

Keyword(s):

Abstract:

A Consideration of Real-Time Imaging and Printing

Steven J. Simske, Margaret Sturgill, Jason S. Aronoff, Marie Vans

HP Laboratories
HPL-2011-180

Down-sampling; image segmentation; memory locking; compiler

Modern variable data presses use substantial processing power. In many cases, a bank of processors is used
to manage the RIP (raster image processing), and print jobs are performed using sophisticated parallel
scheduling approaches. The high processing power of digital presses enables the possibility of performing
valuable imaging tasks using the same processing units. Important imaging tasks include reading printed
marks (such as barcodes), print validation and inspection.

 In order to optimize the interleaving of real-time printing and imaging tasks, different imaging approaches
 must be considered. In this paper, we consider three different classes of imaging optimization in order to
 compare their relative e ffect on throughput and on amenability to processing on the press. These are (1)
 performing down-sampling before image segmentation versus performing native res olution image segmentation,
 (2) selecting different programming languages/compil ers (e.g. Java versus C++ in our experiments) for the
 imaging, and (3) marshalin g images into a single buffer versus allowing the system to manage the image,.
 Our results demonstrate that, in general, changes in structural approach to imagi ng, such as (1) provides,
 have the greatest positive impact on processing, while (2) has the least impact. The impact of approach (3)
 is more highly dependent o n the architecture of the press, and so is perhaps the method that can be most
 positively affected by intelligent modeling.

External Posting Date: October 6, 2011 [Fulltext] Approved for External Publication
Internal Posting Date: October 6, 2011 [Fulltext]

Copyright 2011 Hewlett-Packard Development Company, L.P.

A Consideration of Real-Time Imaging and Printing
Steven J. Simske, Margaret Sturgill, Jason S. Aronoff, Marie Vans, Hewlett-Packard Labs, 3404 E. Harmony Rd., MS 36, Fort Collins
CO 80528, USA

Abstract
Modern variable data presses use substantial processing

power. In many cases, a bank of processors is used to manage the
RIP (raster image processing), and print jobs are performed using
sophisticated parallel scheduling approaches. The high processing
power of digital presses enables the possibility of performing
valuable imaging tasks using the same processing units. Important
imaging tasks include reading printed marks (such as barcodes),
print validation and inspection.

In order to optimize the interleaving of real-time printing and
imaging tasks, different imaging approaches must be considered.
In this paper, we consider three different classes of imaging
optimization in order to compare their relative effect on
throughput and on amenability to processing on the press. These
are (1) performing down-sampling before image segmentation
versus performing native resolution image segmentation, (2)
selecting different programming languages/compilers (e.g. Java
versus C++ in our experiments) for the imaging, and (3)
marshaling images into a single buffer versus allowing the system
to manage the image,. Our results demonstrate that, in general,
changes in structural approach to imaging, such as (1) provides,
have the greatest positive impact on processing, while (2) has the
least impact. The impact of approach (3) is more highly dependent
on the architecture of the press, and so is perhaps the method that
can be most positively affected by intelligent modeling.

Keywords: Down-sampling, image segmentation, memory

locking, compiler

Introduction
Modern digital presses, capable of printing thousands of

pages per hour – with each one different from the rest – use
multiple processing units to prepare and process the page images
[1][2][3]. Multiple units are needed to continue to “feed” pages at
speed when there is significant page-to-page variability and
resolutions are often 800-1200 dots/inch or more.

 “Actionable printing” is the variable data digital printing
domain wherein each printed item has its own customized content
which can be later interrogated or “read”, for example, as part of a
mobile camera service. As its adoption continues to increase, it
will be important to optimize the use of processing resources on
the digital presses.

We have previously described how different factors in the
“reading” environment can be combined into a mathematical
model for deploying cameras, inspection devices, and forensic
imagers in a geographically dispersed network of manufacturers,
distributors, retailers and consumers [4]. In this paper, we consider
three different aspects of real-time imaging and printing in an
effort to model a system for image-intensive printing:

(1) Performing down-sampled segmentation vs. native

resolution segmentation. This is a functional test for the
improvement in performance possible with a memory-access
intensive task. While we consider image segmentation here for
ease of timing analysis, many other imaging – and some variable
data pre-press – tasks will also require similar trade-offs (working
on the original resolution image versus down-sampling and
working on a reduced resolution image).

(2) Performing processing and image-accessing intensive
analysis in an interpreted (e.g. Java) programming language vs.
performing the same analysis in a compiled (e.g. C++)
programming language. This test was performed simply to
determine the relative impact of programming language selection
on the system performance. This has larger system development
importance, since for example (a) it may be simpler to program in
the interpreted language since garbage clean up is not the
responsibility of the programmer and (b) there may be legacy,
related services, etc., codebase(s) written in one language that we
wish to augment directly (i.e. in the same language).

(3) Marshaling images into a single (continuous) buffer in
memory vs. allowing the system to manage the image – with re-
location, discontinuous buffering, etc. possible. This test is meant
to determine the efficiency of locking an image in memory for
image-access intensive tasks, and is highly relevant to both
variable data printing and image interpretation tasks.

Methods and Materials

Downsampled-Segmentation vs. Native Resolution
Segmentation

For this test, we considered two variations:

(1) Performing document image segmentation on a single

document, originally scanned at 300, 400 or 600 pixels per inch
(ppi), before and after down-sampling to 75 ppi, as described in
[5]. Document image segmentation requires repeated, “random”
access to parts of the image for a number of image processing
tasks. The first, image thresholding, uses an image histogram
followed by a binarization process. This requires accessing each
image pixel at least twice, the bare minimum of which is a global
thresholding approach such as the approach by Kittler et al. [6].
Methods which require local thresholds, multiple thresholds to
accommodate background color differences, etc., will generally
require accessing each pixel three or more times. Next, image
segmentation is performed. Image segmentation is usually
performed on the binarized image, and involves multiple
procedures such as run length smearing, dilation/erosion,
connected component formation, connected component histogram
formation and analysis, connected component projection profile

computation and analysis, and clustering of related connected
components [7]. Figure 1 illustrates the effect of thresholding on
an image. The input image (top) is binarized to create the lower
image using two passes through the entire image.

Figure 1. Example of thresholded image. The full-color image (top) [8] is
binarized in accordance with ref. [6] and then used for downstream tasks such
as image segmentation.

An example of document image segmentation is given in
Figure 2. For this document image, image pixels were accessed, in
the mean, more than 8 times throughout the processing (including
the thresholding). The output of this software [9] is a set of labeled
“regions” (clustered and “typed” connected components or
connected component composites).

(2) The second test is to down-sample the image and then

perform a two-stage segmentation. The first segmentation is
performed using projection profiles [7] to define cuts through the
document image and break up the image into as small of logical
units as possible. This is readily accomplished for Manhattan
layouts such as for the document page image in Figure 2. We

performed our tests using a slide scanner, which can capture the
images from several rows of film slides simultaneously.

We down-sampled all images to 75 ppi for both sets of tests

in this section. The original images were scanned at 300 ppi or 600
ppi. Two different sets of 50 images were used for the timing data
for (1) and (2).

C++ vs. Java
We considered an automated document image segmentation

task as described in [10], for which we had originally performed
image thresholding and segmentation on 1.2 x 106 document
pages. To facilitate comparison we built a simplified
(approximately 2 x 104 instead of 2 x 105 lines of code)
segmentation engine simultaneously in both C++ and Java. The
only difference—from the UML [11] to the object arguments,
fields and methods—between the two engines was the employment
of memory clean up in the C++ version. This resulted in slightly
(~2%) more lines of code for the C++ version. Even the files
(equivalent in number) were named identically.

Figure 2. Example of a document image segmentation. “Text” typed regions
are outlined in green, “drawing” typed regions in purple (see oar boat in lower
right for example if printed in grayscale) and the 2 photos/images in yellow.

Figure 2 also suffices to illustrate the “work” performed by
these two engines. Each of them produced fully typed {photo, text,
drawing, and table} regions segmented from the document images.

We performed timing using system timers build into the invoking
code. Timing was performed on a set of 500 files for both the C++
and Java-based engines.

Accessing Marshaled Image Data vs. Native Image
Access

To marshal the image data into continuous memory, we used
the LockBits functionality in .NET. LockBits, which locks the
bitmap data in continuous memory, allows the marshaling out of
the data. So, we performed timing on accessing reads and writes of
image data with and without the use of LockBits:

(1) Load image in using the .NET Bitmap class.
(2) For no use of LockBits, reading is performed by

sequentially reading in each pixel. Writing is performed by
sequentially setting each pixel in the image to the Color.Red
system color value.

(3) For the use of LockBits, we lock the bitmap, allocate the
image buffer, and marshal out the bitmapData to a buffer. For
reading, for each pixel in the image, we set the variables r,g,b to
pixel values. For writing, for each pixel in image we set r, g, b
bytes to {255,0,0) respectively (red). We then marshal out the new
image to bitmap.

Results
The test results reported herein were performed on a variety

of laptops and workstations. All systems had at least 1 GB of RAM
and were run using Java or .NET on a Windows XP 32-bit or a
Windows7 64-bit OS. Performance scores cannot be compared
absolutely across the three types of experiments, nor is it necessary
to do so. All reported comparisons were performed on exactly the
same hardware with the same software, except where noted (that is,
the C++ vs. Java comparison).

Downsampled-Segmentation vs. Native Resolution
Segmentation

Figure 3. Sample of down-sampled and pre-segmented slide scans.

For our 50-file document image set, performing segmentation
on the original 300 ppi images required a mean of 11.7 sec, while
down-sampling to 75 ppi and segmenting at 75 ppi required a

mean of 1.55 seconds (0.65 sec for down-sampling and 0.90 sec
for segmentation).

For the slides (Figure 3), the original images at 300 ppi
required less time than the general document image set, since the
slides were organized in parallel rows. Segmentation required only
a mean of 5.46 sec. Down-sampling required 0.65 sec and
segmentation of the slide sets required only a mean of 16
msec/image.

C++ vs. Java
We performed benchmarking on 500 full page images already

down-sampled to 75 ppi image, as described above. The C++
engine was consistently faster. On the mean, the Java engine
required 34% more time to completion (1.73 sec compared to 1.29
sec).

Accessing Marshaled Image Data vs. Native Image
Access

Two large images were timed. The results for the means of ten
runs were computed. Image #1 is a 24-bit, 4264 x 5704 pixel
image. The results comparing marshaling (using LockBits) and
allowing native image access management (No LockBits) are
presented in Table 1. Both reading and writing were approximately
eight times faster when using LockBits (marshaling).

Table 1. Results for Image #1 (mean of 10 runs)
 Reading Writing
No LockBits 38.00 sec 34.70 sec
LockBits 4.75 sec 3.97 sec
LockBits, pixel
access only

4.71 sec 3.84 sec

Image #2 is a 24-bit, 2572 x 3696 pixel image. The results

comparing marshaling (using LockBits) and allowing native image
access management (No LockBits) are presented in Table 2.
Writing was again eight times faster when using LockBits
(marshaling), and reading was approximately 11 times faster.

Table 2. Results for Image #2 (mean of 10 runs)
 Reading Writing
No LockBits 15.75 sec 15.91 sec
LockBits 1.43 sec 1.94 sec
LockBits, pixel
access only

1.41 sec 1.91 sec

As both Table 1 and Table 2 indicate, the majority of the time

for the LockBits approach is in accessing the pixels (~98% of the
time used) and not in the actual marshaling of the data (~2% of the
time used).

Discussion and Conclusions

Downsampled-Segmentation vs. Native Resolution
Segmentation

For image processing tasks such as segmentation, it is not
surprising that performing segmentation at lower resolution results
in a significant speed-up in performance. It is worth noting,
however, that the down-sampled image contains only 1/16 as many

pixels, but did not perform segmentation 16 times as quickly (0.90
sec mean compared to 11.7 sec mean).

When the down-sampled images were pre-segmented,
however, a significant speed-up (to just 0.016 sec mean processing
time) was observed. The relative timings of these different
processes are likely dependent on the hardware used: cache and
RAM configuration and extent are likely important variables to
consider, and are worth future work.

It is also worth noting that connected component boundaries
created for 75 ppi document images will in general be less accurate
than boundaries created for 300 ppi document images. However,
the minor cropping differences are probably not a reason to
preclude the clear performance provided by the down-sampling. In
fact, we have been able to extricate useful information for
scanning-related tasks with down-sampling to as little as 30 ppi,
for which more than 95% of the processing time is the down-
sampling itself.

C++ vs. Java
The second part of this paper compared and contrasted the

implementation of an imaging application written simultaneously,
line-for-line, in Java and C++. We considered UML, availability
and ease of integration of existing APIs, testing and prototyping,
UI, imaging and XML specification issues for comparing the two
development platforms. We found that while Java was consistently
an easier platform for which to find existing APIs, C++ offered an
advantage in overall integration. Java is in many ways a more
mature technology and for this certain advantages in image
processing and ease of XML development were noted. C++,
however, may provide a more consistent method of development
that some developers may find more comfortable. We also find no
advantage in the use of JNI vs. managed code wrappers
incorporating existing native code (e.g. in C++). Overall, we did
not find a broadly significant advantage to development on either
platform, and the 34% difference in performance was small
compared to that observed in the other experiments report herein.
The choice of the platform, therefore, should be based on, not
surprisingly, the developer’s skill set & deployment platform
issues.

That being said, there was a small but statistically significant
processing penalty in using Java for intense imaging tasks. C++-
based benchmarking completed in 25% less time. For an overall
mathematical model, therefore, it is deemed generally
advantageous to perform intensive imaging tasks on C++ or other
C-based compilers/interpreters.

Accessing Marshaled Image Data vs. Native Image
Access

The marshaling results were unequivocal. Using LockBits to
marshal the images into continuous memory resulted in nearly an
order of magnitude speed image reading and writing. This
approach is recommended for any printing and imaging tasks.

Conclusion
Not surprisingly, some of the results presented indicate a

dependency on hardware architecture—the amount of cache and
RAM, for example. However, it is worth noting that none of the
images tested required a significant portion of available RAM. The
results presented herein suggest that down-sampling and
performance of image processing tasks at as low a resolution –
and, if possible, in pre-segmented regions – as possible is
warranted.

References
[1] Digital Printing Press for Commercial Printers: Xerox,

http://www.xerox.com/digital-printing/digital-printing-
press/enus.html, last accessed 27 June 2011.

[2] NexPress Digital Production Color Platform,
http://graphics.kodak.com/US/Product/Printers_Presses/Digital_Colo
r/default.htm, last accessed 27 June 2011.

[3] HP Indigo Digital Presses,
http://h10010.www1.hp.com/wwpc/us/en/sm/WF02a/18972-18972-
236257.html, last accessed 27 June 2011.

[4] S. Simske, M. Sturgill, J. Aronoff and M. Vans, “Factors in a Security
Printing & Imaging Based Anti-Counterfeiting Ecosystem,” NIP26:
26th International Conference on Digital Printing Technologies and
Digital Fabrication, pp. 368-371 (2010).

[5] Sturgill, M. and Simske, S.J. “A Ground-Truthing Engine for
Proofsetting, Publishing, Re-Purposing and Quality Assurance,”
Hewlett-Packard Technical Report HPL-2003-234, available on-line
at http://www.hpl.hp.com/techreports/2003/HPL-2003-234.pdf
(2003).

[6] J. Kittler, J. Illingworth and J. Fõglein, “Threshold selection based on a
simple image statistic,” Comp. Vision Graph. Image Proc., Vol 30,
pp. 125-147 (1985).

[7] F.M. Wahl, K.Y. Wong, and R.G. Casey, “Block segmentation and text
extraction in mixed/image documents,” Computer Vision Graphics
and Image Processing, Vol. 2, pp.375-390 (1982).

[8] Cheyenne Mountain Zoo, http://www.cmzoo.org/
[9] S.J. Simske and S.C. Baggs, “Customized Capture: Techniques for

Automating Scanner Workflows,” ACM Symposium on Document
Engineering 2004:171-177 (2004).

[10] S.J. Simske and M. Sturgill, “A Ground-Truthing Engine for
Proofsetting, Publishing, Re-Purposing and Quality Assurance”,
ACM DocEng 2003, pp. 150-152 (2003).

[11] Free On-Line Dictionary of Computing (FOLDOC), Unified Modeling
Language, http://foldoc.org/UML, last accessed 29 June 2011.

Author Biography
Steve Simske is an HP Fellow and the Director and Chief

Technologist of the Document Lifecycle & Security Printing & Imaging
portfolio in Hewlett-Packard Labs. Steve is currently on the IS&T Board.
He is also an IS&T Fellow and a member of the World Economic Forum’s
Global Agenda Council on Illicit Trade. He holds more than 40 US
patents and has more than 250 peer-reviewed publications. He holds
advanced degrees in Biomedical, Electrical and Aerospace Engineering.

http://www.xerox.com/digital-printing/digital-printing-press/enus.html�
http://www.xerox.com/digital-printing/digital-printing-press/enus.html�
http://graphics.kodak.com/US/Product/Printers_Presses/Digital_Color/default.htm�
http://graphics.kodak.com/US/Product/Printers_Presses/Digital_Color/default.htm�
http://h10010.www1.hp.com/wwpc/us/en/sm/WF02a/18972-18972-236257.html�
http://h10010.www1.hp.com/wwpc/us/en/sm/WF02a/18972-18972-236257.html�
http://www.hpl.hp.com/techreports/2003/HPL-2003-234.pdf�
http://foldoc.org/UML�

