ∈ ST̂ , s ≺ w, and ns > 0. Then, for every a ∈ A,∣∣∣∣∣n(a)w − n
(a)
s

ns
nw

∣∣∣∣∣ ≤√2βα|w|ns lnn .

Proof: Let T ′ be the smallest extension of T̂ that contains w. Thus, |ST ′ |−|ST̂ | = (α−1)(|w|−|s|)+1

and, since |w| − |s| ≥ 1 for s ≺ w, we obtain |ST ′ | − |ST̂ | ≤ α(|w| − |s|) ≤ α|w|. Since the penalization

function is linear, we have C(T ′)− C(T̂ ) = β(|ST ′ | − |ST̂ |) and the claim follows from Lemma 31.

Proof of Lemma 25: Let i be an index in the range 1 < i ≤ `, and let w = tq`−i+2 and a = t`−i+1.

Then we have mi−1 = nw and mi = naw. Also, recalling the definition of si just before (22), for s = si−1,

we have s ≺ w and, by (23), ni−1 = ns and nαi−1 = n
(a)
s . Thus,∣∣∣∣mi −

nαi−1
ni−1

mi−1

∣∣∣∣ =

∣∣∣∣∣naw − n
(a)
s

ns
nw

∣∣∣∣∣ ≤
∣∣∣∣∣n(a)w − n

(a)
s

ns
nw

∣∣∣∣∣+ 1 ,
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where the inequality follows from the fact that, by (7), |naw − n(a)w | ≤ 1. Thus, by Corollary 4, using the

fact that |w| ≤ |t|, we obtain

nαi−1
ni−1

mi−1 −
√

2βα|t|ns lnn− 1 ≤ mi ≤
nαi−1
ni−1

mi−1 +
√

2βα|t|ns lnn+ 1 . (88)

As in the proof of Lemma 17, if i > 2, we apply the same inequalities for mi−1, obtaining∣∣∣∣mi −
nαi−1
ni−1

nαi−2
ni−2

mi−1

∣∣∣∣ ≤ (1 +
nαi−1
ni−1

)(√
2βα|t|ns lnn+ 1

)
.

Proceeding in the same fashion, starting from i = ` and iterating down to i = 2, we obtain∣∣∣∣∣m` −m1

`−1∏
i=1

nαi
ni

∣∣∣∣∣ ≤
1 +

`−1∑
j=2

`−1∏
i=j

nαi
ni

(√2βα|t|ns lnn+ 1
)
.

Since nαi
ni
≤ 1 for all i, 1 < i < `, we can write∣∣∣∣∣m` −m1

`−1∏
i=1

nαi
ni

∣∣∣∣∣ ≤ (`− 1)
(√

2βα|t|ns lnn+ 1
)
,

from which (32) follows recalling that m` = nt.
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