
 

                                                                
      
 
 

 
Twice-universal denoising 
Erik Ordentlich, Krishnamurthy Viswanathan, Marcelo J. Weinberger 
 
HP Laboratories 
HPL-2011-205 
 
Keyword(s): 
Universal denoising; universal data compression; loss estimation 
 
Abstract: 
We propose a sequence of universal denoisers motivated by the goal of extending the notion of twice-
universality from universal data compression theory to the sliding window denoising setting. Given a 
sequence length n and a denoiser, the k-th order regret of the latter is the maximum excess expected 
denoising loss relative to sliding window denoisers with window length 2k+1, where, for a given clean 
sequence, the expectation is over all channel realizations and the maximum is over all clean sequences of 
length n. We define the twice-universality penalty of a denoiser as its excess k-th order regret when 
compared to the k-th order regret of the DUDE with parameter k, and we are interested in denoisers with a 
small penalty for all k simultaneously. We consider a class of denoisers that apply one of a number of 
constituent denoisers based on minimizing an estimated denoising loss and establish a formal relationship 
between errors in the estimated denoising loss and the twice-universality penalty of the resulting denoiser. 
Given a sequence of window parameters kn, increasing in n sufficiently fast, we use this approach to 
construct and analyze a specific sequence of denoisers that achieves a much smaller twice--universality 
penalty for k < kn than the sequence of DUDEs with parameter kn. 

External Posting Date: October 22, 2011 [Fulltext] Approved for External Publication 
Internal Posting Date: October 22, 2011 [Fulltext] 
 
 
 Copyright 2011 Hewlett-Packard Development Company, L.P. 

 

 



Twice–universal denoising∗

Erik Ordentlich, Krishnamurthy Viswanathan, Marcelo J. Weinberger

Hewlett Packard Labs, Palo Alto, CA 94304.

October 13, 2011

Abstract

We propose a sequence of universal denoisers motivated by the goal of extending the notion

of twice–universality from universal data compression theory to the sliding window denoising

setting. Given a sequence length n and a denoiser, the k-th order regret of the latter is the

maximum excess expected denoising loss relative to sliding window denoisers with window length

2k + 1, where, for a given clean sequence, the expectation is over all channel realizations and

the maximum is over all clean sequences of length n. We define the twice–universality penalty

of a denoiser as its excess k-th order regret when compared to the k-th order regret of the

DUDE with parameter k, and we are interested in denoisers with a small penalty for all k

simultaneously. We consider a class of denoisers that apply one of a number of constituent

denoisers based on minimizing an estimated denoising loss and establish a formal relationship

between errors in the estimated denoising loss and the twice–universality penalty of the resulting

denoiser. Given a sequence of window parameters kn, increasing in n sufficiently fast, we use

this approach to construct and analyze a specific sequence of denoisers that achieves a much

smaller twice–universality penalty for k < kn than the sequence of DUDEs with parameter kn.

Keywords: Universal denoising, universal data compression, loss estimation.

1 Introduction

The problem of denoising is one of signal reproduction based on noisy observations, with the quality

of the reproduction being measured by a fidelity criterion. In one version of this problem, a clean

discrete sequence xn of length n is passed through a known discrete memoryless channel (DMC)

to obtain a noisy sequence zn, and the goal of the denoiser is to produce a reconstruction x̂n

whose quality is measured by a single-letter loss function. This problem is studied in [1], where

a denoising algorithm, DUDE, is proposed. The DUDE algorithm takes as input a non-negative

integer parameter k, computes the number of occurrences of all 2k+ 1-tuples of symbols in zn, and

bases its reconstruction on these counts. It is shown in [1] that DUDE with parameter k is universal

in the sense that, for any input sequence xn, the difference between its loss and that of the best k-th

∗This work was presented, in part, at the IEEE Intl. Symp. on Inform. Theory (ISIT), in Seoul, Korea (2009) and

in Austin, Texas (2010).
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order sliding window denoiser for the pair (xn, zn) (the difference being the k-th order “regret”)

vanishes in the limit of large n (and fixed k), both in expectation and with high probability (where

the randomness comes from the known DMC). A k-th order sliding window denoiser is one whose

decision at time i depends only on the window zi+ki−k .

The k-th order regret bound of the DUDE [1] (see also (4) below) continues to vanish for

sufficiently slowly increasing sequences k = kn → ∞. It follows that DUDE with such parameters

kn (as a sequence of denoisers) competes successfully with any sequence of k′n-th order sliding

window denoisers for sufficiently slowly growing order k′n ≤ kn (including any fixed k). This

property is akin to that of the Lempel–Ziv algorithm in data compression [2], which is able to

compress every sequence essentially as well as any compressor with a fixed (or a slowly growing)

number of states. However, this view of universality does not address the issue of how fast the

range of competing window lengths should grow, or what is the additional cost, in terms of the

k-th order regret, incurred over an algorithm optimized for a specific k or specific sequence k′n, for

dealing with a faster growing range of window lengths.

These are important considerations, since, ideally, we would like a universal denoiser to compete

with a family of denoisers as large as possible (in other words, we would like kn to grow at the

fastest possible rate) while at the same time pay as little as possible for this additional universality.

Following the above data compression analogy, such desiderata are akin to those formulated in the

context of twice–universal data compression [4, 5]. For example, a particularly desirable denoiser

would be one that for all sequences kn, incurs a kn-th order regret that is only negligibly more than

that incurred by the DUDE of order kn, that is, the DUDE designed specifically to compete with

sliding window denoisers of order kn. The envisioned denoiser would thus be independent of any

sequence kn, unlike the DUDE. One might think that the sequence of DUDEs with parameter kn

for some rapidly increasing kn would come close to having such an ideal property. This, however,

is not the case since the best that can be said about the k′n-th order regret of such a sequence

of DUDEs, when k′n ≤ kn, is that it equals the kn-th order regret, which is roughly exponential

in kn (see (4) below), thus potentially far exceeding the k′n-order regret of a k′n-th order DUDE.

Moreover, for k′n > kn, the k′n-th order regret of the kn-th order DUDE is not even guaranteed

to vanish, even if the k′n-order regret of the k′n-th order DUDE did vanish. This weakness is the

result of a naive policy for dealing with a growing range of window lengths, namely one which is

data independent. In the data compression setting, this policy corresponds to a Markov compressor

which increases the Markov order sufficiently slowly in a data independent manner, as in the early

days of universal data compression.

Defining the twice–universality penalty of a denoiser as its excess k-th order regret when com-

pared to the k-th order regret of the DUDE with parameter k, we are interested in a denoiser with a

small penalty for all k simultaneously. For such a denoiser, the k-th order regret would not only be

vanishing, but would be close to the best possible. In this paper, we present a denoiser that is a step

towards such an ideal denoiser in terms of these aspects of universality. The proposed algorithm,

dubbed TU-DUDE, is based on loss estimation results and a variant of DUDE, and is also defined

by a growing sequence kn (though, as noted below, there is a natural “best” such sequence). The
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TU-DUDE is shown to have several advantages over the DUDE. First, for kn increasing with n

sufficiently fast, a much smaller k-th order regret upper bound can be proved for k, 0 ≤ k ≤ kn,

than that of the DUDE of order kn. Moreover, for the “most ambitious” choice of kn, denoted

κn (to be specified in Section 3), the k-th order regret of the TU-DUDE is essentially the same

as the regret of DUDE with parameter k for every k roughly in the range κn/2 < k ≤ κn, mak-

ing the penalty for competing with a range of window lengths rather than with a specific window

length k, negligible. In contrast, as noted above, in order to be universal for a range 0 ≤ k ≤ kn,

DUDE (with parameter kn) incurs for any k in the range, under the best available bounds, a regret

corresponding to the maximum order in the range, kn, which is exponential in kn. Second, the

TU-DUDE is also shown to compete against a slightly larger family of sliding window denoisers

(with growing order) than any sequence of DUDEs for any choice of parameters kn. The above

properties can be seen as a step toward twice–universality in denoising, similar to the counterpart

concept in data compression, thus motivating the name TU-DUDE, for twice–universal DUDE.

As discussed in Section 6.3, it should be noted, however, that the TU-DUDE falls short of being

twice–universal in the data compression sense.

The TU-DUDE is based on a DUDE-like universal denoiser dubbed the D-DUDE (for reasons

explained below), whose regret satisfies the same bounds from [1] as that of the DUDE with the

corresponding parameter. The TU-DUDE takes the approach first proposed in [7], namely to select

the value of k that minimizes an estimate of the loss of D-DUDE with parameter k for 0 ≤ k ≤ kn
and then to apply D-DUDE with the selected parameter. The idea is that if the expected error

in estimating the loss is small for all clean sequences xn, then the loss incurred for the selected

k does not deviate much from the loss incurred for the best k for the underlying clean sequence.

The D-DUDE for the best k, in turn, clearly has a smaller regret than the D-DUDE for any k.

We prove this result in greater generality by showing that the existence of a loss estimator whose

expected error is small for a sequence of denoisers, with regret satisfying the same bounds as the

DUDE, provides a way to construct a twice–universal denoiser with a small excess regret. Finally,

we also show that for a restricted subset of clean sequences, dubbed non-pathological sequences, the

excess loss incurred by the TU-DUDE (the twice–universality penalty) may be much smaller than

the bounds we can prove without any restriction on the clean sequences. We highlight scenarios

for which the fraction of clean sequences that are non-pathological tends to one.

The rest of the paper is organized as follows. Basic definitions and notations are presented in

Section 2. The notion of twice–universality is defined in Section 3, where we also formally state

our main results. The next two sections present results and tools necessary for constructing the

TU-DUDE and for proving our main theorem. A lemma establishing the connection between good

loss estimation and twice universality is proved in Section 4. The specific loss estimator that we

consider is presented, along with its properties, in Section 5. The TU-DUDE is then formally

described in Section 6. The proof of our main theorem is also presented in this section. Finally,

in Section 7, we show that stronger results are possible in the sense that if one defined the regret

based on the worst-case expected excess loss over a subset of non-pathological clean sequences, a

much smaller twice–universality penalty can be achieved.
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2 Notation and Preliminaries

The notation we employ is similar to the one in [1]. We first define the notation we use to refer to

vectors, matrices and sequences. For any matrix A, ai will denote its ith column, and for a vector

u its ith component will be denoted by ui or u[i]. Often, the indices may belong to any discrete

set of appropriate size. For two vectors u and v of the same dimension, u � v will denote the

vector obtained from componentwise multiplication. For any vector or matrix A, AT will denote

transposition, for an invertible matrix A−T will denote the transpose of its inverse A−1, and ||A||∞
will denote the largest absolute value of any entry in the matrix or vector.

For any set A, let A∞ denote the set of one-sided infinite sequences with A-valued components,

i.e., a ∈ A∞ is of the form a = (a1, a2, . . .), ai ∈ A, i ≥ 1. For a ∈ A∞, let an = (a1, a2, . . . ,an)

and aji = (ai, ai+1, . . . ,aj). More generally, we will permit the indices to be negative as well, for

example, uk−k = (u−k, . . . ,u0, . . . ,uk). For positive integers k1, k2, and strings si ∈ Aki , i = 1, 2, let

s1s2 denote the string formed by the concatenation of s1 and s2. Sometimes we will also refer to

the i-th component of a sequence a by a[i].

We now define the parameters associated with the universal denoising problem, namely, the

channel transition probabilities, the loss function, and relevant classes of denoisers. Let the se-

quences xn, zn ∈ An, respectively denote the noiseless input to and the noisy output from a

discrete memoryless channel (DMC) whose input and output alphabet are both A. Let M = |A|
denote the size of the alphabet and M the simplex of M -dimensional probability vectors. Let the

matrix Π = {Π(i, j)}i,j∈A, whose components are indexed by members of A, denote the transition

probability matrix of the channel, where Π(i, j) is the probability that the output symbol is j when

the input symbol is i. Also, for j ∈ A, πj denotes the j-th column of Π. We are interested in

channels whose transition matrix Π is invertible. For technical reasons stemming from our proof

technique (cf. Lemma 8 and its proof), we also assume throughout that all entries of Π are strictly

positive. We believe, however, that this assumption can be relaxed considerably while preserving

our results.

Upon observing a noisy sequence zn ∈ An, a denoiser outputs a reconstruction sequence

{x̂t}nt=1 ∈ An. The loss matrix Λ = {Λ(i, j)}i,j∈A represents the loss function associated with

the denoising problem, namely, Λ(i, j) ≥ 0 denotes the loss incurred by a denoiser that outputs

x̂ = j when the channel input x = i. Also, for i ∈ A, λi denotes the i-th column of Λ.

An n-block denoiser is a mapping X̂n : An → An. For any zn ∈ An, let X̂n(zn)[i] denote

the i-th term of the sequence X̂n(zn). For a noiseless input sequence xn and the observed output

sequence zn, the normalized cumulative loss LX̂n(xn, zn) of the denoiser X̂n is

LX̂n(xn, zn) =
1

n

n∑
i=1

Λ
(
xi, X̂

n(zn)[i]
)
.

Let Dn denote the class of all n-block denoisers. A k-th order sliding window denoiser X̂n is a

denoiser with the property that for all zn ∈ An, if zi+ki−k = zj+kj−k then

X̂n(zn)[i] = X̂n(zn)[j].
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Thus, the denoiser defines a mapping,

f : A2k+1 → A

so that for all zn ∈ An

X̂n(zn)[i] = f
(
zi+ki−k

)
, i = k + 1, . . . ,n− k.

Let Sk denote the class of k-th order sliding window denoisers. In the sequel, we define the

best loss obtainable for a given pair of noiseless and noisy sequences with a k-th order sliding

window denoiser. For convenience, we will modify the definition of normalized cumulative loss to

accomodate noiseless and noisy sequences of differing lengths.

For an individual noiseless sequence xn ∈ An and a noisy sequence zn ∈ An, k ≥ 0 and n > 2k,

Dk(x
n, zn), the k-th order minimum loss of (xn, zn) is defined to be

Dk(x
n, zn) = min

X̂n∈Sk
LX̂n

(
xn−kk+1 , z

n
)

= min
f :A2k+1→A

1

n− 2k

n−k∑
i=k+1

Λ
(
xi, f

(
zi+ki−k

))
,

the least loss incurred by any k-th order denoiser on the pair (xn, zn). For a given channel Π and

a noiseless sequence xn define

D̂k(x
n)

def
= E[Dk(x

n, Zn)] (1)

the expected k-th order minimum loss incurred when each random noisy sequence Zn produced

when xn is input to the channel is denoised by the best k-th order denoiser for the pair (xn, Zn).

For any n-block denoiser X̂n we define its k-th order regret to be

R̂k

(
X̂n
)

def
= max

xn∈An

{
E
[
LX̂n

(
xn−kk+1 , Z

n
)]
− D̂k(x

n)
}
. (2)

Note that since Dk(x
n, zn) is non-increasing in k for any fixed xn and zn, D̂k(x

n) is non-increasing

in k for all xn so that, for all X̂n, R̂k

(
X̂n
)

is non-decreasing in k. Given a non-decreasing sequence

{kn}, a sequence of denoisers {X̂n} is universal for the classes Skn if the kn-th order regret of X̂n

R̂kn

(
X̂n
)

= o(1).

The Discrete Universal Denoiser (DUDE) was proposed in [1], and is described below. The

vector m(zn, c−1
−k, c

k
1) is defined as

m(zn, c−1
−k, c

k
1)[c0]

def
=
∣∣∣{i : k + 1 ≤ i ≤ n− k, zi+ki−k = ck−k

}∣∣∣
for c0 ∈ A. Then, the DUDE with parameter k denoises according to

X̂n,k
DUDE(zn)[i] = arg min

x̂∈A
λTx̂

(
(Π−Tm(zn, zi−1

i−k, z
i+k
i+1 ))� πzi

)
, (3)

where ties in the minimization are broken according to an arbitrary, but fixed rule. For all a ∈ A,

the a-th component of ((Π−Tm(zn, zi−1
i−k, z

i+k
i+1 ))� πzi) is a good estimate for the number of indices
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j in xn that take the value a when the j-th noisy symbol equals zi and the context of the j-th

noisy symbol equals
(
zi−1
i−k, z

i+k
i+1

)
. The DUDE denoises by selecting that reconstruction symbol

that minimizes the loss assuming this estimate is exact. Note that for the DUDE with parameter

k, X̂n,k
DUDE /∈ Sk (since the effective 2k + 1 window-wise denoising mapping depends on zn). It was

shown in [1] that for all k, all sufficiently large n and all clean sequences xn, X̂n,k
DUDE satisfies, for

some constant1 C independent of k, n, and xn,

R̂k

(
X̂n,k

DUDE

)
≤ C

√
M2k(k + 1)

n
. (4)

Therefore, X̂n,kn
DUDE is universal for Skn if knM

2kn = o(n). In [6], it was shown that the regret in (4)

is close to the best possible. Specifically for most (Π,Λ), and all k and any sequence {X̂n ∈ Dn}
of denoisers, as n tends to infinity

R̂k

(
X̂n
)
≥ ck√

n

where c is a positive function of (Π,Λ). For certain (Π,Λ) pairs, c equals M , and in those cases the

regret of the DUDE with parameter k is optimal up to a factor of
√
k. This suggests a definition

of twice–universality that is based on the regret of the DUDE, rather than a more elusive optimal

regret.

3 Twice–universality: definition and main results

In this paper, we explore the notion of twice–universal denoisers, namely denoisers whose regret

with respect to all Sk, k ≤ kn, for a given sequence kn, is not just vanishing but close to the best

possible. We shall say that a sequence of denoisers X̂n is “twice–universal” with penalty ε(k, n) if

its regret satisfies

R̂k

(
X̂n
)
≤ C

√
M2k(k + 1)

n
+ ε(k, n) (5)

for all sufficiently large n, and all k simultaneously. We shall sometimes refer to ε(k, n) satisfying (5)

as the twice–universality penalty of X̂n. This definition is DUDE-specific in the sense that the

penalty ε(k, n) is the excess loss incurred by X̂n beyond the regret bound (4) achieved by DUDE

with parameter k.

Note that for a sequence kn, a sequence of DUDEs with parameter kn satisfies

R̂k

(
X̂n,kn

DUDE

)
≤ C

√
M2kn(kn + 1)

n
, (6)

for all k ≤ kn and n sufficiently large, since for all X̂n, R̂k

(
X̂n
)

is non-decreasing in k. Thus, the

1Several constants pertaining to different results throughout the paper will be denoted by C. These are not

necessarily the same constant.
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DUDE with parameter kn is provably twice–universal with penalty

εD,kn(n, k) = C

√
M2kn(kn + 1)

n
− C

√
M2k(k + 1)

n

≈ C
√
M2kn(kn + 1)

n

for k ≤ kn, where the latter approximation holds for k sufficiently smaller than kn. The use of

the term “provably” is due to the fact that we have computed εD,kn(n, k) from an upper bound on

R̂k

(
X̂n,kn

DUDE

)
, not from an exact characterization. Thus, while the actual penalty could be smaller

than εD,kn(n, k), no such reduced penalty has been proved. Note also that, based on known bounds,

the best we can say about the twice–universality penalty of the DUDE with parameter kn for k > kn

is that it is ||Λ||∞. We investigate whether it is possible to achieve a smaller penalty than εD,kn(n, k).

Given a sequence kn, the main result of this paper is a denoiser dubbed the TU-DUDE and

denoted as X̂n,kn
TU-DUDE and the following theorem concerning its twice–universality penalty.

Theorem 1. For all channels such that the transition matrix Π has only non-zero entries, given

a sequence kn, X̂n,kn
TU-DUDE is twice–universal with penalty εTU,kn(k, n) = C̃((kn + 1)5/4/n1/4) for a

constant C̃ and k ≤ kn.

The construction of the TU-DUDE with parameter kn and the proof of Theorem 1 are presented

in Section 6. Here, we make the following observations concerning the theorem.

In comparing the twice–universal penalty εTU,kn(k, n) from the theorem to εD,kn(n, k), we see

that it is smaller roughly when kn > log n/(4 logM). In particular, consider the choice kn = κn for

kn, where

κn = max

{
k ∈ Z+ : C

√
M2k(k + 1)

n
≤ ||Λ||∞

}
≈ log n

2 logM
(7)

which is the largest kn for which the DUDE with parameter kn may be doing any provable denoising

for a given n. It is thus a natural sequence to consider in light of the definition (5) of a twice–

universal denoiser with a given penalty: for k > κn the k-th order DUDE regret component of

the overall regret fails to vanish and is thus of limited interest to track, while for k < κn the k-th

order DUDE may be carrying out some denoising and its performance may thus be worthwhile

tracking. Note also that the k-th order regret R̂k

(
X̂n,κn

TU-DUDE

)
, which, based on the theorem, is

upper bounded by the sum of the k-th order regret of the DUDE with parameter k and the stated

twice–universality penalty, vanishes for k up to almost κn, while for k ≥ κn this may no longer

be the case. In this sense, κn constitutes a “most ambitious” sequence for TU-DUDE, as choosing

kn > κn does not increase the range of k over which the k-th order regret of TU-DUDE provably

vanishes.

It is not hard to see that for this natural sequence κn, the penalty term εTU,κn(k, n) of the

TU-DUDE X̂n,κn
TU-DUDE is negligible relative to the k-th order DUDE regret bound (4) for k roughly

in the range κn/2 < k ≤ κn. No other previously proposed denoising approach is twice–universal

with a smaller penalty (or even a vanishing one) for this range of k. In the case of the DUDE, for
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example, not only is εD,κn(n, k) not negligible relative to the k-th order DUDE regret bound, but,

more severely, it does not even vanish for most of the range 0 ≤ k ≤ κn (the exception being at k

extremely close to κn). It follows that the k-th order regret of X̂n,κn
DUDE is bounded away from that

of X̂n,k
DUDE, the DUDE with parameter k, and, as a result, its k-th order regret R̂k

(
X̂n,κn

DUDE

)
may, in

turn, not vanish for the same range of k.

The following new universality result also follows as a corollary of Theorem 1. Let

Kn
def
=

{
{kn} :

√
M2kn(kn + 1)

n
→ 0

}
(8)

denote the set of sequences {kn} for which the right-hand side of (6) vanishes.

Corollary 2. Under the assumptions of Theorem 1, the TU-DUDE with parameter κn is universal

with respect to all sliding window denoisers of order kn for all sequences {kn} ∈ Kn, in the sense

that limn→∞ R̂kn

(
X̂n,κn

TU

)
= 0 for all {kn} ∈ Kn.

Note that, on the other hand, no sequence of parameters {k′n} is known for which the universality

of DUDE, with respect to the class of sliding window denoisers in the corollary, can be shown to

follow from known results. In particular, if the sequence {k′n} /∈ Kn then the resulting DUDE

would not be universal with respect to even 0-th order sliding windows (corresponding to the

trivial sequence kn = 0 which clearly belongs to Kn), since the best we can say about the regret in

this case, namely R̂0

(
X̂
n,k′n
D

)
, is that it is bounded above by C

√
M2k′n (k′n+1)

n which does not tend

to zero by virtue of {k′n} /∈ Kn. Suppose, on the other hand, that the sequence {k′n} ∈ Kn. It is not

hard to see that in this case, for any such {k′n}, one can find another sequence {kn} ∈ Kn which

grows faster than {k′n}. The DUDE with parameters k′n, however, may not be effective against

sliding window denoisers with the faster growing window sizes kn, and indeed the best we can say

about the regret via known bounds is that it is ||Λ||∞.

Proof of Corollary 2. For every sequence {kn} ∈ Kn, the overall kn-th order regret bound of the

TU-DUDE with parameter κn, comprised of the DUDE regret bound and the twice–universality

penalty, satisfies

lim
n→∞

R̂kn

(
X̂n,κn

TU

)
≤ lim

n→∞

[
C

√
M2kn(kn + 1)

n
+ C̃

(
(κn + 1)5/4

n1/4

)]
(9)

= 0, (10)

where (9) follows from Theorem 1 and the fact that for all {kn} ∈ Kn, kn ≤ κn for n sufficiently

large, and (10) follows from the definition of Kn, and the fact that κn = O(log n). 2

4 Loss estimation and twice–universal denoising

The TU-DUDE denoises a sequence by estimating the loss that would be incurred by candidate

DUDE-like denoisers and then selecting the one with the lowest estimated loss. It is described in
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detail in Section 6. In this section, we derive a more general result that will also be used in the

analysis of TU-DUDE. We show that if there exists a “good” estimator for the loss incurred by

X̂n,k
DUDE, or an alternative denoiser with similar performance guarantees, for all k < kn, then one

can construct a “good” twice–universal denoiser, namely one that is twice–universal with a small

penalty.

A loss estimator for a denoiser X̂n is a mapping

L̂X̂n : An → R

that, given a noisy sequence zn, estimates the loss LX̂n(xn, zn) incurred by X̂n to be L̂X̂n(zn).

Consider a sequence {kn} of integers. For each n, let {X̂n,k} denote a set of denoisers indexed by

k in the range 0 ≤ k ≤ kn, whose regret satisfies the upper bound in (6), i.e.,

R̂k

(
X̂n,k

)
≤ C

√
M2k(k + 1)

n
, k ≤ kn (11)

for all n sufficiently large. Let {L̂X̂n,k}, k ≤ kn, be loss estimators for the denoisers {X̂n.k}. Given

n and kn, the denoiser X̂n
U , in turn, evaluates the estimated loss of each of the denoisers {X̂n,k}

for k ≤ kn using the loss estimators {L̂X̂n,k} and denoises using the denoiser with the minimum

estimated loss. Formally, X̂n
U is given by

X̂n
U (zn)[i] = X̂n,k̂∗n(zn)[i] (12)

where

k̂∗n = arg min
k≤kn

L̂X̂n,k(zn). (13)

Lemma 3. Let {kn} be a sequence of integers, and for all n, let {X̂n,k} denote a set of denoisers

indexed by k ≤ kn satisfying (11) for n sufficiently large. If for all k ≤ kn and all xn

E
[∣∣∣LX̂n,k(xn, Zn)− L̂X̂n,k(Zn)

∣∣∣] ≤ α(kn, n) (14)

for all n, then X̂n
U is twice–universal with penalty 2(kn + 1)α(kn, n).

Proof. Observe that for all k, all n sufficiently large, and all xn

E(LX̂n
U

(xn, Zn)−Dk(x
n, Zn)) = E(LX̂n,k(xn, Zn)−Dk(x

n, Zn))

+ E(LX̂n
U

(xn, Zn)− LX̂n,k(xn, Zn))

≤ C
√
M2k(k + 1)

n
+ E

(
LX̂n

U
(xn, Zn)− LX̂n,k(xn, Zn)

)
(15)

where (15) follows from (11) and the definition of regret. In analogy to k̂∗n defined in (13), let

k∗n = arg min
k≤kn

LX̂n,k(xn, zn), (16)

9



be the actual loss-minimizing parameter for {X̂n,k}. This parameter is a function of both the clean

and noisy sequences, unlike its counterpart k̂∗n, which is a function only of the noisy sequence. We

then have

E
(
LX̂n

U
(xn, Zn)− LX̂n,k(xn, Zn)

)
= E

(
L
X̂n,k̂∗n (xn, Zn)− LX̂n,k∗n (xn, Zn)

)
+ E

(
LX̂n,k∗n (xn, Zn)− LX̂n,k(xn, Zn)

)
(17)

≤ E
(
L
X̂n,k̂∗n (xn, Zn)− LX̂n,k∗n (xn, Zn)

)
(18)

= E
(
L
X̂n,k̂∗n (xn, Zn)− L̂

X̂n,k̂∗n (Zn)
)

+ E(L̂
X̂n,k̂∗n (Zn)− LX̂n,k∗n (xn, Zn))

≤ E
(
L
X̂n,k̂∗n (xn, Zn)− L̂

X̂n,k̂∗n (Zn)
)

+ E
(
L̂X̂n,k∗n (Zn)− LX̂n,k∗n (xn, Zn)

)
(19)

≤ 2
∑
k≤kn

E
(∣∣∣LX̂n,k(xn, Zn)− L̂X̂n,k(Zn)

∣∣∣) (20)

≤ 2(kn + 1)α(kn, n) (21)

where (17) follows from (12), (18) follows from (16), (19) follows from (13), (20) follows by taking

absolute values and summing over all k in each expectation, not just the two in the previous step,

and (21) follows from (14). Substituting (21) in (15), we obtain the lemma. 2

5 A loss estimator and its properties

The previous section suggests that one way to obtain a denoiser that is twice–universal with a small

penalty is through a good estimator for the losses of a collection of constituent denoisers. In this

section, we study the properties of one such estimator, first proposed in [7]. The estimate of the

loss incurred by any denoiser X̂n proposed in [7] is given by

L̂X̂n(zn) =
1

n

n∑
i=1

∑
x∈A

Π−T (x, zi)
∑
z∈A

Λ(x, x̂i(z))Π(x, z) (22)

where we use x̂i(z) to abbreviate X̂n(zi−1
1 · z · zni+1)[i]. A derivation of this estimator is provided

in [8]. One way to view this expression is to observe that
∑

z∈A Λ(x, x̂i(z))Π(x, z) is the expected

loss of denoising the i-th symbol when the clean symbol is x, while Π−T (x, zi) is a weighting on

the different values of x that results in the overall estimate being unbiased. Indeed, the expected

value of Π−T (x, Z) is 1 precisely for x = xi and 0 otherwise, and thus Π−T (x, zi) can be loosely

interpreted as an instantaneous (for each index i) estimate of this indicator function/vector.

5.1 Unbiasedness

It was stated in [7] that the estimate (22) is unbiased for all denoisers and clean sequences. An

outline of the proof was also provided there. We present a formal proof of this fact for completeness

10



here. The proof argument is similar to the one used for filtering, a causal version of the denoising

problem, in [9]. A similar result for denosing was proved in [8]. In fact, we will require (and prove)

the stronger property that the estimate of the loss incurred by a denoiser on the i-th symbol is

conditionally unbiased given the other noisy symbols. Let

Λ̃i,X̂n(zn)
def
=
∑
x∈A

Π−T (x, zi)
∑
z∈A

Λ(x, x̂i(z))Π(x, z)

denote the estimate of the loss incurred on the i-th symbol. Then

L̂X̂n(zn) =
1

n

n∑
i=1

Λ̃i,X̂n(zn).

Lemma 4. [7] For all xn, all denoisers X̂n, and all i, 1 ≤ i ≤ n, zi−1
1 , zni+1

E
[
Λ̃i,X̂n(Zn)

∣∣Zi−1
1 = zi−1

1 , Zni+1 = zni+1

]
= E

[
Λ
(
xi, X̂

n(Zn)[i]
) ∣∣Zi−1

1 = zi−1
1 , Zni+1 = zni+1

]
(23)

and therefore

E
[
L̂X̂n(zn)

]
= E

[
LX̂n(xn, Zn)

]
. (24)

Proof. Observe that

E
[
Λ̃i,X̂n(Zn)

∣∣Zi−1
1 = zi−1

1 , Zni+1 = zni+1

]
=
∑
x∈A

E
[
Π−T (x, Zi)

∣∣Zi−1
1 = zi−1

1 , Zni+1 = zni+1

](∑
z∈A

Λ
(
x, X̂n(zi−1

1 · z · zni+1)[i]
)
Π(x, z)

)

=
∑
x∈A

E
[
Π−T (x, Zi)

](∑
z∈A

Λ
(
x, X̂n(zi−1

1 · z · zni+1)[i]
)
Π(x, z)

)
(25)

=
∑
x∈A

∑
zi∈A

Π(xi, zi)Π
−T (x, zi)

(∑
z∈A

Λ
(
x, X̂n(zi−1

1 · z · zni+1)[i]
)
Π(x, z)

)

=
∑
x∈A

1(x = xi)

(∑
z∈A

Λ
(
x, X̂n(zi−1

1 · z · zni+1)[i]
)
Π(x, z)

)
(26)

=
∑
z∈A

Λ
(
xi, X̂

n(zi−1
1 · z · zni+1)[i]

)
Π(xi, z)

= E
[
Λ
(
xi, X̂

n(Zn)[i]
) ∣∣Zi−1

1 = zi−1
1 , Zni+1 = zni+1

]
where 1(·) is the indicator function, (25) holds as Zi is independent of Zi−1

1 and Zni+1, and (26) is

true since ∑
zi∈A

Π(xi, zi)Π
−T (x, zi) = (ΠΠ−1)(xi, x),

the (xi, x)-th entry of the matrix ΠΠ−1, which is one when xi = x, and 0 otherwise. Summing

over i and taking expectation on both sides of (23) over all values of Zi−1
1 and Zni+1 gives (24). 2
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5.2 Concentration

Following Lemma 3, we seek to bound the expected absolute error E
[∣∣∣LX̂n,k(xn, Zn)− L̂X̂n,k(Zn)

∣∣∣]
in the loss estimate. Observe that for any bounded random variable Z with |Z| ≤ M , and any

c > 0

cP (|Z| ≥ c) ≤ E[|Z|] ≤MP (|Z| ≥ c) + c.

Therefore, one way to establish if an estimator is satisfactory or otherwise for our purposes is to

derive concentration bounds (upper or lower) on the expected absolute loss estimation error, i.e.,

the probability that it deviates significantly from 0. Such concentration bounds have been derived

for the class of sliding window denoisers in [8]. It is shown in [8] that for all X̂n ∈ Sk, Π, Λ, xn,

and τ > 0

P
(∣∣∣LX̂n(xn, Zn)− L̂X̂n(Zn)

∣∣∣ ≥ τ) ≤ (k + 1)e
−2(n−2k)τ2

(k+1)||Λ||2∞(1+M||Π−1||∞)2 . (27)

This bound implies that as long as k = o(n/ log n), the estimated loss of a given k-th order sliding

window denoiser concentrates around the true loss. While such strong concentration results, where

the probability that the estimate deviates significantly from the true loss decreases exponentially in

n for fixed k, are possible for sliding window denoisers, we show in Section 5.3 that similar strong

results are not possible for the DUDE. It turns out, however, that the method for showing that

exponential concentration is not possible provides us the insight that leads to weaker concentration

bounds for 0-th order DUDE. We then build on the concentration bounds for 0-th order DUDE to

derive bounds on the expected absolute loss estimation error for a variant of X̂n,k
DUDE, for k > 0, that

will then be suitable for the twice–universal denoising paradigm of Section 4.

5.3 Non-exponential concentration for the DUDE of 0-th order

To show that exponential concentration is not possible in general, we consider the special case of

the binary symmetric channel (BSC) and Hamming loss. Let A = {0, 1}. Let Π correspond to the

BSC with crossover probability δ < 1
2 , and Λ correspond to the Hamming loss. Note that X̂n,0

DUDE

denotes DUDE of 0-th order. To prove our result, we will require the DeMoivre-Laplace theorem,

which approximates the binomial distribution close to the mean using the normal distribution. We

state it below as a lemma. Let

bn,k(p)
def
=

(
n

bnpc+ k

)
pbnpc+k(1− p)n−bnpc−k (28)

denote the probability that a binomial random variable with parameters n and p takes the value

bnpc+ k. Let

f(x)
def
=

1√
2π
e−

x2

2 (29)

denote the probability density function (pdf) of the standard Normal distribution.

Lemma 5. ([10], VII.3, Theorem 1) Let {Kn} be a sequence such that

Kn = o(n2/3).

12



Then, for all p, 0 < p < 1, all ε > 0, and all n sufficiently large,

(1− ε) ≤
√
np(1− p)bn,k(p)

f

(
k√

np(1−p)

) ≤ (1 + ε)

for all k, |k| < Kn.

Theorem 6. There exists a clean sequence xn and constants K and τ0 such that

P
(∣∣∣LX̂n,0

DUDE
(xn, Zn)− L̂

X̂n,0
DUDE

(Zn)
∣∣∣ ≥ τ0

)
≥ K√

n
.

Proof. For any zn ∈ {0,1}n, let T (zn) denote the type of zn, i.e., the number of 1s in zn. Then,

the DUDE of zero order is given by [1]

X̂n,0
DUDE(zn)[i] =


0, T (zn) ≤ n2δ(1− δ)
zi, n2δ(1− δ) < T (zn) ≤ n(1− 2δ(1− δ))
1, T (zn) > n(1− 2δ(1− δ)).

(30)

Consider zn such that T (zn) = bn2δ(1− δ)c. Then, by (30),

L
X̂n,0

DUDE
(xn, zn) =

1

n

n∑
i=1

Λ(xi, 0) =
T (xn)

n
. (31)

Observe that for the same zn, if zi = 0, then the second case in (30) holds for zi−1
1 · 1 · zni+1, and

therefore X̂n,0
DUDE(zi−1

1 · z · zni+1)[i] = z, z = 0, 1. Consequently, for all x ∈ {0,1},∑
z∈{0,1}

Λ(x, X̂n,0
DUDE(zi−1

1 · z · zni+1)[i])Π(x, z) = δ.

Hence,∑
x∈{0,1}

Π−T (x, zi)
∑

z∈{0,1}

Λ(x, X̂n,0
DUDE(zi−1

1 · z · zni+1)[i])Π(x, z) = δ
∑

x∈{0,1}

Π−T (x, 0) = δ. (32)

If zi = 1 instead, then, with a similar argument, X̂n,0
DUDE(zi−1

1 · z · zni+1)[i] = 0, z = 0, 1. Therefore,

for all x ∈ {0,1}, ∑
z∈{0,1}

Λ(x, X̂n,0
DUDE(zi−1

1 · z · zni+1)[i])Π(x, z) = Λ(x, 0).

Hence, ∑
x∈{0,1}

Π−T (x, zi)
∑

z∈{0,1}

Λ(x, X̂n,0
DUDE(zi−1

1 · z · zni+1)[i]))Π(x, z) =
∑

x∈{0,1}

Π−T (x, 1)Λ(x, 0)

= Π−T (1, 1) =
1− δ
1− 2δ

. (33)

13



Combining (22), (32), and (33), we obtain that if T (zn) = bn2δ(1− δ)c, and δ < 1
2 , then

L̂
X̂n,0

DUDE
(zn) =

(
1− T (zn)

n

)
δ +

T (zn)

n

1− δ
1− 2δ

≥ (1− 2δ(1− δ))δ +
2δ(1− δ)2

1− 2δ
− 1− δ
n(1− 2δ)

= δ + 2δ(1− δ)
(

1− δ
1− 2δ

− δ
)
− 1− δ
n(1− 2δ)

= δ + 2δ(1− δ) + 2δ(1− δ)
(

2δ2

1− 2δ

)
− 1− δ
n(1− 2δ)

> δ + 2δ(1− δ)

for all δ, 1/2 > δ > 0 and all sufficiently large n. From (31), we obtain that if T (zn) = bn2δ(1− δ)c

L̂
X̂n,0

DUDE
(zn)− L

X̂n,0
DUDE

(xn, zn) >

(
δ − T (xn)

n

)
+ 2δ(1− δ).

On the other hand, if T (xn) = bnδc, then

L̂
X̂n,0

DUDE
(zn)− L

X̂n,0
DUDE

(xn, zn) > 2δ(1− δ).

But when T (xn) = bnδc, we will show that for some constant K and all sufficiently large n

P (T (Zn) = bn2δ(1− δ)c) ≥ K√
n

which will prove the theorem. Observe that T (Zn) = bn2δ(1− δ)c when i, 0 ≤ i ≤ bnδc, of the

bits in xn that are 1 remain unflipped by the channel and bn2δ(1− δ)c − i of the bits that are 0 in

xn are flipped. Therefore, using the notation in (28)

P (T (Zn) = bn2δ(1− δ)c)

=

bnδc∑
i=0

(
bnδc
i

)
δbnδc−i(1− δ)i

(
n− bnδc

bn2δ(1− δ)c − i

)
δbn2δ(1−δ)c−i(1− δ)n−bnδc−bn2δ(1−δ)c+i

=

bnδc−bbnδc(1−δ)c∑
i=−bbnδc(1−δ)c

bbnδc,i(1− δ) bn−bnδc,∆−i(δ)

≥
b√nc∑

i=−b√nc
bbnδc,i(1− δ)bn−bnδc,∆−i(δ) (34)

where

∆ = bn2δ(1− δ)c − bnδ − bnδcδc − bbnδc(1− δ)c

and the inequality holds for sufficiently large n. Observe that |∆| ≤ 3. Therefore, for −b
√
nc ≤

i ≤ b
√
nc,

∆− i
(n− bnδc)

2
3

→ 0 and also
i

nδ
2
3

→ 0.
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Thus, applying Lemma 5 to each of the terms in the summation in (34), we obtain that for any

ε > 0 and all sufficiently large n

P (T (Zn) = bn2δ(1− δ)c) ≥
b√nc∑

i=−b√nc
(1− ε)2

f

(
i√

bnδc(1−δ)δ

)
√
bnδc(1− δ)δ

f

(
∆−i√

(n−bnδc)δ(1−δ)

)
√

(n− bnδc)δ(1− δ)
(35)

≥
b√nc∑

i=−b√nc
(1− ε)2 C√

n
· C√

n
(36)

≥ 2(1− ε)2C2

√
n

for some constant C, where (36) follows from (29) and the observation that for −b
√
nc ≤ i ≤ b

√
nc,

the absolute values of both arguments of the function f in (35) are bounded from above by a

constant. 2

While Theorem 6 shows that an exponential concentration bound as in (27) is not possible

for the DUDE with the estimator L̂, the proof suggests a way to bound the error in the loss

estimate to obtain suitable non-exponential concentration bounds. We first provide a brief outline

of the argument by continuing to analyze the case of a BSC and Hamming loss. Notice that when

T (zn) < bn2δ(1− δ)c, then X̂n,0
DUDE always returns 0. Therefore, the true loss is

L
X̂n,0

DUDE
(xn, zn) =

T (xn)

n
.

Also, for all x ∈ {0,1}, ∑
z∈{0,1}

Λ(x, X̂n,0
DUDE(zi−1

1 · z · zni+1)[i])Π(x, z) = Λ(x, 0)

and therefore∑
x∈{0,1}

Π−T (x, zi)
∑

z∈{0,1}

Λ(x, X̂n,0
DUDE(zi−1

1 ·z ·zni+1)[i]))Π(x, z) =
∑

x∈{0,1}

Π−T (x, zi)Λ(x, 0) = Π−T (1, zi).

Hence, the loss estimate is

L̂
X̂n,0

DUDE
(zn) =

T (zn)

n
Π−T (1, 1) +

(
1− T (zn)

n

)
Π−T (1, 0)

=
T (zn)

n

1− δ
1− 2δ

−
(

1− T (zn)

n

)
δ

1− 2δ

=
T (zn)

n(1− 2δ)
− δ

1− 2δ
.

Since

E(T (Zn)) = T (xn)(1− δ) + (n− T (xn))δ = nδ + T (xn)(1− 2δ),

it follows from standard concentration results that T (Zn)
n(1−2δ) −

δ
1−2δ concentrates around the true

loss T (xn)/n. Thus, when T (zn) < bn2δ(1− δ)c the loss estimate is likely to be close to the true

15



loss. More generally, we observe that the set of noisy sequences zn can be partitioned into subsets

based on the type of zn. If the type does not equal bn2δ(1− δ)c or bn(1− 2δ(1− δ))c, the decision

boundaries where X̂n,0
DUDE changes its denoising rule, then the loss estimate concentrates around

the true loss. This observation suggests the following approach to bounding the loss-estimation

error. The cases when the type of zn corresponds to a decision boundary, and when it does not,

can be separated. The loss-estimation error in the former case can be bounded from above with

the probability of observing such a zn, whereas the error in the latter case is small for the reasons

described above. This approach can be generalized to derive an upper bound on the expected error

in the loss estimate for arbitrary Π and Λ. We first derive this upper bound for k = 0 and then

use that result to obtain a more general result for k > 0. To derive the bound for k = 0, we first

identify the zns that result in poor estimates and bound the probability of their occurrence.

When k = 0, the notation m(·) defined in Section 2 can be simplified as follows. Let m(zn) be

the vector whose c0-th component, c0 ∈ A, is

m(zn)[c0] = |{i : 1 ≤ i ≤ n, zi = c0}|

the number of occurrences of c0 in zn. Define g : An ×A → A to be

g(zn, z′)
def
= arg min

x̂∈A
λTx̂
(
(Π−Tm(zn))� πz′

)
(37)

where ties are broken based on some fixed ordering of the elements of A, so that

X̂n,0
DUDE(zn)[i] = g(zn, zi).

A sequence zn is said to be L̂
X̂n,0

DUDE
-continuous if ∀i, z′

g
(
zi−1

1 · z′ · zni+1, z
′) = g

(
zi−1

1 · zi · zni+1, z
′). (38)

It is said to be L̂
X̂n,0

DUDE
-discontinuous otherwise. We will now bound the probability of observing a

L̂
X̂n,0

DUDE
-discontinuous Zn. To do so we require the following version of the Berry-Esseen theorem

(see, e.g., [11]), stated as a lemma.

Lemma 7. ([11], XVI.5, Theorem 1) Let Y1, Y2, . . . ,Yn be a sequence of independent real-valued

random variables such that for all i, 1 ≤ i ≤ n,

E[Yi] = 0, E
[
Y 2
i

]
= σ2

i , E
[
|Yi|3

]
= ρi.

Let

s2
n =

n∑
i=1

σ2
i , rn =

n∑
i=1

ρi

and let Fn be the cumulative distribution function (cdf) of the normalized sum (Y1+Y2+. . .+Yn)/sn.

Then, for all x and n,

|Fn(x)− Φ(x)| ≤ 6
rn
s3
n

where Φ(x) is the standard normal cdf, namely,

Φ(x) = (2π)−
1
2

∫ x

−∞
e−

u2

2 du.
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Lemma 8. For all channels such that the transition matrix Π has only non-zero entries, and all

xn,

P
(
Zn is L̂

X̂n,0
DUDE

-discontinuous
)
≤ C√

n

where the constant C depends on Π,Λ and M .

Proof. Let zn be L̂
X̂n,0

DUDE
-discontinuous. Then there exist i, z′ such that

x̂1
def
= g

(
zi−1

1 · z′ · zni+1, z
′) 6= g

(
zi−1

1 · zi · zni+1, z
′) def

= x̂2. (39)

Noting that aT ((ATb)� c) = (a� c)T (ATb) = (A(a� c))Tb for all vectors a, b, c, and matrix A,

it follows from (37) and (39) that(
Π−1(λx̂1 � πz′)

)T
m
(
zi−1

1 · z′ · zni+1

)
≤
(
Π−1(λx̂2 � πz′)

)T
m
(
zi−1

1 · z′ · zni+1

)
(40)

and (
Π−1(λx̂1 � πz′)

)T
m
(
zi−1

1 · zi · zni+1

)
≥
(
Π−1(λx̂2 � πz′)

)T
m
(
zi−1

1 · zi · zni+1

)
(41)

with the equality holding in at most one of (40) and (41) (since equality in both would imply that

ties were broken differently for different values of m in (37)). For z ∈ A, let ez denote the M

dimensional unit column vector, i.e., ez[z] = 1 and ez[a] = 0 for all a 6= z. Then

m
(
zi−1

1 · z′ · zni+1

)
= m

(
zi−1

1 · zi · zni+1

)
+ ez′ − ezi .

Substituting in (40), and using (41), we obtain that if zn is L̂
X̂n,0

DUDE
-discontinuous then, for some

i, z′,

0 ≤
(
Π−1((λx̂1 − λx̂2)� πz′)

)T
m(zn) ≤

(
Π−1((λx̂1 − λx̂2)� πz′)

)T
(ezi − ez′)

with one of the inequalities being necessarily strict. Hence, if zn is L̂
X̂n,0

DUDE
-discontinuous then, for

some a, b, z′,

0 ≤
(
Π−1((λa − λb)� πz′)

)T
m(zn) ≤ max

z′′∈A

(
Π−1((λa − λb)� πz′)

)T
(ez′′ − ez′), (42)

with at least one of the inequalities being strict, so that

0 < max
z′′∈A

(
Π−1((λa − λb)� πz′)

)T
(ez′′ − ez′). (43)

Let

α(a, b, z′)
def
= Π−1((λa − λb)� πz′),

and let

∆∗(a, b, z′)
def
= max

z′′∈A
α(a, b, z′)T (ez′′ − ez′) > 0.

For i = 1, . . . , n, we define independent random variables Yi to be

Yi = α(a, b, z′)[Zi]

17



so that for all z ∈ A,

P (Yi = α(a, b, z′)[z]) = Π(xi, z). (44)

Then (
Π−1((λa − λb)� πz′)

)T
m(zn) = α(a, b, z′)Tm(zn) =

n∑
i=1

Yi,

and (42) takes the form

0 ≤
n∑
i=1

Yi ≤ ∆∗(a, b, z′). (45)

Let σ2
i = E

[
(Yi − E[Yi])

2
]
, s2

n =
∑n

i=1 σ
2
i , ρi = E

[
|Yi − E[Yi]|3

]
, rn =

∑n
i=1 ρi, and let Fn denote

the cdf of s−1
n

∑n
i=1(Yi − E[Yi]). Observe that (43) implies that α(a, b, z′) is not a constant vector

and recall the assumption that all the entries of Π are non-zero. Thus, by (44), it follows that, for

all i = 1, . . . , n, Yi takes at least two different values with non-zero probability and therefore

σ2
i > 0. (46)

It follows from Lemma 7 that for all x and n

|Fn(x)− Φ(x)| ≤ 6
rn
s3
n

where Φ(x) is the normal cdf. Since |Yi| is bounded, there exists a constant c1 such that

rn =
n∑
i=1

E
[
|Yi − E[Yi]|3

]
≤ c1n

and, by (46), there exists a constant c2 such that

s2
n =

n∑
i=1

E
[
|Yi − E[Yi]|2

]
≥ c2n. (47)

Therefore, for all x and n, there exists a constant c3 > 0 such that

|Fn(x)− Φ(x)| ≤ c3√
n
. (48)

Note that for all δ > 0 and x

Fn(x+ δ)− Fn(x) ≤ |Fn(x+ δ)− Φ(x+ δ)|+ Φ(x+ δ)− Φ(x) + |Fn(x)− Φ(x)|

≤ 2c3√
n

+ sup
x

(Φ(x+ δ)− Φ(x))

≤ 2c3√
n

+
δ√
2π

(49)
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where the second inequality follows from (48) and the third from mean value theorem. From (45),

it follows that for all xn, and all ε > 0

P
(
Zn is L̂

X̂n,0
DUDE

-discontinuous
)

≤
∑

a,b,z′∈A:∆∗(a,b,z′)>0

P

(
0 ≤

n∑
i=1

Yi ≤ ∆∗(a, b, z′)

)
(50)

≤
∑

a,b,z′∈A:∆∗(a,b,z′)>0

[
Fn

(
s−1
n

(
∆∗(a, b, z′)−

n∑
i=1

E[Yi]

))
− Fn

(
−s−1

n

(
ε+

n∑
i=1

E[Yi]

))]
(51)

≤
∑

a,b,z′∈A:∆∗(a,b,z′)>0

(
2c3√
n

+
s−1
n (∆∗(a, b, z′) + ε)√

2π

)
(52)

≤M3 c4√
n

(53)

for some constant c4 > 0, where (50) follows from the union bound, (51) from the definition of

Fn, (52) from the application of (49), and (53) from (47). 2

Now that we have bounded the probability of observing a L̂
X̂n,0

DUDE
-discontinuous sequence, we

use it to bound the error in the loss estimate when k = 0. We do so by showing that when the

observed Zn is L̂
X̂n,0

DUDE
-continuous, the error in the loss estimate can be bounded from above. We

will use this result to prove a similar result for a variant of X̂n,k
DUDE for k > 0.

Lemma 9. For all channels such that the transition matrix Π has only non-zero entries, and all

xn,

E
[
(L

X̂n,0
DUDE

(xn, Zn)− L̂
X̂n,0

DUDE
(Zn))2

]
≤ C√

n
(54)

for a constant C independent of n.

Proof. For all xn, zn, ∣∣∣LX̂n,0
DUDE

(xn, zn)
∣∣∣ ≤ ||Λ||∞,

and, by (22), ∣∣∣L̂X̂n,0
DUDE

(zn)
∣∣∣ ≤ 1

n

n∑
i=1

∑
x∈A

∣∣Π−T (x, zi)
∣∣∑
z∈A

Λ(x, x̂i(z))Π(x, z)

≤ 1

n

n∑
i=1

∑
x∈A

∣∣Π−T (x, zi)
∣∣ ||Λ||∞∑

z∈A
Π(x, z)

≤M ||Λ||∞||Π−1||∞.

Therefore, for all xn, zn,(
L
X̂n,0

DUDE
(xn, zn)− L̂

X̂n,0
DUDE

(zn)
)2
≤ ||Λ||2∞

(
1 +M ||Π−1||∞

)2
. (55)
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For all xn,

E
[
(L

X̂n,0
DUDE

(xn, Zn)− L̂
X̂n,0

DUDE
(Zn))2

]
= E

[
(L

X̂n,0
DUDE

(xn, Zn)− L̂
X̂n,0

DUDE
(Zn))21

(
Zn is L̂

X̂n,0
DUDE

-continuous
)]

+ E
[
(L

X̂n,0
DUDE

(xn, Zn)− L̂
X̂n,0

DUDE
(Zn))21

(
Zn is L̂

X̂n,0
DUDE

-discontinuous
)]

≤ E
[
(L

X̂n,0
DUDE

(xn, Zn)− L̂
X̂n,0

DUDE
(Zn))21

(
Zn is L̂

X̂n,0
DUDE

-continuous
)]

+ ||Λ||2∞
(
1 +M ||Π−1||∞

)2
P
(
Zn is L̂

X̂n,0
DUDE

-discontinuous
)

≤ E
[
(L

X̂n,0
DUDE

(xn, Zn)− L̂
X̂n,0

DUDE
(Zn))21

(
Zn is L̂

X̂n,0
DUDE

-continuous
)]

+ ||Λ||2∞
(
1 +M ||Π−1||∞

)2 C√
n

(56)

where the first inequality follows from (55) and the second from Lemma 8. Recall that if zn is

L̂
X̂n,0

DUDE
-continuous then for all i, 1 ≤ i ≤ n, and all z′ ∈ A,

g
(
zi−1

1 · z′ · zni+1, z
′) = g

(
zi−1

1 · zi · zni+1, z
′). (57)

Therefore, if zn is L̂
X̂n,0

DUDE
-continuous then

L̂
X̂n,0

DUDE
(zn) =

1

n

n∑
i=1

∑
x∈A

Π−T (x, zi)
∑
z∈A

Λ(x, g(z1−i
1 · z · zni+1, z))Π(x, z)

=
1

n

n∑
i=1

∑
x∈A

Π−T (x, zi)
∑
z∈A

Λ(x, g(zn, z))Π(x, z) (58)

=
1

n

∑
z′∈A

m(zn)[z′]
∑
x∈A

Π−T (x, z′)
∑
z∈A

Λ(x, g(zn, z))Π(x, z)

=
1

n

∑
x∈A

(∑
z′∈A

m(zn)[z′]Π−T (x, z′)

)∑
z∈A

Λ(x, g(zn, z))Π(x, z)

=
1

n

∑
x∈A

∑
z∈A

q̂(zn)(x, z)Λ(x, g(zn, z))

where (58) follows from (57), and where

q̂(zn)(x, z) =

(∑
z′∈A

m(zn)[z′]Π−T (x, z′)

)
Π(x, z).

The M ×M matrix q(xn, zn) is defined as

q(xn, zn)(a, b)
def
= |{i : 1 ≤ i ≤ n, xi = a, zi = b}| .

Then, again by (57), the true loss is

L
X̂n,0

DUDE
(xn, zn) =

1

n

n∑
i=1

Λ(xi, g(zn, zi)) =
1

n

∑
x∈A

∑
z∈A

q(xn, zn)(x, z)Λ(x, g(zn, z)).
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Therefore, if zn is L̂
X̂n,0

DUDE
-continuous then

∣∣∣LX̂n,0
DUDE

(xn, zn)− L̂
X̂n,0

DUDE
(zn)

∣∣∣ =
1

n

∣∣∣∣∣∑
x∈A

∑
z∈A

(q(xn, zn)(x, z)− q̂(zn)(x, z))Λ(x, g(zn, z))

∣∣∣∣∣
≤ 1

n

∑
x∈A

∑
z∈A
|q(xn, zn)(x, z)− q̂(zn)(x, z)| ||Λ||∞.

Using the fact that for all random variables Xi, 1 ≤ i ≤M ,

E

( M∑
i=1

Xi

)2
 ≤M M∑

i=1

E
[
X2
i

]
we obtain that

E

[(
L
X̂n,0

DUDE
(xn, Zn)− L̂

X̂n,0
DUDE

(Zn)
)2

1
(
Zn is L̂

X̂n,0
DUDE

-continuous
)]

≤ 1

n2
||Λ||2∞E

[∑
x∈A

∑
z∈A
|q(xn, Zn)(x, z)− q̂(Zn)(x, z)|

]2

≤ 1

n2
||Λ||2∞M2

∑
x∈A

∑
z∈A

E[q(xn, Zn)(x, z)− q̂(Zn)(x, z)]2. (59)

Now, notice that one can write

q(xn, zn)(x, z)− q̂(zn)(x, z) =
n∑
i=1

ξi

where

ξi = 1(xi = x, zi = z)−

(∑
z′∈A

1
(
zi = z′

)
Π−T (x, z′)

)
Π(x, z).

Observe that

E[ξi] =
∑
z′′

Π(xi, z
′′)1
(
xi = x, z′′ = z

)
−
∑
z′′

Π(xi, z
′′)

(∑
z′∈A

1
(
z′′ = z′

)
Π−T (x, z′)

)
Π(x, z)

= Π(x, z)1(xi = x)−

(∑
z′∈A

Π(xi, z
′)Π−T (x, z′)

)
Π(x, z)

= Π(x, z)1(xi = x)− 1(xi = x)Π(x, z)

= 0.

Further, the ξi are independent and bounded. Therefore, there exists a constant c1 > 0 such that

E[q(xn, zn)(x, z)− q̂(zn)(x, z)]2 =
n∑
i=1

E
[
ξ2
i

]
≤ c1n.

Substituting in (59) we obtain that

E

[(
L
X̂n,0

DUDE
(xn, Zn)− L̂

X̂n,0
DUDE

(Zn)
)2

1
(
Zn is L̂

X̂n,0
DUDE

-continuous
)]
≤ c1||Λ||2∞M4

n
. (60)

Substituting this in (56), we obtain the lemma. 2
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6 TU-DUDE construction and proof

In this section, we present the construction of the TU-DUDE X̂n,kn
TU-DUDE and prove Theorem 1

establishing that it is twice–universal with a penalty εTU,kn(k, n) = C̃((kn+1)5/4/n1/4). We conclude

the section with a comparison of TU-DUDE to twice universal data compression schemes and some

comments about the TU-DUDE construction.

6.1 Construction

The TU-DUDE is based on the D-DUDE, a deinterleaved version of the DUDE algorithm.2 For

j = 0, . . . , k, define m̃j(z
n, c−1
−k, c

k
1) as

m̃j

(
zn, c−1

−k, c
k
1

)
[c0] =

∣∣∣{i : k + 1 ≤ i ≤ n− k, i = jmod (k+1), zi+ki−k = ck−k

}∣∣∣
for c0 ∈ A. The D-DUDE with parameter k denoises according to

X̂n,k
D-DUDE(zn)[i] = arg min

x̂∈A
λTx̂

((
Π−T m̃j(i)

(
zn, zi−1

i−k, z
i+k
i+1

))
� πzi

)
, (61)

where j(i) = imod (k + 1). Thus, the D-DUDE denoises the i-th symbol using only symbol

occurrences for which the index coincides with i modulo k + 1. The D-DUDE satisfies all of the

performance guarantees proved in [1] for the DUDE, including (4); in fact, the proofs in [1] actually

involve a deinterleaving step. Thus, we have the following lemma.

Lemma 10. For all k and sufficiently large n

R̂k

(
X̂n,k

D-DUDE

)
≤ C

√
M2k(k + 1)

n
. (62)

Following the paradigm of Section 4, given a sequence kn, the TU-DUDE evaluates the estimated

loss of the D-DUDE for all parameter values k ≤ kn and denoises using the minimizing value.

Formally, the TU-DUDE is defined as

X̂n,kn
TU-DUDE(zn)[i] = X̂

n,k̂∗n
D-DUDE(zn)[i] (63)

where

k̂∗n = arg min
k≤kn

L̂
X̂n,k

D-DUDE
(zn), (64)

with L̂
X̂n,k

D-DUDE
(zn) corresponding to (22).

2As explained in more detail in Section 6.3, we rely on D-DUDE as opposed to DUDE for technical reasons related

to the proof of the main theorem.
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6.2 Proof of Theorem 1

Since X̂n,k
D-DUDE satisfies (62), then by Lemma 3 it suffices to show that for all k ≤ kn and all xn

E
[∣∣∣LX̂n,k

D-DUDE
(xn, Zn)− L̂

X̂n,k
D-DUDE

(Zn)
∣∣∣] ≤ C̃((kn + 1)/n)1/4

2
(65)

for a constant C̃. For j = 0, . . . , k, let

∆k,j(x
n, zn) =

∑
i:i=jmod (k+1)

[
Λ(xi, X̂

n,k
D-DUDE(zn)[i])− Λ̂i(z

n)
]

(66)

where

Λ̂i(z
n)

def
=
∑
x∈A

Π−T (x, zi)
∑
z∈A

Λ(x, X̂n,k
D-DUDE(zi−1

1 , z, zni+1)[i])Π(x, z). (67)

Note the identity

L
X̂n,k

D-DUDE
(xn, zn)− L̂

X̂n,k
D-DUDE

(zn) =
1

n

k∑
j=0

∆k,j(x
n, zn). (68)

It follows that

E
[∣∣∣LX̂n,k

D-DUDE
(xn, Zn)− L̂

X̂n,k
D-DUDE

(Zn)
∣∣∣] ≤ 1

n

k∑
j=0

E(|∆k,j(x
n, Zn)|). (69)

Let Sj
4
= {i : i 6= jmod (k+1)}. By conditioning on ZSj

4
= {Zi : i ∈ Sj}, it follows that

E[|∆k,j(x
n, Zn)|] = E

[
E
[
|∆k,j(x

n, Zn)|
∣∣ZSj]] ≤ max

zSj
E
[
|∆k,j(x

n, Zn)|
∣∣ZSj = zSj

]
(70)

where zSj is a sequence over A indexed by elements of Sj . Notice that for any index i ∈ Scj ,
{i− k, i− k + 1, . . . , i− 1} ⊂ Sj and {i+ 1, i+ 2, . . . , i+ k} ⊂ Sj . Define

S̃j,c−1
−k,c

k
1
(zSj )

def
= {i ∈ Scj : zi−1

i−k = c−1
−k, z

i+k
i+1 = ck1} (71)

and let

∆̃k,j,c−1
−k,c

k
1
(xn, zn) =

∑
i∈S̃

j,c−1
−k,c

k
1

(zSj )

[
Λ(xi, X̂

n,k
D-DUDE(zn)[i])− Λ̂i(z

n)
]

(72)

so that

∆k,j(x
n, zn) =

∑
(c−1
−k,c

k
1)∈A2k

∆̃k,j,c−1
−k,c

k
1
(xn, zn). (73)

It follows from Lemma 4, that for all j and (c−1
−k, c

k
1) ∈ A2k

E
[
∆̃k,j,c−1

−k,c
k
1
(xn, Zn)|ZSj = zSj

]
= 0

and for all j, the random variables {∆̃k,j,c−1
−k,c

k
1
(x,Zn) : (c−1

−k, c
k
1) ∈ A2k} are conditionally indepen-

dent given ZSj . Moreover, each such random variable is conditionally distributed like the difference
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between the actual and estimated loss for a zero-th order DUDE operating on the subsequence of

noisy symbols with indices in S̃j,c−1
−k,c

k
1
(zSj ). Therefore, it follows from Lemma 9 (in unnormalized

form) that

σ2
k,j,c−1

−k,c
k
1

def
= E

[
∆̃2
k,j,c−1

−k,c
k
1
(xn, Zn)

∣∣ZSj = zSj
]

satisfies

σ2
k,j,c−1

−k,c
k
1
≤ b1

∣∣∣S̃j,c−1
−k,c

k
1
(zSj )

∣∣∣3/2
for some constant b1. The conditional independence of the ∆̃k,j,c−1

−k,c
k
1
(xn, Zn) then implies (from

(73)) that the conditional variance of ∆k,j(x
n, Zn), denoted by

σ2
k,j

def
= E

[
∆2
k,j(x

n, Zn)
∣∣ZSj = zSj

]
(74)

satisfies

σ2
k,j =

∑
(c−1
−k,c

k
1)∈A2k

σ2
k,j,c−1

−k,c
k
1
≤ b1

∑
(c−1
−k,c

k
1)∈A2k

∣∣∣S̃j,c−1
−k,c

k
1
(zSj )

∣∣∣3/2 . (75)

Noting that ∑
(c−1
−k,c

k
1)∈A2k

∣∣∣S̃j,c−1
−k,c

k
1
(zSj )

∣∣∣ =
∣∣Scj ∣∣ ≤ n

k + 1
+ 1,

it follows that ∑
(c−1
−k,c

k
1)∈A2k

∣∣∣S̃j,c−1
−k,c

k
1
(zSj )

∣∣∣3/2

≤

(
max

(c−1
−k,c

k
1)∈A2k

∣∣∣S̃j,c−1
−k,c

k
1
(zSj )

∣∣∣)1/2 ∑
(c−1
−k,c

k
1)∈A2k

∣∣∣S̃j,c−1
−k,c

k
1
(zSj )

∣∣∣
≤
(

n

k + 1
+ 1

)3/2

so that, from (75),

σ2
k,j ≤ b2

(
n

k + 1

)3/2

(76)

for some constant b2 independent of k, n and j. Together with Jensen’s inequality, (76) implies

that

E
[
|∆k,j(x

n, Zn)|
∣∣ZSj = zSj

]
≤ (σ2

k,j)
1/2 (77)

≤ (b2)1/2

(
n

k + 1

)3/4

(78)

which, together with (69) and (70), implies

E
[∣∣∣LX̂n,k

D-DUDE
(xn, Zn)− L̂

X̂n,k
D-DUDE

(Zn)
∣∣∣] ≤ (b2)1/2k + 1

n

(
n

k + 1

)3/4

= b3

(
k + 1

n

)1/4

≤ b3
(
kn + 1

n

)1/4

(79)

for some constant b3. 2
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6.3 Discussion

Twice–universal denoising versus twice–universal compression. In lossless data compres-

sion, a universal code for a class of compressors has the property that its redundancy with respect

to the class vanishes with increasing length. A twice–universal code for a hierarchy of compressor

classes has the property that its redundancy with respect to any given compressor equals the best

possible redundancy with respect to the smallest class in the hierarchy containing this compressor,

plus a “penalty” for twice–universality that is negligible relative to the main redundancy term. In

particular, for the hierarchy of Markov compressors which parallels the family of sliding window

denoisers, the main redundancy term is essentially 0.5K(log n)/n, where K is the number of free

parameters corresponding to the given compressor, and the penalty is c(K)/n, where the numer-

ator is a function of K. While in this setting the redundancy bound is required to hold for any

K, it should be noticed that universality is only interesting when the redundancy vanishes, which

implicitly limits K to o(n/(log n)).

In the denoising setting, the corresponding property for the proposed TU-DUDE is formulated

using the regret of DUDE with respect to sliding window denoisers, which is larger than the best

possible regret, as established in [6]. In addition, in the case of the TU-DUDE with the the above

parameter κn, for example, we cannot claim the penalty to be negligible for any fixed k, but only

for values of k in the upper half of the range 0 ≤ k ≤ κn. The relative weakness of these claims

are best understood by examining the workings of the simplest twice–universal source codes, which

basically search for the best model size, encode this value, and then universally encode the data

with a code designed for this optimal model size.3 A similar approach in the denoising setting is

not possible, since the loss resulting from a given choice of k cannot be computed, as the clean

sequence xn is not observable. The TU-DUDE overcomes this problem by applying the value of k

that minimizes an estimated loss over the range 0 ≤ k ≤ κn. As the search space increases, the

effect of the estimation error becomes more noticeable, and therefore the penalty grows with κn,

unlike the data compression case.

Why D-DUDE and not DUDE? The technique underlying the proof of Theorem 1 does

not directly apply to a denoiser based on the original DUDE with a context parameter selected

using the loss estimator. The difficulty is that in a DUDE-based denoiser, the random variables

∆̃k,j,c−1
−k,c

k
1
(xn, Zn) for different contexts may no longer be conditionally independent given ZSj ,

thereby greatly complicating the analysis of the variance of their sum. The D-DUDE, on the

other hand, induces such a conditional independence. Whether or not replacing D-DUDE with the

original DUDE in X̂n,kn
TU-DUDE continues to yield the twice–universality properties of Theorem 1 is

thus an open question.

3Though leading to twice–universality, this approach is known to be sub–optimal, since a mixture over all classes

will produce a shorter code length [4].
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7 Non-pathological sequences

In this section, we explore the extent to which it is possible to claim a smaller twice–universality

penalty than in Theorem 1 if the set of underlying clean sequences xn is restricted to be “benign.”

To this end, we show that the loss estimator (22) applied to the D-DUDE concentrates more

closely around the true loss for certain “non-pathological” clean sequences. Specifically, the source

of much of the twice–universality penalty of Theorem 1 can be attributed to the probability that

the accumulated D-DUDE counts m̃j are such that the decision problem (3) has two or more (near)

optimal solutions (i.e., lies at a decision boundary). Non-pathological clean sequences are those for

which this probability decays sufficiently rapidly. We formalize this notion and show that for the

corresponding non-pathological clean sequences xn, the TU-DUDE with parameter kn attains an

improved twice–universality penalty of roughly

εTU-NP,kn(k, n) = O

(√
(kn + 1)3 log n

n

)

for k ≤ kn, which is less than the one proved in Theorem 1.

Let m̃j(z
n, c−1
−k, c

k
1) be as defined in Section 6 with respect to the D-DUDE. Let M denote the

set of all M -dimensional vectors with non-negative components. For a, b, c ∈ A, let

M∗(a, b, c)def
= {m ∈M : (λa − λb)T

(
(Π−Tm)� πc

)
= 0}

denote the M -dimensional semi-hyperplane that contains all the m’s that might fall on a deci-

sion boundary of the decision rule (37) underlying DUDE and D-DUDE, involving reconstruction

symbols a, b, and noisy symbol c. Let

M∗ def
=

⋃
a,b,c∈A:
a6=b

M∗(a, b, c).

We term a clean sequence “non-pathological” if the expected values of the counts m̃j , when signif-

icant, are bounded away from M∗ for all j. Formally, xn is said to be (α, γ, kn)-non-pathological,

if, for all k ≤ kn, all j, 0 ≤ j ≤ k, and all c−1
−k, c

k
1, if E

[
||m̃j(Z

n, c−1
−k, c

k
1)||1

]
≥ α logn

2(1+γ) , then, for all

m∗ ∈M∗, ∣∣∣∣∣∣E[m̃j(Z
n, c−1
−k, c

k
1)
]
−m∗

∣∣∣∣∣∣
1
> γ

∣∣∣∣∣∣E[m̃j(Z
n, c−1
−k, c

k
1)
]∣∣∣∣∣∣

1
+ 2 +

α log n

2
. (80)

Letting Nn denote the set of (α, γ, kn)-non-pathological sequences4 we shall define the (α, γ, kn)-

non-pathological k-th order regret of the TU-DUDE of order kn to be

R̂NP,k

(
X̂n,kn

TU-DUDE

)
def
= max

xn∈Nn

{
E
[
L
X̂n,kn

TU-DUDE

(
xn−kk+1 , Z

n
)]
− D̂k(x

n)
}
.

Notice that this quantity differs from the regret defined in (2) in that the maximization is restricted

to Nn. In analogy with (5), we shall say that the TU-DUDE of order kn is twice–univeral with

4To reduce notational clutter, we suppress the dependence of Nn on (α, γ, kn).
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(α, γ, kn)-non-pathological penalty ε(k, n) if

R̂NP,k

(
X̂n,kn

TU-DUDE

)
≤ C

√
M2k(k + 1)

n
+ ε(k, n) (81)

for all sufficiently large n, and all k simultaneously. In this context, we shall refer to ε(k, n) as the

(α, γ, kn)-non-pathological twice–universality penalty of the TU-DUDE of order kn.

Theorem 11. For all channels such that the transition matrix Π has only non-zero entries, all

sequences kn satisfying kn = O(log n), any γ > 0, any sufficiently large α > 0, and all sufficiently

large n, X̂n,kn
TU-DUDE is twice–universal with (α, γ, kn)-non-pathological penalty

εTU-NP,kn(k, n) = C

√
α(kn + 1)3 log n

n

for a constant C and k ≤ kn.

We also show that for many channels and loss functions, the fraction of sequences that are

(α, γ, kn)-non-pathological tends to one as long as kn ≤ τ log n, where τ depends on the channel.

Let P∗ denote the M -dimensional column vector whose entries are all 1
M . We prove this result

for all channels with transition probability matrices Π such that ΠTP∗ does not fall within M∗.
Many channels and loss functions, e.g., many symmetric channels, including the BSC with crossover

probability 0 < δ < 1
2 , and the Hamming loss function, satisfy this requirement.

For all Π, let

∆(Π,Λ)
def
= inf

m∗∈M∗
||m∗ −ΠTP∗||1, (82)

where the dependence on Λ is throughM∗. Recalling that Nn denotes the set of all (α, γ, kn)-non-

pathological clean sequences, we prove the following theorem.

Theorem 12. If Π,Λ are such that ΠTP∗ /∈M∗, then for kn ≤ τ log n, where

τ <
1

−2 log (mina∈A(ΠTP∗)[a])
,

all γ < ∆(Π,Λ) and all α > 0, we have |Nn| = Mn(1− o(1)).

Observe that for symmetric channels, Π is such that ΠTP∗[a] = M−1 for all a ∈ A. Therefore, it

follows from Theorems 11 and 12 that, for all kn ≤ τ log n, where τ < (2 logM)−1, all γ < ∆(Π,Λ)

and all sufficiently large α, the (α, γ, kn)-non-pathological twice–universality penalty of the TU-

DUDE with parameter kn is C
√

(α(kn + 1)3 log n)/n for a fraction of clean sequences (|Nn|/Mn)

tending to one. Recall from Section 3 that the sequence κn is approximately log n/(2 logM).

Thus, for a fraction of clean sequences tending to one, the above more favorable twice–universality

penalty holds for the TU-DUDE with parameter arbitrarly close to this most “ambitious” sequence.

Notice that the above (α, γ, kn)-non-pathological twice–universality penalty is negligible relative to

the DUDE redundancy for k over a wider range, roughly O(log log n) < k < kn, as compared to

κn/2 < k ≤ kn in the unconstrained case. To get this result, however, we cannot quite set kn to

κn, as in the unconstrained case, but only to (1− ε)κn, for an arbitrarily small, but fixed ε > 0.
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The proofs of the above theorems constitute the rest of this section. For 0 ≤ j ≤ k, we shall

consider a set of “bad sequences” zn ∈ An for which there exists a sufficiently populated context

c−1
−k, c

k
1 for which m̃j(z

n, c−1
−k, c

k
1) falls withinM∗ if at most one coordinate zi, with i = j mod (k+1),

is changed. Recall that the complement of the set of indices {i : i = j mod (k+1)} was denoted as

Sj in the proof of Theorem 1, and this notation shall appear again below. Formally, for α > 0, the

set of “bad sequences” will be taken to be

Bk,α(j)
def
= {zn :∃c−1

−k, c
k
1 ∈ Ak, s.t. ||m̃j(z

n, c−1
−k, c

k
1)||1 ≥ α log n and

∃m∗ ∈M∗, ||m̃j(z
n, c−1
−k, c

k
1)−m∗||1 ≤ 2}. (83)

The following lemma implies that for all (α, γ, kn)-non-pathological sequences, the probability that

the noisy sequence Zn is in Bk,α(j) vanishes for a sufficiently large choice of α.

Lemma 13. For all (α, γ, kn)-non-pathological xn with γ, 0 < γ < 1, all k ≤ kn, all j, 0 ≤ j ≤ k+1,

P (Zn ∈ Bk,α(j)) ≤ β1

(
n+ 2k + 2

(k + 1)α log n

)
e−β2α logn+β3k

where β1, β2, β3 are positive functions of γ and M .

Proof. We abbreviate m̃j(Z
n, c−1
−k, c

k
1) by m̃j . Assuming Zn ∈ Bk,α(j), let c−1

−k, c
k
1 be such that

||m̃j ||1 ≥ α log n, and let m∗ ∈ M∗ be such that ||m̃j −m∗||1 ≤ 2. By the triangle inequality we

then have

||m∗ − E[m̃j ]||1 − ||E[m̃j ]− m̃j ||1 ≤ 2. (84)

If E[||m̃j ||1] ≥ α logn
2(1+γ) , then since xn is (α, γ, kn)-non-pathological, by (80) and (84)

||E[m̃j ]− m̃j ||1 > γ||E[m̃j ]||1 +
α log n

2
. (85)

If E[||m̃j ||1] < α logn
2(1+γ) , then since ||m̃j ||1 ≥ α log n

||E[m̃j ]−m̃j ||1 > α log n

(
1− 1

2(1 + γ)

)
= α log n

(
γ

2(1 + γ)

)
+
α log n

2
≥ γ||E[m̃j ]||1+

α log n

2
,

i.e., (85) still holds. Therefore, if Zn ∈ Bk,α(j), there exists c−1
−k, c

k
1 such that (85) holds, which

implies that there exists c ∈ A such that

|m̃j [c]− E[m̃j [c]]| > γE[m̃j [c]] +
α log n

2M
. (86)

For j = 0, . . . , k, and p = 0, 1, define m̃p
j (z

n, c−1
−k, c

k
1) by

m̃p
j

(
zn, c−1

−k, c
k
1

)
[c0]

=
∣∣∣{i : k + 1 ≤ i ≤ n− k, i = (k + 1)(2q + p) + j for some q ∈ Z, zi+ki−k = ck−k

}∣∣∣ ,
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namely, the number of times zi+ki−k = ck−k with i− j being an even (for p = 0) or an odd (for p = 1)

multiple of k + 1, so that

m̃j

(
zn, c−1

−k, c
k
1

)
= m̃0

j

(
zn, c−1

−k, c
k
1

)
+ m̃1

j

(
zn, c−1

−k, c
k
1

)
.

Abbreviating m̃p
j (Z

n, c−1
−k, c

k
1) by m̃p

j , it follows that the existence of c ∈ A satisfying (86) implies

that, for some p ∈ {0, 1}, ∣∣∣m̃p
j [c]− E

[
m̃p
j [c]
]∣∣∣ > γ

2
E
[
m̃p
j [c]
]

+
α log n

4M
. (87)

Therefore,

P (Zn ∈ Bk,α(j))

≤ P
(
∃ck−k ∈ A2k+1, p ∈ {0, 1}, s.t.

∣∣∣m̃p
j [c0]− E

[
m̃p
j [c0]

]∣∣∣ > γ

2
E
[
m̃p
j [c0]

]
+
α log n

4M

)
≤

∑
p∈{0,1}

∑
ck−k∈A2k+1

P

(∣∣∣m̃p
j [c0]− E

[
m̃p
j [c0]

]∣∣∣ > γ

2
E
[
m̃p
j [c0]

]
+
α log n

4M

)
(88)

=
∑

p∈{0,1}

∑
ck−k∈A

2k+1:

E[m̃p
j [c0]]>α logn

8M

P

(∣∣∣m̃p
j [c0]− E

[
m̃p
j [c0]

]∣∣∣ > γ

2
E
[
m̃p
j [c0]

]
+
α log n

4M

)

+
∑

p∈{0,1}

∑
ck−k∈A

2k+1:

E[m̃p
j [c0]]≤α logn

8M

P

(∣∣∣m̃p
j [c0]− E

[
m̃p
j [c0]

]∣∣∣ > γ

2
E
[
m̃p
j [c0]

]
+
α log n

4M

)
(89)

where (88) follows from the union bound. Observe that for all j, ck−k, and p ∈ {0, 1}, m̃p
j [c0] is

a sum of independent 0 − 1 random variables.5 We can then apply Theorem 2.3(b) in [12], from

which it follows that for a collection Y1, Y2, . . . ,Yn of independent random variables, 0 ≤ Yi ≤ 1,

Sn =
∑

i Yi, and any ε > 0,

P (|Sn − E[Sn]| ≥ εE[Sn]) ≤ 2e
− ε

2E[Sn]

2(1+ ε
3 ) . (90)

Thus, we obtain that for all j, ck−k, and p ∈ {0, 1},

P

(∣∣∣m̃p
j [c0]− E

[
m̃p
j [c0]

]∣∣∣ > γ

2
E
[
m̃p
j [c0]

]
+
α log n

4M

)
≤ P

(∣∣∣m̃p
j [c0]− E

[
m̃p
j [c0]

]∣∣∣ > γ

2
E
[
m̃p
j [c0]

])
≤ 2e

−
γ2E[m̃p

j
[c0]]

8(1+ γ6 ) (91)

and, also,

P

(∣∣∣m̃p
j [c0]− E

[
m̃p
j [c0]

]∣∣∣ > γ

2
E
[
m̃p
j [c0]

]
+
α log n

4M

)
≤ P

(∣∣∣m̃p
j [c0]− E

[
m̃p
j [c0]

]∣∣∣ > α log n

4M

)

≤ 2e
− α2(logn)2

32M2(E[m̃p
j
[c0]]+α logn

12M ) . (92)

5Observe that, due to overlap, this is not, in general, the case for m̃j [c0].
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Notice that for all zn ∑
ck−k∈A2k+1

m̃p
j [c0] ≤

⌈
n

2(k + 1)

⌉
. (93)

Hence, the number of ck−k for which E
[
m̃p
j [c0]

]
> α logn

8M is at most 8M(n+2k+2)
(2k+2)α logn . Combining this

fact with (91), we obtain that∑
p∈{0,1}

∑
ck−k:E[m̃p

j [c0]]>α logn
8M

P

(∣∣∣m̃p
j [c0]− E

[
m̃p
j [c0]

]∣∣∣ > γ

2
E
[
m̃p
j [c0]

]
+
α log n

4M

)

≤
∑

p∈{0,1}

∑
ck−k:E[m̃p

j [c0]]>α logn
8M

2e
−
γ2E[m̃p

j
[c0]]

8(1+ γ6 )

≤
∑

p∈{0,1}

∑
ck−k:E[m̃p

j [c0]]>α logn
8M

2e
− γ2α logn

64M(1+ γ6 )

≤ 4

(
8M(n+ 2k + 2)

(2k + 2)α log n

)
e
− γ2α logn

64M(1+ γ6 ) . (94)

On the other hand, by (92), we obtain that∑
p∈{0,1}

∑
ck−k:E[m̃p

j [c0]]≤α logn
8M

P

(∣∣∣m̃p
j [c0]− E

[
m̃p
j [c0]

]∣∣∣ > γ

2
E
[
m̃p
j [c0]

]
+
α log n

4M

)

≤
∑

p∈{0,1}

∑
ck−k:E[m̃p

j [c0]]≤α logn
8M

2e
− α2(logn)2

32M2(E[m̃p
j
[c0]]+α logn

12M )

≤ 4M2k+1e
− α2(logn)2

32M2(α logn
8M

+
α logn
12M )

= 4M2k+1e−
3α logn
20M (95)

Substituting (94) and (95) in (89), we obtain that

P (Zn ∈ Bk,α(j)) ≤ β1

(
n+ 2k + 2

(k + 1)α log n

)
e−β2α logn+β3k

where β1, β2, and β3 are positive functions of γ and M . 2

The proof of Theorem 11 shall rely on the following definitions. For 0 ≤ j ≤ k, define gj :

An ×Ak ×Ak ×A → A to be

gj(z
n, c−1
−k, c

k
1, z
′)

def
= arg min

x̂∈A
λTx̂

(
(Π−T m̃j(z

n, c−1
−k, c

k
1))� πz′

)
where ties are broken based on some fixed ordering of the elements of A, so that for k+1 ≤ i ≤ n−k

X̂n,k
D-DUDE(zn)[i] = gj(z

n, zi−1
i−k, z

i+k
i+1 , zi).

In analogy to (38), for 0 ≤ j ≤ k, and c−1
−k, c

k
1 ∈ Ak, a sequence zn is said to be (j, c−1

−k, c
k
1)-continuous

if, for all i ∈ Scj and z′ ∈ A,

gj

(
zi−1

1 · z′ · zni+1, c
−1
−k, c

k
1, z
′
)

= gj

(
zi−1

1 · zi · zni+1, c
−1
−k, c

k
1, z
′
)
. (96)
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It is said to be (j, c−1
−k, c

k
1)-discontinuous otherwise. If zn /∈ Bk,α(j) and ||m̃j(z

n, c−1
−k, c

k
1)||1 ≥ α log n,

then it follows from (83) that zn is (j, c−1
−k, c

k
1)-continuous.

Proof of Theorem 11. The proof shall follow the reasoning of the proof of Theorem 1. Since

X̂n,k
D-DUDE satisfies (62), then by the obvious extension of Lemma 3 to (α, γ, kn)-non-pathological

twice–universality, it suffices to show that, under the assumptions of Theorem 11, for all k ≤ kn

and all (α, γ, kn)-non-pathological xn,

E
[∣∣∣LX̂n,k

D-DUDE
(xn, Zn)− L̂

X̂n,k
D-DUDE

(Zn)
∣∣∣] ≤ C

2

√
α(kn + 1) log n

n
(97)

for a constant C. For all k, i ≤ k + 1, c−1
−k, c

k
1 ∈ Ak, let ∆k,j(·), Λ̂i(·), ∆̃k,j,c−1

−k,c
k
1
(·) be as they were

defined, respectively, in (66), (67), and (72) in Section 6. Then recall from the proof of Theorem 1

((69) and (73)), that

E
[∣∣∣LX̂n,k

D-DUDE
(xn, Zn)− L̂

X̂n,k
D-DUDE

(Zn)
∣∣∣] ≤ 1

n

k∑
j=0

E(|∆k,j(x
n, Zn)|) (98)

and

∆k,j(x
n, zn) =

∑
(c−1
−k,c

k
1)∈A2k

∆̃k,j,c−1
−k,c

k
1
(xn, zn)

and that, for all j, the random variables {∆̃k,j,c−1
−k,c

k
1
(xn, Zn) : (c−1

−k, c
k
1) ∈ A2k} are conditionally

zero mean and independent given ZSj . Therefore, for all zSj

E
[
∆2
k,j(x

n, zn)
∣∣ZSj = zSj

]
=

∑
(c−1
−k,c

k
1)∈A2k

E

[
∆̃2
k,j,c−1

−k,c
k
1
(xn, zn)

∣∣∣∣ZSj = zSj
]

(99)

(see left-most equation in (75)). We again abbreviate m̃j(Z
n, c−1
−k, c

k
1) by m̃j . We depart from the

proof of Theorem 1 by separately considering “good” and “bad” sequences zn, observing that for

all j, 0 ≤ j ≤ k,

E

[
∆̃2
k,j,c−1

−k,c
k
1
(xn, Zn)

∣∣∣∣ZSj = zSj
]

= E

[
∆̃2
k,j,c−1

−k,c
k
1
(xn, Zn)1(Zn /∈ Bk,α(j))

∣∣∣∣ZSj = zSj
]

+
∑

zn∈Bk,α(j)

P (Zn = zn|ZSj = zSj )∆̃2
k,j,c−1

−k,c
k
1
(xn, zn)

≤ E
[

∆̃2
k,j,c−1

−k,c
k
1
(xn, Zn)1(Zn /∈ Bk,α(j))

∣∣∣∣ZSj = zSj
]

+ ν1n
2

∑
zn∈Bk,α(j)

P
(
Zn = zn|ZSj = zSj

)
(100)

where (100) follows from the fact that, for all xn, zn, c−1
−k, c

k
1,

|∆̃k,j,c−1
−k,c

k
1
(xn, zn)| ≤

√
ν1||m̃j(z

n, c−1
−k, c

k
1)||1 ≤

√
ν1n (101)
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for some constant ν1. Now

E

[
∆̃2
k,j,c−1

−k,c
k
1
(xn, Zn)1(Zn /∈ Bk,α(j))

∣∣∣∣ZSj = zSj
]

= E

[
∆̃2
k,j,c−1

−k,c
k
1
(xn, Zn)1(Zn /∈ Bk,α(j), ||m̃j ||1 ≥ α log n)

∣∣∣∣ZSj = zSj
]

+ E

[
∆̃2
k,j,c−1

−k,c
k
1
(xn, Zn)1(Zn /∈ Bk,α(j), ||m̃j ||1 < α log n)

∣∣∣∣ZSj = zSj
]

≤ E
[

∆̃2
k,j,c−1

−k,c
k
1
(xn, Zn)1

(
Zn is (j, c−1

−k, c
k
1)-continuous

)∣∣∣∣ZSj = zSj
]

+ E

[
∆̃2
k,j,c−1

−k,c
k
1
(xn, Zn)1(Zn /∈ Bk,α(j), ||m̃j ||1 < α log n)

∣∣∣∣ZSj = zSj
]

(102)

≤ E
[

∆̃2
k,j,c−1

−k,c
k
1
(xn, Zn)1

(
Zn is (j, c−1

−k, c
k
1)-continuous

)∣∣∣∣ZSj = zSj
]

+ E

[
ν1

(
||m̃j(z

n, c−1
−k, c

k
1)||1

)2
1(||m̃j ||1 < α log n)

∣∣∣∣ZSj = zSj
]

(103)

where (102) follows from the fact that zn /∈ Bk,α(j) and ||m̃j ||1 ≥ α log n imply that zn is (j, c−1
−k, c

k
1)-

continuous and (103) from (101). It was shown in the proof of Lemma 9 (see (60)) that for all

xn

E

[(
L
X̂n,0

DUDE
(xn, Zn)− L̂

X̂n,0
DUDE

(Zn)
)2

1
(
Zn is L̂

X̂n,0
DUDE

-continuous
)]
≤ c1||Λ||2∞M4

n
.

Following the same steps, we obtain that, for all zSj ,

E

(
∆̃2
k,j,c−1

−k,c
k
1
(xn, Zn)1

(
Zn is (j, c−1

−k, c
k
1)-continuous

)∣∣∣∣ZSj = zSj
)
≤ c1||Λ||2∞M4

∣∣∣S̃j,c−1
−k,c

k
1

(
zSj
)∣∣∣ ,

(104)

where the set of indices S̃j,c−1
−k,c

k
1

(
zSj
)

was defined in (71) and is deterministic when conditioned on

ZSj .

Observe that

||m̃j(z
n, c−1
−k, c

k
1)||1 =

∣∣∣S̃j,c−1
−k,c

k
1

(
zSj
)∣∣∣ .

Therefore,

E

[
ν1

(
||m̃j(Z

n, c−1
−k, c

k
1)||1

)2
1
(
||m̃j(Z

n, c−1
−k, c

k
1)||1 < α log n

)∣∣∣∣ZSj = zSj
]

= ν1

∣∣∣S̃j,c−1
−k,c

k
1

(
zSj
)∣∣∣2 1

(∣∣∣S̃j,c−1
−k,c

k
1

(
zSj
)∣∣∣ < α log n

)
. (105)

Substituting (104) and (105) in (103), combining with (100) and (99), and noting that∑
(c−1
−k,c

k
1)∈A2k

∣∣∣S̃j,c−1
−k,c

k
1

(
zSj
)∣∣∣ = |Scj | ≤

n+ k + 1

k + 1
, (106)
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we obtain that

E
[
∆2
k,j(x

n, zn)
∣∣ZSj = zSj

]
≤ ν2

n+ k + 1

k + 1
+ ν1

∑
(c−1
−k,c

k
1)∈A2k

∣∣∣S̃j,c−1
−k,c

k
1

(
zSj
)∣∣∣2 1

(∣∣∣S̃j,c−1
−k,c

k
1

(
zSj
)∣∣∣ < α log n

)
+ ν1n

2
∑

(c−1
−k,c

k
1)∈A2k

∑
zn∈Bk,α(j)

P
(
Zn = zn|ZSj = zSj

)
(107)

for some constant ν2. Note that∑
(c−1
−k,c

k
1)∈A2k

∣∣∣S̃j,c−1
−k,c

k
1

(
zSj
)∣∣∣2 1

(∣∣∣S̃j,c−1
−k,c

k
1

(
zSj
)∣∣∣ < α log n

)
≤ (α log n)

∑
(c−1
−k,c

k
1)∈A2k

∣∣∣S̃j,c−1
−k,c

k
1

(
zSj
)∣∣∣

≤ (α log n)
n+ k + 1

k + 1
(108)

where the last inequality follows from (106). Substituting (108) in (107), and taking expectation

over ZSj , we obtain

E
[
∆2
k,j(x

n, zn)
]
≤ ν2

n+ k + 1

k + 1
+ ν1

n+ k + 1

k + 1
(α log n) + ν1n

2M2kP (Zn ∈ Bk,α(j))

≤ ν2
n+ k + 1

k + 1
+ ν1

n+ k + 1

k + 1
(α log n) + ν1n

2M2k β1(n+ 2k + 2)

(k + 1)α log n
e−β2α logn+β3k

(109)

≤ C ′
(
αn log n

k + 1

)
(110)

for k ≤ kn = O(log n), some constant C ′, sufficiently large α (depending on the implicit constant in

the O(log n) bound on kn), and sufficiently large n, where (109) follows from Lemma 13, and (110)

follows from k ≤ kn = O(log n) for, as noted, α and n sufficiently large. Applying Jensen’s

inequality, we obtain that, for all j, 0 ≤ j ≤ k,

E[|∆k,j(x
n, zn)|] ≤

√
C ′
(
αn log n

k + 1

)
.

Finally, substituting into (98), we obtain that, for all k ≤ kn = O(log n),

E
(
|L
X̂n,k

D-DUDE
(xn, Zn)− L̂

X̂n,k
D-DUDE

(Zn)|
)
≤

√
C ′
(
α(k + 1) log n

n

)
≤

√
C ′
(
α(kn + 1) log n

n

)
.

which proves (97) with C = 2
√
C ′, as desired. 2

Proof of Theorem 12. Let Xn ∈ An be a random i.i.d. sequence with uniform distribution

P∗. We will show that under certain conditions on kn, the probability that Xn is not (α, γ, kn)-

non-pathological vanishes with n, when ΠTP∗ /∈ M∗. It will follow that |Nn| = Mn(1 − o(1)).
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The outline of the proof is as follows. We first obtain a bound on the probability that the condi-

tional expectation E
[
m̃j(Z

n, c−1
−k, c

k
1)|Xn

]
deviates by more than a certain amount from its mean

E
[
m̃j(Z

n, c−1
−k, c

k
1)
]
. We then show that if the complements of these events occur for all j and

all (c−1
−k, c

k
1) then Xn is (α, γ, kn)-non-pathological, for γ and kn satisfying the conditions of the

theorem. The reverse inclusion of the complements of these events is then combined, via a union

bound, with the first step, to prove the theorem.

For all j, 0 ≤ j ≤ k, and all c−1
−k, c

k
1 ∈ Ak, since Zn is i.i.d. (as induced by Xn being i.i.d.),

E
[
m̃j(Z

n, c−1
−k, c

k
1)
]

= |Scj |P
(
Z2k

1 = c−1
−kc

k
1

)
ΠTP∗

where the expectation is over all random choices of Xn and channel realizations Zn. From the fact

that Xn is a sequence of i.i.d. random variables, it follows that

pc−1
−kc

k
1

def
= P (Z2k

1 = c−1
−kc

k
1) ≥ e−2λ1k (111)

where

λ1 = − log

(
min
a∈A

(ΠTP∗)[a]

)
, (112)

which is well defined, since the assumed invertibility of Π implies that there are no all-zero columns,

so that, for 1 ≤ i ≤ n, and all a ∈ A,

P (Zi = a) = (ΠTP∗)[a] > 0.

For p ∈ {0, 1}, let m̃p
j (z

n, c1
−k, c

k
1) be as in the proof of Lemma 13. In the sequel, we will

abbreviate m̃p
j (z

n, c1
−k, c

k
1) by m̃p

j . Also for p ∈ {0, 1}, let

Sc,pj = {i ∈ Scj : i = (k + 1)(2q + p) + j for some q ∈ Z}

so that Scj = Sc,0j
⋃
Sc,1j . By the triangle inequality, repeated applications of the union bound (over

p ∈ {0, 1} and c0 ∈ A), and the fact that
∑

c0∈A(ΠTP ∗)[c0] = ||ΠTP ∗||1 = 1, we obtain that, for

all j, 0 ≤ j ≤ k, c−1
−k, c

k
1 ∈ Ak, and p ∈ {0, 1}, and all sufficiently large n,

P

(∣∣∣∣∣∣E[m̃j(Z
n, c−1
−k, c

k
1)|Xn

]
− |Scj |pc−1

−kc
k
1
ΠTP∗

∣∣∣∣∣∣
1
≥
|Scj |
log n

pc−1
−kc

k
1

)
≤

∑
p∈{0,1}

P

(∣∣∣∣∣∣E[m̃p
j

∣∣∣Xn
]
− |Sc,pj |pc−1

−kc
k
1
ΠTP∗

∣∣∣∣∣∣
1
≥
|Sc,pj |
log n

pc−1
−kc

k
1

)

≤
∑

p∈{0,1}

∑
c0∈A

P

(∣∣∣E[m̃p
j [c0]

∣∣∣Xn
]
− |Sc,pj |pc−1

−kc
k
1
(ΠTP∗)[c0]

∣∣∣ ≥ |Sc,pj |
log n

pc−1
−kc

k
1
(ΠTP∗)[c0]

)
. (113)

Noting that, for all j, 0 ≤ j ≤ k, and all c−1
−k, c

k
1 ∈ Ak, and p ∈ {0, 1}

E
(
E
[
m̃p
j [c0]

∣∣∣Xn
])

= E
[
m̃p
j [c0]

]
= |Sc,pj |pc−1

−kc
k
1
ΠTP∗[c0],

and recalling that m̃p
j [c0], conditioned on Xn, is a sum of independent 0 − 1 random variables,

since Xn is i.i.d., it follows analogously that E
[
m̃p
j [c0]

∣∣∣Xn
]

is a sum of i.i.d. random variables
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bounded between 0 and 1. Therefore, we can again invoke Theorem 2.3(b) in [12] (as in (90), with

ε = 1/ log n) to obtain

P

(∣∣∣E[m̃p
j [c0]

∣∣∣Xn
]
− |Sc,pj |pc−1

−kc
k
1
(ΠTP∗)[c0]

∣∣∣ ≥ |Sc,pj |
log n

pc−1
−kc

k
1
(ΠTP∗)[c0]

)

≤ 2e
−
|Sc,p
j
|p
c−1
−kc

k
1

(ΠTP∗)[c0]

3(logn)2 . (114)

Incorporating (114) into (113) yields that, for all j, 0 ≤ j ≤ k, c−1
−k, c

k
1 ∈ Ak, and p ∈ {0, 1}, and

all sufficiently large n,

P

(∣∣∣∣∣∣E[m̃j(Z
n, c−1
−k, c

k
1)|Xn

]
− |Scj |pc−1

−kc
k
1
ΠTP∗

∣∣∣∣∣∣
1
≥
|Scj |
log n

pc−1
−kc

k
1

)
≤ 4Me

−(|Scj |−1)e−(2k+1)λ1

6(logn)2 (115)

where we used |Sc,pj | ≥
|Scj |−1

2 , (111) and (112). This concludes the first step of the proof.

For the next step, we begin by observing that if, for some xn ∈ An, j, 0 ≤ j ≤ k, and

c−1
−k, c

k
1 ∈ Ak,

||E[m̃j |Xn = xn]− |Scj |pc−1
−kc

k
1
ΠTP∗||1 <

|Scj |
log n

pc−1
−kc

k
1

(116)

then, since ||ΠTP ∗||1 = 1,(
1− 1

log n

)
|Scj |pc−1

−kc
k
1
< ||E[m̃j |Xn = xn]||1 <

(
1 +

1

log n

)
|Scj |pc−1

−kc
k
1
. (117)

Also, from (82), for all m∗ ∈M∗ and all c−1
−k, c

k
1,

||m∗ − |Scj |pc−1
−kc

k
1
ΠTP∗||1 ≥ |Scj |pc−1

−kc
k
1
∆(Π,Λ). (118)

Thus, if xn, j, and c−1
−k, c

k
1 satisfy (116), then, by the triangle inequality, for all m∗ ∈ M∗ and

γ < ∆(Π,Λ)
2 , it follows that

||E[m̃j |Xn = xn]−m∗||1
≥ ||m∗ − |Scj |pc−1

−kc
k
1
ΠTP∗||1 − ||E[m̃j |Xn = xn]− |Scj |pc−1

−kc
k
1
ΠTP∗||1

> |Scj |pc−1
−kc

k
1

(
∆(Π,Λ)− 1

log n

)
(119)

= 2 ·
|Scj |

2
pc−1
−kc

k
1

(
∆(Π,Λ)− 1

log n

)
≥ ||E[m̃j |Xn = xn]||1

2(1 + 1
logn)

(
∆(Π,Λ)− 1

log n

)
+
|Scj |

2
pc−1
−kc

k
1

(
∆(Π,Λ)− 1

log n

)
(120)

≥ γ||E[m̃j |Xn = xn]||1 +
|Scj |

2
pc−1
−kc

k
1

(
∆(Π,Λ)− 1

log n

)
≥ γ||E[m̃j |Xn = xn]||1 +

n− (k + 1)

2(k + 1)
e−2λ1k

(
∆(Π,Λ)− 1

log n

)
(121)
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≥ γ||E[m̃j |Xn = xn]||1 + (2k + 1) +
α log n

2
, (122)

implying, if it holds for all j, c−1
−k, c

k
1, and k ≤ kn, that xn is (α, γ, kn)-non-pathological for sufficiently

large n, provided
n− (k + 1)

2(k + 1)
e−2λ1k ≥ 2k + 1 +

α

2
log n, (123)

where (119) follows from (116) and (118), (120) from (117), and (121) from (111) and the fact that

|Scj | ≥
⌊

n

k + 1

⌋
.

Note that the condition in (123) holds for all α > 0 and sufficiently large n, provided that k ≤ kn ≤
τ log n where

τ <
1

2λ1
.

We complete the proof by combining the above two steps. In particular, since xn satisfying (116)

for all j, c−1
−k, c

k
1, and k ≤ kn, implies that xn is (α, γ, kn)-non-pathological, it follows that, for

γ < ∆(Π,Λ) and kn ≤ τ log n,

P (Xn /∈ Nn)

≤ P
(
∃k ≤ kn, j, c−1

−k, c
k
1, s. t.

∣∣∣∣∣∣E[m̃j(Z
n, c−1
−k, c

k
1)|Xn

]
− |Scj |pc−1

−kc
k
1
ΠTP∗

∣∣∣∣∣∣
1
≥
|Scj |
log n

pc−1
−kc

k
1

)
≤

kn∑
k=0

k+1∑
j=0

∑
c−1
−k,c

k
1∈Ak

P

(∣∣∣∣∣∣E[m̃j(Z
n, c−1
−k, c

k
1)|Xn

]
− |Scj |pc−1

−kc
k
1
ΠTP∗

∣∣∣∣∣∣
1
≥
|Scj |
log n

pc−1
−kc

k
1

)

≤ kn(kn + 1)M2kn+14e
−(n−2kn−2

kn+1 )e−(2kn+1)λ1

6(logn)2 (124)

= o(1) (125)

when

τ <
1

2λ1
, (126)

where (124) follows from (115), and (125) follows from the fact that, for kn ≤ τ log n, with τ

satisfying (126), the factor e(·) appearing in (124) is smaller than e−n
δ

for some sufficiently small

δ > 0 and sufficiently large n, and the other factors, again under the condition kn ≤ τ log n, are at

most polynomially increasing. 2
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