

Keyword(s):

Abstract:

Hathi: Durable Transactions for Memory using Flash

Mohit Saxena, Mehul A. Shah, Stavros Harizopoulos, Michael M. Swift, Arif Merchant

HP Laboratories
HPL-2011-161

transactions; transactional memory; flash; durability; consistency; recovery

Recent architectural trends -- cheap, fast solid-state storage, inexpensive DRAM, and multi-core CPUs --
provide an opportunity to rethink the interface between applications and persistent storage. To leverage
these advances, we propose a new system architecture called Hathi that provides an inmemory.

External Posting Date: September 21, 2011 [Fulltext] Approved for External Publication
Internal Posting Date: September 21, 2011 [Fulltext]

Copyright 2011 Hewlett-Packard Development Company, L.P.

Hathi: Durable Transactions for Memory using Flash
Mohit Saxena

U. Wisconsin-Madison

Mehul A. Shah, Stavros Harizopoulos
Hewlett-Packard Labs

Michael M. Swift
U. Wisconsin-Madison

Arif Merchant
Google

Abstract
Recent architectural trends — cheap, fast solid-state storage,
inexpensive DRAM, and multi-core CPUs — provide an op-
portunity to rethink the interface between applications and
persistent storage. To leverage these advances, we propose
a new system architecture called Hathi that provides an in-
memory transactional heap made persistent using high-speed
flash drives. With Hathi, programmers can make consistent,
durable updates to in-memory data structures that survive pro-
gram and system failure.

Hathi focuses on three major design goals: ACID semantics,
a simple programming interface, and fine-grained programmer
control. Hathi relies on software transactional memory to pro-
vide a simple concurrent interface to in-memory data struc-
tures, and extends it with persistent logs and checkpoints to
add durability.

To reduce the cost of durability, Hathi uses two main tech-
niques. First, it provides split-phase and partitioned commit
interfaces, that allow programmers to overlap commit I/O with
computation and to avoid unnecessary synchronization. Sec-
ond, it uses partitioned logging, which reduces contention on
in-memory log buffers and exploits internal SSD parallelism.
On an initial prototype, we find that Hathi can achieve 1.25
million txns/s with a single SSD.

1 Introduction
Transactional stores are useful in a variety of con-
texts from internet-facing sites to financial applications.
The most ubiquitous transactional stores are relational
DBMSs, whose design is based on assumptions from
decades ago. They are optimized for spinning disk,
single-core CPUs, and traditional enterprise workloads.
Today’s technology and application landscape, however,
is significantly different. As a result, there has been a
movement to replace DBMSs with much simpler struc-
tured stores, designed from the ground up with modern
platforms and applications in mind [6, 10]. We agree
that it is time to rethink DBMSs, but argue to keep an
essential service they provide: ACID transactions.

Transactions serve two purposes that make it easier
to build robust applications. First, transactions enable
fine-grained concurrency control, allowing developers to
scale applications more easily [5, 11]. Second, transac-
tions provide a simple interface for managing the dura-
bility and consistency of application state in the face of
failures.

In this paper, we leverage three important recent

architectural trends to design a high-performance and
ACID-compliant transactional store. First, DRAM
prices have dropped to a point that even mid-tier servers
support up to 4 TB of memory. At these sizes, many
workloads can execute in core rather than from disk
— an observation also made by others [9, 13]. Sec-
ond, power considerations have driven processor man-
ufacturers away from uni-processors towards multi-core
chips. Third, flash-based solid-state drives (SSDs) have
become practical and provide 1-2 orders of magnitude
lower latency than the fastest disks.

We describe Hathi, a high-speed, durable, main-
memory transactional store that leverages these trends.
It presents an in-memory transactional heap interface
that is automatically made persistent on fast SSDs.
Thus, programs can create and manipulate in-memory
data structures, but ensure the data is durable with lit-
tle extra effort. To do so, Hathi combines the simple
and highly concurrent interface (“ACI”) of transactional
memory [11] with an SSD-optimized write-ahead log-
ging and checkpointing scheme for durability (“D”). In
this paper, we focus on two approaches to reduce and
eliminate the overhead of persistence.

First, Hathi provides commit options that have not
been traditionally used in ACID-compliant data stores
to allow developers leverage application knowledge for
increased performance. In addition to synchronous and
asynchronous commit, which traditional DBMSs also
provide, Hathi exposes split-phase and partitioned com-
mit. The split-phase commit decouples the installation
of in-memory updates from the flush of log records. Us-
ing this interface, applications can continue with other
tasks and later check for completion of the commit,
thereby overlapping computation and commit I/O. Par-
titioned commit allows applications to cheaply commit
transactions that operate on partitioned data with no de-
pendencies across partitions. With these interfaces, ap-
plications retain the recoverability guarantees of syn-
chronous commit at speeds closer to asynchronous com-
mit. Initial experiments with these interfaces show 4-5x
throughput improvements over synchronous commit.

Second, Hathi uses partitioned logging, in which each
thread maintains a separate log. Partitioned logging
leverages the SSD’s internal parallelism and avoids con-
tention on in-memory log buffers that hold the tail of the
transaction log.

With these optimizations, initial experiments show
that Hathi reaches 1.25 million txns/sec on a high-
end FusionIO drive and nearly 200 K txns/sec on a
consumer-grade Intel X-25M SSD. Moreover, in these
experiments, the system scales to many cores and is al-
most transaction bound. Thus, we provide durable trans-
actions at little additional cost over non-durable transac-
tional memory. At these speeds, we believe Hathi is suit-
able for building not only user-facing applications, but
also infrastructure applications like file-systems, key-
value stores, B-trees, and social-network databases.

2 Background and Related Technologies
In this section, we describe the compelling characteris-
tics of flash drives and discuss how Hathi compares to
other main-memory data stores.
NAND Flash Solid-State Drives. Commercial SSDs
composed of NAND flash memory are readily available
today at reasonable prices. SSDs are internally com-
prised of multiple flash chips accessed in parallel. As
a result, they provide scalable bandwidths limited only
by the serial interface between the on-chip register and
off-chip controller [4]. In addition, SSDs provide ac-
cess latencies orders of magnitude faster than traditional
disks. For example, the Fusion IO enterprise ioDrives
provide 25 µs latencies and up to 600 MB/sec through-
put [1]. Consumer grade SSDs provide latencies down
to 50-75 µs and bandwidths up to 250 MB/sec. The en-
terprise SSDs support longer I/O queues and require sev-
eral outstanding I/O requests to be saturated. With cur-
rent technology, SSD bandwidth is comparable to or ex-
ceeds network bandwidth, and latency is much shorter
than user interactions or most network latencies.
Memory-centric Data Stores. Several recent projects
propose building transactional interfaces on emerging
storage class memory (SCM) such as phase change
(PCM), spin-torque-transfer (STT), and memristor [7,
14], which all promise much better performance proper-
ties than flash. Hathi seeks the same goal, but achieves it
with current technology rather than depending on specu-
lative technologies that may not succeed commercially.
Moreover, even though SCMs have much lower laten-
cies, we believe that flash performs well enough that they
may not be needed: with flash, storage is no longer the
bottleneck for many applications.

Closely related to Hathi are other main memory data
stores. These fall into three categories: relational stores,
e.g. TimesTen and VoltDB [3]; object stores, e.g. Gem-
Stone and RamCloud [13]; and key-value stores, e.g.
memcached [2]. There are commercial, open-source and
research versions of each of them. The key-value stores
tend to reject transactional semantics. The relational and
object stores are tuned for high-throughput transactions,
but focus on scaling across a cluster and not on durabil-

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Recovery
Logic

Logic
Commit

Memory

Packages
Flash

Logging
Partitioned

Concurrency

Control

Garbage

Collection

Direct

I/O

PCI−e/SATA

Checkpointing

write(hp,offset,len,srcbuf)

File System

Databases

Heap *hp = pmalloc(size)

read(hp,offset,len,dstbuf)
......

Key−Value Stores

commit(sync | async | partition)

start(hp)

isStable(lsn,wait)

Figure 1: Hathi Architecture and Interface.

ity methods tuned for Flash. In addition, most of these
provide higher-level structured interfaces unlike Hathi,
which provides an unstructured memory space. We en-
vision Hathi as a major building block for such systems.

3 Interface and Durability Options
Hathi provides programmers with a familiar set of sim-
ple primitives that facilitates them to build fast, robust,
and flexible persistent memory regions. Rather than
forcing programs to use low-level file primitives or con-
vert their data into a database format, Hathi enables a
program to use any in-memory data structure for durable
data with persistent heaps. Heaps are persistent memory
regions that applications can read or write using a soft-
ware transactional memory (STM)-like interface. Hathi
provides a pmalloc interface to create a heap, which
allocates a segment of memory and associates it with
a checkpoint file on an SSD. A program can then per-
form consistent reads and writes to the heap using the
interface shown in Figure 1. A read from a given heap
address and size copies the memory region to a user-
specified buffer, and a write to a heap updates an in-
memory copy of the data. A transaction can abort, which
erases all updates, or commit, which makes updates per-
sistent and visible to other threads.

Although flash latencies are low, they are much larger
than latencies to main memory. So, programmers still
must be careful about when to wait for updates to be-
come durable. Hathi provides programmers with three
options to commit that control its durability guarantee:

2

START(hp)

for(all i)

COMMIT (sync)

READ(hp,0,10,buf)

buf[i] += 1

WRITE(hp,11,10,buf)

READ(hp,11,10,buf)

START(hp)

for(all i)

buf[i] −= 2

WRITE(hp,0,10,buf)

COMMIT (sync)

DEPENDENT TRANSACTIONS

START(hp)

READ(hp,0,10,buf)

for(all i)

buf[i] += 1

WRITE(hp,0,10,buf)

COMMIT (partition)

buf[i] −= 2

START(hp)

READ(hp,11,10,buf)

for(all i)

WRITE(hp,11,10,buf)

COMMIT

PARALLEL TRANSACTIONS

(partition)

Figure 2: Dependent and Parallel Transactions.
sync, async, and partition.
Sync and Async. Sync and async are similar to database
synchronous and asynchronous commit. Synchronous
commit only returns after forcing the transaction’s log
records and all preceding transactions’ records that it de-
pends upon to stable storage, guaranteeing that the up-
date is durable. In contrast, asynchronous commit re-
turns as soon as the transaction finishes updating mem-
ory, and does not wait to force the log records to storage.
With this option, after a failure, the heap recovers to a
consistent point in the transaction history, but may lose
recently committed asynchronous transactions.
Partition. Commit’s third option, partition, relaxes the
isolation guarantee for better performance. Hathi has
a separate log partition for each thread (see Section 4).
Partition commit simply forces the log for the local
thread. This option is useful when an application knows
the thread’s transactions are independent of transactions
in other threads. In this case, waiting for other threads to
flush their preceding transactions is unnecessary. This
case arises, for example, when applications partition
their data across threads and ensure transactions touch
only local data. Such partitioning may be easy when
updating regular data structures like a hashtable or a ma-
trix. In this case, isolation is unneeded, so transactions
provide atomicity and durability, and the programmer
is responsible for consistency. Although applications
can mix this option with the others above, they must be
careful to ensure the independence of partition commit.
Figure 2 shows an example of dependent transactions,
which cannot use partition, and parallel ones that can.
isStable. Hathi provides an additional interface to query
whether a prior asynchronous transaction is durable.
On success, async commit returns the logical se-
quence number (LSN) for the transaction. The is-
Stable(lsn,wait) call indicates whether a transaction with
that LSN is stable and recoverable, and optionally waits
until it is. A transaction is recoverable if all transactions
it is dependent on are durable. This interface allows ap-
plications to make commit split-phase. They can con-
tinue with other tasks and return to dependent actions
once the log flushes. In this way, we can overlap I/O and
computation, getting recoverability at nearly the same
throughput as asynchronous commit.

4 Design and Implementation
We implemented a prototype of Hathi using
TinySTM [8] out-of-the-box for concurrency and
added write-ahead logging and recovery for durability.
Unlike traditional databases, Hathi does not main-
tain a backing store: storage contains only logs and
checkpoints, and the logs contain only redo records of
updates. Checkpoints are copies of the heap state on
SSDs that are needed for trimming the logs and reducing
recovery time. Hathi incrementally checkpoints the
heap to avoid stalling the system.

Hathi’s transaction API wraps the underlying STM
calls and buffers writes until commit. On successful
commit, Hathi tags the writes with a logical sequence
number (LSN) given by the STM and inserts them into
the log. The LSN is a global counter that the STM atom-
ically increments before releasing all locks, thus order-
ing all transactions. For all commit types, Hathi reflects
the transaction updates in-memory well before the log
records reach the SSD to allow other threads to proceed.
Partitioned Logging. Hathi employs partitioned log-
ging both in memory and in storage: each core main-
tains its own transaction log that can be independently
flushed to a separate location in storage. Merging the
logs provides a logical global log. Partitioned logging
is well suited to both SSDs and multi-core architectures:
SSDs require multiple outstanding requests to saturate
their bandwidth, and partitioned logging allows multi-
ple cores to generate requests simultaneously. In addi-
tion, partitioned logging reduces lock contention, since
threads access their local log without synchronization.
Hathi further reduces latency with direct I/O to bypass
the file-system buffer pool.

Partitioned logging complicates recovery by raising
the possibility that later transactions from one thread
will become durable before earlier transactions of an-
other. This potentially leaves a gap in the transaction
sequence on failure. During recovery, it may therefore
be inconsistent to replay all committed transactions in
all logs. On recovery, Hathi takes care to only replay
transactions up to the first missing transaction.

The Hathi interface enables applications to control
durability of their data. Hathi maintains a global vari-
able, min lsn, that tracks the youngest recoverable
transaction. Each transaction log maintains the latest
LSN that is on the non-volatile store; the min lsn is
the minimum or oldest of these. Each thread updates
this variable after flushing its log. For synchronous
commit, Hathi flushes the local log and waits until
min lsn exceeds or equals the transaction LSN. To im-
prove throughput, synchronous commit batches multiple
transactions into a single log flush, a technique called
group commit. Partitioned commit annotates the trans-
action’s log record with a partition flag, flushes the log,

3

 0

 500

 1000

 1500

 2000

1 2 4 8

T
x

T
hr

ou
gh

pu
t (

10
00

 T
x/

s)

Number of Tx Threads

STM
PL
SL

(a) Durability Costs

 0

 20

 40

 60

 80

 100

full sync 1/1000 sync 1/100 sync 1/100 partition

P
er

f.
re

l.
to

 a
sy

nc
 (

%
)

Periodic Commit Mode

(b) Commit Mode Performance

Figure 3: Durability costs and commit modes’ performance.
and does not wait for min lsn. The flag indicates that
the transaction can safely be recovered, even if pre-
ceding transactions from other threads are not avail-
able. Asynchronous commit also does not wait and,
like group commit, defers forcing the log until either a
fixed time period elapses or a fixed amount of log space
is used. Finally, isStable compares the given LSN
against min lsn and waits if necessary.
Checkpointing and Log Trimming. In checkpointing,
Hathi periodically writes memory in configurable fixed-
sized chunks to a non-volatile store. When a checkpoint
is needed, a separate checkpoint thread walks through
the heap and writes out chunks, with each write pro-
tected by an STM transaction. This method ensures con-
sistency with concurrent transactions, without the need
to pause execution. Although non-intrusive, this incre-
mental checkpointing method allows for a transaction to
straddle a chunk that has been checkpointed and one that
has not. In such case, a chunk of memory in a check-
point cannot be used for recovery until the effects of
all transactions reflected in that chunk have been made
recoverable, that is, written to disk so they can be re-
applied to chunks that do not include their effects. Thus,
a checkpoint is not valid until all transactions reflected
in any of its chunks have been made recoverable (similar
to write-ahead logging). Once Hathi has created a valid
checkpoint of the entire heap, it discards unneeded older
checkpoints and garbage collects log records prior to the
earliest chunk in the new checkpoint since their effects
are already included.

Since the workload fits in main memory, we can safely
require that enough storage space is available for more
than two checkpoints. Thus, we need not ensure that all
transactions are durable before starting the checkpoint.
Hathi first copies data from the persistent heap into a
temporary buffer using an STM read, and then writes
out the chunk and its LSN to checkpoint space. Once all
chunks have been written, it writes a checkpoint header
that indicates what next to garbage collect.

Recovery. Hathi performs recovery by loading a check-
point and then replaying logs. It reads the checkpoint
header to find the LSN of the oldest checkpoint chunk.
Starting with that chunk, Hathi replays logs and check-
points in LSN order until it reaches the end of one
thread’s log and a gap in the LSNs, which indicates a
missing transaction. It then continues to scan logs and
replays records labeled partition.

5 Preliminary Evaluation
Our current implementation of Hathi supports parti-
tioned logging, incremental checkpointing, and recov-
ery. In this section, we present experiments that show:
(i) the cost of durability, (ii) the value of partitioned
logging, and (iii) the performance tradeoffs of different
durability options and increased transaction size.
Methodology. We use two setups in these experiments.
To emulate a high-throughput OLTP system, we use a
3.0 GHz Intel Xeon HP Proliant quad-core server with
8 GB DRAM and a 80 GB PCIe FusionIO ioDrive. On
this, we run a synthetic workload in which each thread
continuously executes transactions that read and write
six random word offsets in a 4 GB heap. The sec-
ond system runs the travel reservation workload from
STAMP transactional memory benchmark suite [12] that
we ported to Hathi. This ran on a 2.5 GHz Intel Core
2 quad with 1 GB heap and a consumer-grade SSD,
an Intel X-25M. Unless otherwise noted, we use asyn-
chronous commit and no checkpointing. We use a 10 ms
group commit timer and maximum 512 KB log buffer
for each thread.
Durability Costs. Figure 3(a) compares the perfor-
mance of the OLTP system running with Hathi durabil-
ity (PL) and without durability (STM). The STM system
peaks in throughput at 4 threads with 100% CPU utiliza-
tion. With Hathi at 8 threads, we reach 1.25 M txns/sec
with 70% CPU utilization and saturate only 20% of peak
FusionIO bandwidth. This is 38% short of the peak STM
only throughput. Even with group commit, our current
implementation causes the transaction threads to block

4

on each log flush. We believe with use of separate log-
ging threads, we could eliminate such blocking and po-
tentially reach the same throughput as pure STM without
logging. On the STAMP workload with partitioned log-
ging, we nearly reach 200 K txns/sec, only 15% short of
the STM-only throughput. Note that recent work on per-
sistent memory using future projections of phase-change
memory performance achieved only 1.3-1.6 M txns/sec
with 4 cores [7, 14].
Partitioned Logging. Figure 3(a) also compares the
performance transaction throughput for single log (SL)
and partitioned log (PL) on FusionIO. At best, SL
achieves only 45% the performance of PL, with only
20% CPU utilization and 10% of peak FusionIO band-
width, showing that the single log is clearly the bottle-
neck. Single log performance degrades after 4 threads
because of write serialization to ensure sequential I/O.
In contrast, as we increase the number of threads and
log partitions with PL, the throughput increases almost
linearly. When we repeated these experiments with a
traditional SATA disk, the lack of device parallelism and
larger transfer costs reduced throughput, for both sin-
gle and partitioned logs, to one sixth of that using parti-
tioned logging with flash.

We also investigate the impact of logging on the aver-
age transaction latency. The average transaction latency
for flash is 9 ms, less than the group commit timer of
10 ms for the single log system. For partitioned logging,
the extra queuing delay for outstanding I/O requests is
compensated by the low access latency of the SSD. With
disk, commit latency is 7x higher at over 60 ms, irrespec-
tive of the logging strategy.
Performance Tradeoffs. Using the STAMP work-
load, we investigate the impact of different durability
options by mixing synchronous and partitioned com-
mit with asynchronous commit in different proportions.
Figure 3(b) compares the performance of fully asyn-
chronous transactions with fully synchronous. As ex-
pected, throughput drops by 87% because of the fre-
quent stalls for I/O to complete. However, when an ap-
plication can commit most transactions asynchronously,
illustrated by making 1 in 1000 synchronous, it drops
by only 3%. We also compare the performance of syn-
chronous and partitioned commit by making 1 in 100
transactions synchronous or partitioned. For 1/100 sync
and 1/100 partition, performance is 50% and 40%, re-
spectively, of fully asynchronous. Thus, 1/100 partition
is about 25% faster than 1/100 sync. Clearly, periodic
synchronous and partitioned commit provide a middle-
ground between the performance of asynchronous com-
mit and the recoverability of synchronous commit.

Finally, we find that increasing transaction sizes in-
creases both code path length and STM contention. For
example, 8 concurrent threads reading/writing 512 bytes

provide half the transaction throughput of 4 threads.

6 Discussion
Programmers trained in the era of disks have learned that
persisting data requires complex software and rich inter-
faces to overcome the long latency to storage. However,
large memory sizes, multi-core processors, and high-
speed flash storage enable a new generation of storage
interfaces that reduce the gap between volatile and per-
sistent data. Rather than maintaining two copies of data
in different formats, durable memory stores enable a sin-
gle data representation, optimized for in-memory access,
that can also be recovered reliably when failure occurs.

In this paper, we argued the case for Hathi, a high-
speed, main-memory, durable transaction store that har-
nesses recent technology advances. We show the use of
existing hardware and persistent memory available to-
day, without the need to wait for next-generation non-
volatile memory technologies. Hathi provides a power-
ful interface that eases application development, and still
retains much of the performance of the underlying hard-
ware. The flexible interface of Hathi also opens up new
opportunities for application developers to explore the
use of different persistent memory data structures and
declarative programming styles. Finally, we envision
Hathi as a platform that can be used to build not only
user-facing applications, but also scalable and robust in-
frastructure.

References
[1] Fusion-IO PCI-e ioDrive. www.fusionio.com/

products/iodrive.
[2] memcached: High-performance Main-Memory Key-

Value Store. www.memcached.org.
[3] VoltDB: SQL DBMS with ACID. www.voltdb.com.
[4] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis,

M. Manasse, and R. Panigrahy. Design tradeoffs for ssd
performance. In USENIX, 2008.

[5] M. K. Aguilera, A. Merchant, M. A. Shah, A. C. Veitch,
and C. T. Karamanolis. Sinfonia: a new paradigm for
building scalable distributed systems. In SOSP, 2007.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gru-
ber. Bigtable: A distributed storage system for structured
data. In OSDI, 2006.

[7] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson. Nv-heaps: Making
persistent objects fast and safe with next-generation, non-
volatile memories. In ASPLOS, 2011.

[8] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance
tuning of word-based software transactional memory. In
PPoPP, 2008.

[9] R. Kallman et al. H-store: a high-performance, dis-
tributed main memory transaction processing system.
Proc. VLDB Endow., 1(2):1496–1499, 2008.

5

[10] A. Lakshman and P. Malik. Cassandra: a decentral-
ized structured storage system. SIGOPS Oper. Syst. Rev.,
44(2):35–40, 2010.

[11] J. R. Larus and R. Rajwar. Transactional Memory. Mor-
gan & Claypool Publishers, 2006.

[12] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun.
STAMP: Stanford transactional applications for multi-
processing. In IISWC, 2008.

[13] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazières, S. Mitra, A. Narayanan,
G. Parulkar, M. Rosenblum, S. M. Rumble, E. Stratmann,
and R. Stutsman. The case for ramclouds: scalable high-
performance storage entirely in dram. SIGOPS Oper.
Syst. Rev., 43:92–105, January 2010.

[14] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight persistent memory. In ASPLOS, 2011.

6

