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Low Complexity Two-Dimensional

Weight-Constrained Codes
Erik Ordentlich and Ron M. Roth

Abstract

Two low complexity coding techniques are described for mapping arbitrary data to and from m× n

binary arrays in which the Hamming weight of each row (respectively, column) is at most n/2 (re-

spectively, m/2). One technique is based on flipping rows and columns of an arbitrary binary array

until the Hamming weight constraint is satisfied in all rows and columns, and the other is based on a

certain explicitly constructed “antipodal” matching between layers of the Boolean lattice. Both codes

have a redundancy of roughly m+n and may have applications in next generation resistive memory

technologies.

Index Terms

Boolean lattice, resistive memory, two-dimensional coding, weight-constrained codes.

I. INTRODUCTION

Let B be the subset {0, 1} of the set of integers Z, and for any positive integer ℓ, let ⟨ℓ⟩ denote the

integer set {1, 2, . . . , ℓ}. For a word x = (xi)i∈⟨ℓ⟩ in Bℓ, denote by w(x) the (Hamming) weight of x

(equivalently, w(x) =
∑

i∈⟨ℓ⟩ xi). Consider the set Am×n of all m× n arrays A = (Ai,j)i,j over B such

that the weight of each row is at most n/2 and the weight of each column is at most m/2; namely, for

every i ∈ ⟨m⟩ and j ∈ ⟨n⟩,

w
(
(Ai,h)h∈⟨n⟩

)
≤ n/2 and w

(
(Ak,j)k∈⟨m⟩

)
≤ m/2 .
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We are interested in the problem of efficiently encoding and decoding arbitrary data to and from (a

subset of) Am×n. Following the usual formal definitions, a code for this problem consists of a subset

C ⊆ Am×n, an encoder (one-to-one mapping) E : ⟨|C|⟩ → C, and a decoder D : C → ⟨|C|⟩, such that

D(E(u)) = u for all u ∈ ⟨|C|⟩. Of interest are codes for which E(·) and D(·) can be computed with

low complexity and C is as large as possible. Obviously, |C| ≤ |Am×n| < 2mn, and we shall refer to

the gap mn− log2 |C| as the redundancy of the code.

Efficient schemes for encoding and decoding data to and from binary arrays with respective row and

column weights precisely n/2 and m/2 (or any other uniform fraction of n and m) have been described

previously in [1],[2]. In this paper, we take advantage of the more relaxed constraint (i.e., weights at most

n/2 and m/2, respectively) and present new codes that have lower encoding and decoding complexity

and lower redundancy than the schemes of [1],[2]. In particular, the codes of [1],[2] have redundancies

that are proportional to (m+n) log(mn) and have super-linear encoding and decoding complexity; on

the other hand, the present codes have redundancies of roughly m+n, linear decoding complexity, and

linear encoding complexity in the case of one of the codes. One can compare the achieved redundancy

to the best possible redundancy for this constraint, namely, mn − log2 |Am×n|, which, for m = n, is

shown to be approximately 1.42515n in [3].

Our first code is presented in Section III and is based on a bit-flipping procedure and is relatively

simple to explain and verify. Its encoding complexity, however, is yet to be tightly characterized (we do

conjecture it to be considerably lower than the corresponding encoders of [1],[2]). The second code is

more involved and is presented in Section IV, which makes up the bulk of this paper. We shall refer to

the first code as the iterative flipping code and the second as the antipodal matching code, where the

names are derived from key algorithmic components of the respective codes. A summary of the attributes

of the codes is as follows. The iterative flipping code has a redundancy of m+n−1 for all m and n,

linear decoding complexity, and we have a bound of O(mn(m+n)) register operations on the worst-case

encoding complexity. We conjecture that the true worst-case encoding complexity is c(m,n)mn where

c(m,n) is slowly growing in m and n (e.g., logarithmically) and would thus be slightly super-linear in

the number of encoded bits, which is (m−1)(n−1) for m× n arrays. The antipodal matching code, on

the other hand, is best suited for the case where the number of columns (say) n is even, and for such n

has a redundancy of m+n and linear encoding and decoding complexity (for odd n, the redundancy is

m+n+1).
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Fig. 1. Crossbar of resistive memory devices with a selected device undergoing programming.

II. MOTIVATION

Although our primary purpose here is to study the purely information theoretic problem of efficiently

coding into Am×n, this and similar constraints and the associated codes may be applicable, as presented

in [5], to limiting parasitic current in next generation memory technologies based on crossbar arrays of

resistive devices, such as memristors (see, e.g., [4]). As depicted in Figure 1, bits are stored in these types

of memories by “programming” the resistance values of individual devices to high and low states, which

can be accomplished by the application of suitable positive and negative voltages to the row and column

of a selected device (circled in the figure) and zero voltage to all other rows and columns. Notice that

the devices in the same row and column as the selected device being programmed experience half of the

programming voltage drop across their terminals. These devices are thus termed half-selected devices.

The devices are engineered so that they do not undergo resistance changes at half of the programming

voltage. Nevertheless, the half-selected devices, particularly those in low resistance states, will collectively

induce a parasitic current that, in the worst case (e.g., all half-selected devices in low resistance states),

increases linearly with the dimensions of the array. This imposes a limit on the maximum size of crossbar

arrays, which, in turn, limits planar data densities in memories comprised of such crossbars, particularly

in the multi-layered architectures proposed in [4].

The proposed codes might help with this problem in the following manner. Assuming that the dominant

sources of the parasitic current are indeed the half-selected devices in low resistance states and that 1’s are

mapped to such states (with 0 ’s mapped to high resistance states), imposing the above weight constraint

on stored data using the above codes could potentially mitigate the worst-case half-select current by

roughly a factor two. This would allow for larger arrays, with correspondingly more stored data (up to

the redundancy of the code), for a given total current limit, or for reduced current for a given array size
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Input: Sequence u of (m−1)(n−1) information bits.

1) Arrange u as an (m−1)×(n−1) array U .

2) Extend U into an m×n array A by adding an mth row and nth column of 0’s.

3) If A has any rows with weight larger than n/2 then flip all 1’s to 0’s and all 0’s to 1’s in these rows.

4) If A has any columns with weight larger than m/2 then flip all 1’s to 0’s and 0’s to 1’s in these columns.

5) If flips happened in Step 4 then go to Step 3, otherwise terminate and output the final array.

Output: m× n binary array A.

Fig. 2. Encoding algorithm for iterative flipping code.

or given data density.

III. ITERATIVE FLIPPING CODE

As mentioned, the iterative flipping code encodes (m−1)(n−1) information bits into m × n arrays

belonging to Am,n. Encoding proceeds as in Figure 2.

The encoding procedure is guaranteed to terminate since each row or column flip strictly reduces the

total number of 1’s in the array.1 Since the procedure terminates only when there is no row and column

with weight larger than n/2 and m/2, respectively, the final array must belong to Am×n.

The (m−1) × (n−1) subarray of information bits U arranged in Step 1 in Figure 2 can be decoded

as follows from the encoded array A.

Proposition 3.1: If U and A are respectively the information bit array and the encoded array from the

algorithm of Figure 2, then Ui,j ≡ Ai,j +Ai,n +Am,j +Am,n (mod 2).

Proof: Any column or row flip involving the array locations (i, j), (i, n), (m, j), (m,n) during encoding

flips precisely two of the corresponding array bits, thereby preserving the modulo-2 sum of these 4 bits.

The claim follows since the initial modulo-2 sum is simply Ui,j , as the other three bits are initialized to

0.

Thus, the number of bit operations required for decoding is linear in the number of decoded bits. The

true complexity of encoding, on the other hand, is less clear. An upper bound of O(mn) row–column

1The procedure can be shown to correspond to a deterministic schedule for the zero-temperature Glauber dynamics [6] in a

certain Ising model having m+n states corresponding to the flip status of each row and column and with interactions determined

by the initial array.

HP Restricted



5

n−3
2


0

1 · · · 1 0

0 1 · · · 1 0
...

. . . . . .
...

...

0 · · · 0 1 0

n+3
2



1 0 · · · 0

1 1
. . .

...
...

. . . . . . 0

1 1 · · · 1

1 1 · · · 1

0 0 · · · 0

0

︸ ︷︷ ︸
n−1
2

︸ ︷︷ ︸
n+1
2

Fig. 3. Example of a sequence of n× n arrays, n odd, that requires Ω(n) row–column flips to encode.

flips (equivalently, O(mn(m+n)) bit flips) and iterations between rows and columns follows readily

from the above noted fact that each row–column flip strictly reduces the number of 1’s in the array.

Conversely, in Figure 3 we exhibit a sequence of binary n× n arrays that requires Ω(n) row–column

iterations under the encoding algorithm of Figure 2. In the figure, we assume n odd, but the construction

extends readily to n even as well. In reference to the figure, notice that the number of 1’s in the first

(from the left) column is (n+1)/2, and that this column is the only constraint violating row or column

in the array. The encoder will thus flip this column, resulting in (n−3)/2 new 1’s in the first column

of the ((n−3)/2)× ((n−1)/2) upper left block. This, in turn, induces a constraint violation in the first

row, and thus a flip of this row (and only this row). The resulting partial row of new 1’s in the upper

left block, in turn, induces a constraint violation in the second column (and only this column). The 1’s

in the array are arranged so that this process continues with each column flip triggering the flipping of

precisely one new row and vice versa, until the first (n−1)/2 columns and (n−3)/2 rows are all flipped.

The total number of row–column flips required for encoding is thus at least n−2. We conjecture that the

true worst-case complexity of the encoder of Figure 2 is much closer to O(m+n) row–column flips than

O(mn).
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IV. ANTIPODAL MATCHING CODE

The highly sequential nature and uncertain complexity of the iterative flipping encoder motivates the

consideration of alternative schemes. In this section, we describe the antipodal matching code which has

the attributes noted in Section I. The preceding iterative flipping code essentially consists of repeated

applications to selected rows and columns of the simple one-to-one mapping between binary sequences

that flips all 0’s to 1’s and 1’s to 0’s. While this mapping serves to reduce the number of 1’s in the

array and, hence eliminate all constraint violations in the long run, it has the drawback that it may

create new constraint violations in some columns (rows) when applied to a given row (column). This

explains the need for at least Ω(min{m,n}) (possibly more) row–column flip iterations (as in Figure 3).

The code considered in this section is based on antipodal matchings, a different class of one-to-one

mappings on binary sequences, that avoid this drawback. We formally specify their properties in the next

subsection. In Subsection IV-B, we present the construction of the 2D antipodal matching code based on

a general antipodal matching. A specific, efficiently computable antipodal matching is then presented in

Subsection IV-C, together with a proof that it is one-to-one. This matching can be computed in linear

time.

A. Antipodal matchings

Fix ℓ to be a positive integer. An antipodal matching ϕ is a mapping from Bℓ to itself with the following

properties holding for every x ∈ Bℓ:

(P1) w(ϕ(x)) = ℓ− w(x).

(P2) If w(x) ≥ ℓ/2 then ϕ(x) has all its 1’s in positions where x has 1’s (note that w(ϕ(x)) ≤ ℓ/2 by

property (P1)). Formally, writing x = (xj)j and ϕ(x) = (yj)j , then yj = 1 implies xj = 1 for each

index j.

(P3) ϕ(ϕ(x)) = x.

From these properties we see that an antipodal matching can be decomposed into a collection of

bijective mappings φ = φw from {x ∈ Bℓ : w(x) = w} to {x ∈ Bℓ : w(x) = ℓ−w}, w = 0, 1, 2, . . . , ℓ,

each of which satisfies the covering property (P2) and such that φw = φ−1
ℓ−w. The existence of such

constituent mappings φw, which will also be referred to as antipodal matchings, is guaranteed by Hall’s

theorem [7, pp. 217–218]. In Section IV-C, we present efficiently computable (linear complexity) antipodal

matchings φw for all sequence lengths ℓ and all w ∈ {0, 1, . . . , ℓ}, which then collectively constitute an

efficient antipodal matching in the sense of properties (P1)–(P3).
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Input: For n even, arbitrary sequence u of (m−1)(n−1)− 1 bits.

1) Precede the sequence u with a 0 and arrange the resulting (m−1)(n−1) bits into an (m−1)× (n−1) binary

array U (thus, the added 0 is at position (1, 1) in U ).

2) Extend U into an m× n array A by adding an mth row and nth column of 0’s.

3) For each row of A that has weight n/2 or more, flip all 1’s in the row to 0’s and all 0’s to 1’s.

4) For all j ∈ ⟨n−1⟩ do:

If w(A⟨m−1⟩
j ) > m/2 then do the following:

a) replace A
⟨m−1⟩
j with ϕ

(
A

⟨m−1⟩
j

)
(= the antipodal matching applied to the sequence formed by the first

m−1 bits in the jth column);

b) set Am,j ← 1.

5) If the mth row of A has weight greater than n/2 then do the following:

a) replace (Am,j)j∈⟨n−1⟩ (= the first n−1 bits in the mth row) by ϕ
(
(Am,j)j∈⟨n−1⟩

)
;

b) set Am,n ← 1.

6) If w(A⟨2:m⟩
n ) > m/2 then do the following:

a) replace A
⟨2:m⟩
n with ϕ

(
A

⟨2:m⟩
j

)
;

b) set A1,n ← 1;

Otherwise set A1,n ← 0.

Output: The resulting m× n array A.

Fig. 4. Encoding algorithm for antipodal matching code.

B. 2D antipodal matching code from antipodal matchings

There are many ways to build a 2D weight-constrained code out of antipodal matchings and here we

describe a particular scheme. As mentioned, the key idea behind the resulting antipodal matching code is

that the underlying antipodal matching ϕ permits iteration-free encoding by not creating new constraint

violations. We note that the specific scheme we describe does make (non-essential) use of bit-flipping,

but in a single, non-iterative and parallelizable step, unlike in the iterative flipping code.

The encoding and decoding algorithms for the antipodal matching code are depicted in Figures 4 and 5,

for the case when the number of column n is even (see Remark 4.1 below for the case when n is odd). In

these figures, A⟨h:i⟩
j stands for the column sequence formed by the i−h+1 entries Ah,j , Ah+1,j , . . . , Ai,j

of an array A, and A
⟨i⟩
j stands for A

⟨1:i⟩
j (namely, the column sequence formed by the first i entries of

HP Restricted
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Input: m× n array A.

1) If A1,n = 1 then replace A
⟨2:m⟩
n with ϕ

(
A

⟨2:m⟩
n

)
.

2) If Am,n = 1 then replace (Am,j)j∈⟨n−1⟩ with ϕ
(
(Am,j)j∈⟨n−1⟩

)
.

3) For all j ∈ ⟨n−1⟩ do:

If Am,j = 1 then replace A
⟨m−1⟩
j with ϕ

(
A

⟨m−1⟩
j

)
.

4) Set A1,n ← A1,1.

5) For all (i, j) ∈ (⟨m−1⟩ × ⟨n−1⟩) \ {(1, 1)} do: set Ui,j ∈ {0, 1} so that Ui,j ≡ Ai,j +Ai,n (mod 2) .

Output: (m−1)(n−1)− 1 information bits in U .

Fig. 5. Decoding algorithm for antipodal matching code.

the jth column of A).

Proposition 4.1: The output array A of the encoder of Figure 4 belongs to Am,n.

Proof: We can see that after Step 3, not only do all rows of A have weight at most n/2, but the number

of 1’s among the first n−1 entries in each row (in particular, in the first row) is at most (n/2) − 1.

Additionally, right after Step 4a, the weight of A⟨m−1⟩
j (namely, the number of 1’s among the first m−1

entries of the jth column) is less than m−1 − (m/2) = (m/2) − 1 for any j for which this step is

applied. This means that right after Step 4, the weight of the jth column, A⟨m⟩
j , is at most m/2 for every

j < n, even if the last entry, Am,j , becomes 1 in Step 4b.

Further, since by design the antipodal matching applied in Step 4a does not introduce 1’s where there

were previously 0’s, after Step 4, each of the first m−1 rows in A will continue to have weight at most

n/2 with a strictly smaller weight among the first n−1 entries in each row.

Similarly, the application of the antipodal matching in Step 5a does not increase the weight in any

of the first n−1 columns in A. And, since Step 5a results in an mth row having weight less than

n−1− (n/2) = (n/2)− 1, the weight of the mth row right after Step 5 is at most n/2, even if the last

entry, Am,n, becomes 1 in Step 5b.

By virtually the same reasoning, it follows that Step 6 results in the nth column having weight at most

m/2, and in any row still having weight at most n/2. Note that the latter applies also to the first row,

even if Step 6b is executed, as the number of 1’s among the first n−1 entries in that row is at most

(n/2)− 1.

Proposition 4.2: The (m−1)(n−1)−1 information bits in U computed in Decoding Step 5 in Figure 5

HP Restricted
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coincide with the corresponding input bit array entries created in Encoding Step 1 in Figure 4.

Proof: Clearly, Decoding Step 1 correctly recovers the last m−1 entries of the nth column as of just

after Encoding Step 5.

Next, Decoding Step 2 recovers the first n−1 entries of the mth row as of just after Encoding Step 4.

A 1 in any of these entries of this row indicates that the antipodal matching was applied to the preceding

entries of the corresponding column in Encoding Step 4a. Thus, the application of the antipodal matching

in Decoding Step 3, by property (P3) of such a mapping, recovers the preceding entries of each column

as of just after Encoding Step 3.

So, after Decoding Step 3, we have recovered the first m−1 rows of A as of just after Encoding

Step 3, except for the entry A1,n (which was modified in Encoding Step 6).2 Since both A1,1 and A1,n

are initialized to 0 in Encoding Steps 1 and 2, these entries remain equal even after a possible flip of

the first row in Encoding Step 3. It follows that Decoding Step 4 correctly recovers the entry A1,n as of

just after Encoding Step 3.

We now need to determine which rows were flipped in Encoding Step 3 so that they can be flipped

back. The entries in the last column now carry this information, and the flipping is carried out in Decoding

Step 5.

It is easy to see from Figures 4 and 5 that encoding and decoding of the antipodal matching code

involves the application of at most n+1 antipodal matchings along with another O(mn) increment-

decrement-compare operations over integer registers that are O(1) + log2(max{m,n}) bits long (hence-

forth “operations” shall have this meaning). In the next subsection, we present a specific antipodal

matching that, in turn, can be computed in a number of operations that grows linearly in the length

of the sequence (as well as requiring only O(1) registers beyond the sequence). The overall antipodal

matching code will thus have encoding and decoding complexity of O(mn) operations, which is linear

in the number of encoded bits.

Remark 4.1: In Encoding Step 3 in Figure 4, a row is flipped also when its weight is equal to n/2:

we need this in order to guarantee that Encoding Step 6b does not increase the weight of the first row

beyond n/2 (for all other rows, it suffices to carry out the flipping in Encoding Step 3 only when the row

weight is greater than n/2). In fact, it is the effect of Encoding Step 6b on the weight of the first row

2For each row except the first, the last entry in the row is used to indicate whether the contents of the row has been replaced

through flipping (by Encoding Step 3) or antipodal matching (by Encoding Step 5). It is only the first row where the first entry,

A1,1, is actually used to record a flipping; the last entry, A1,n, in that row is used in Encoding Step 6b to record a replacement

of the contents of the last column.
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which requires us to assume that n is even. Thus, we can accommodate odd values of n by forcing one

of the information bits in the first row to be 0 (thereby increasing the overall redundancy to m+n+1),

and applying a flipping of the first row in Encoding Step 3 only to the remaining entries in that row,

whenever the row weight is (n−1)/2 or more.

C. An efficient antipodal matching

It will be convenient to present our efficient antipodal matching in terms of sequences over the bipolar

alphabet {“+”, “−”} which we shall denote by Φ. Recalling the discussion in Subsection IV-A, formally,

we will define the constituent mappings φ′ on bipolar sequences and obtain the mapping φ on binary

sequences via a pre- and post- application of the symbol-wise mapping b(·) which maps 0 to “−” and 1

to “+”, and its inverse b−1(·).

The elements of Φ will be regarded as integers (for the purpose of addition and subtraction), where

“+” and “−” stand for 1 and −1, respectively. The sum of entries of a word x ∈ Φℓ will be denoted by

Sx (it is easy to see that Sx and ℓ have the same parity: they are both even or both odd).

For a positive integer ℓ and s ∈ {ℓ−2w : w = 0, 1, . . . , ℓ}, define

C(ℓ, s) = {x ∈ Φℓ : Sx = s} . (1)

For any s > 0 in the above range, the two sets C(ℓ, s) and C(ℓ,−s) are referred to as antipodal layers

in the Boolean lattice [8].

Reformulating the discussion in Subsection IV-A in terms of the alphabet Φ, for each positive s in the

above range, an antipodal matching is a bijective mapping φ′ : C(ℓ, s)→ C(ℓ,−s). In addition, for every

x = (xj)j ∈ Φℓ, the image y = (yj)j = φ′(x) can have yj = “+” only if xj = “+”, for any entry index

j.

We are interested here in the problem of finding antipodal matchings which can be computed efficiently.

This problem has been studied for the special case of s = 1 (and ℓ odd), primarily in the context of

attempting to solve the long-standing problem as to whether there exists a Hamiltonian cycle in the

bipartite sub-graph that is induced by the middle levels, C(ℓ, 1) and C(ℓ,−1), of the Boolean lattice;

see [9], [10], [11]. We present here efficient antipodal matchings for all s. Our construction can be seen

as a generalization of one of the matchings in [11] (yet we point out that some stronger results that are

shown in [11] for s = 1, do not seem to generalize for larger s). We note that our construction can

also be inferred from known explicit minimal partitions of Bℓ into symmetric chains [9], [12], [13]; our

exposition here however will be self-contained.
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We borrow some of our notation from [11]. Hereafter, we fix ℓ to be a positive integer and let

Zℓ = Z/ℓZ be the ring of integer residues modulo ℓ. For distinct i and j in Zℓ, we denote by [i, j)

the subset {i, i+1, i+2, . . . , j−1} of Zℓ (where addition and subtraction are taken modulo ℓ: namely, to

obtain the elements of [i, j) one starts with i and iteratively adds the unity element of Zℓ until one reaches

j−1). For i ∈ Zℓ, we formally define [i, i) to be the whole set Zℓ. The notation (i, j] and (i, j) will stand

for the subsets [i+1, j+1) and [i, j) \ {i}, respectively (thus, (i, i) = Zℓ \ {i} and (i, i+1) = ∅). For any

i, j ∈ Zℓ and k ∈ (i, j) we have [i, k)∪ [k, j) = [i, j) and, in particular (when i = j), [i, k)∪ [k, i) = Zℓ .

We will adopt the convention that entries of words in Φℓ are indexed by Zℓ. For a word x ∈ Φℓ and

indexes i, j ∈ Zℓ, we denote by Sx[i, j) the sum of the entries of x that are indexed by [i, j). Notation

such as Sx(i, j] and Sx(i, j) will have its obvious meaning (where Sx(i, i+1) is defined as 0).

Given a word x ∈ Φℓ, denote by Px the subset of Zℓ which consists of all minimal indexes i in the

sense that

Sx[i, j) > 0 for all j ∈ Zℓ . (2)

Obviously, Px ̸= ∅ only if Sx > 0, and i ∈ Px only if xixi+1 = “++”.

Example 4.1: Consider the following word of length ℓ = 11 over Φ:

0 1 2 3 4 5 6 7 8 9 10

x = + − − + − + + − + + +

Here Sx = 3 and Px = {5, 8, 9}. The entries marked by boxes are those that are indexed by Px.

The next proposition (to be proved below) presents a useful characterization of Px.

Proposition 4.3: Given x ∈ Φℓ, let t0, t1, t2, . . . , ts−1 be s (> 0) distinct elements of Zℓ with their

subscripts assigned so that the following s subsets form a partition of Zℓ:

[t0, t1), [t1, t2), . . . , [ts−1, ts)

(where ts = t0). The following two conditions are equivalent.

(i) Px = {t0, t1, . . . , ts−1}.

(ii) For each h = 0, 1, . . . , s−1: Sx[th, th+1) = 1 and Sx[th, j) > 0 for j ∈ (th, th+1).

Corollary 4.4: Let x ∈ Φℓ be such that Sx > 0. Then |Px| = Sx .

We will need the next lemma for the proof of Proposition 4.3.

Lemma 4.5: Given x ∈ Φℓ, suppose that t and t′ are distinct elements in Px such that Sx[t, t′) > 1.

Then (t, t′) ∩ Px ̸= ∅.

Proof: Consider the function f : (t, t′]→ Z which is defined by

f(i) = Sx[t, i) for every i ∈ (t, t′] .
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Note that since t ∈ Px then f(i) > 0 for every i ∈ (t, t′]. Moreover, the function f is “stepwise

continuous” in that it satisfies

|f(i+1)− f(i)| = 1 for every i ∈ (t, t′) ;

as such, this function takes all integer values in the range {1, 2, . . . , f(t′)}, where f(t′) = Sx[t, t′) > 1.

In particular, there exists k ∈ (t, t′) such that f(k) = 1. Without loss of generality we can assume in

addition that f(j) > 1 for every j ∈ (k, t′), namely, k is the “rightmost” element i among those in (t, t′)

that satisfy f(i) = 1.

Next, we show that k ∈ Px, namely, Sx[k, j) > 0 for every j ∈ Zℓ. We do this by distinguishing

between the following two ranges of j.

• j ∈ (k, t′]. Here k ∈ (t, j) and, so,

Sx[k, j) = Sx[t, j)− Sx[t, k) = f(j)︸︷︷︸
>1

− f(k)︸︷︷︸
1

> 0 .

• j ∈ (t′, k]. Here t′ ∈ (k, j) and we get

Sx[k, j) = Sx[k, t′) + Sx[t′, j)

= (Sx[t, t′)− Sx[t, k)) + Sx[t′, j)

= f(t′)︸︷︷︸
>1

− f(k)︸︷︷︸
1

+ Sx[t′, j)︸ ︷︷ ︸
>0

> 0 ,

where the inequality Sx[t′, j) > 0 follows from the assumption that t′ ∈ Px.

Proof of Proposition 4.3: (i) ⇒ (ii). Suppose that condition (i) holds. Then clearly Sx[th, j) > 0 for

every h = 0, 1, . . . , s−1 and j ∈ Zℓ. Thus, it remains to show that Sx[th, th+1) ≤ 1. Yet this follows

from Lemma 4.5 by observing that the assumed assignment of subscripts implies that

(th, th+1) ∩ Px = ∅ for h = 0, 1, . . . , s−1 .

(ii)⇒ (i). Suppose that condition (ii) holds. We show that t0 ∈ Px; the proof that every other element

th is in Px will then follow simply by shifting the subscripts cyclically. Given j ∈ Zℓ, let r be the unique

subscript for which j ∈ (tr, tr+1]. Then

Sx[t0, j) =
(r−1∑
h=0

Sx[th, th+1)︸ ︷︷ ︸
1

)
+ Sx[tr, j)︸ ︷︷ ︸

>0

> r ≥ 0 .

It remains to show that there exists no t′ ∈ Px other than t0, t1, . . . , ts−1. Indeed, if there were such a

t′, then, for the unique subscript r for which t′ ∈ (tr, tr+1), we would have

Sx[tr, tr+1) = Sx[tr, t′)︸ ︷︷ ︸
>0

+ Sx[t′, tr+1)︸ ︷︷ ︸
>0

> 1 ,
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thereby contradicting condition (ii).

Proof of Corollary 4.4: Using the notation of Proposition 4.3 and writing Px = {t0, t1, . . . , ts−1}, we

get from the proposition that

|Px| = s =

s−1∑
h=0

Sx[th, th+1)︸ ︷︷ ︸
1

= Sx[t0, t0) = Sx ,

as claimed.

In analogy with the definition of Px, we have the following definition which suits words y ∈ Φℓ with

Sy < 0: we define My to be the subset of Zℓ which consists of all indexes i such that Sy(j, i] < 0 for

all j ∈ Zℓ (note that here, unlike (2), each index interval (j, i] over which the sum is taken extends to

the left of i).

Example 4.2: For the following word over Φ

0 1 2 3 4 5 6 7 8 9 10

y = + − − + − − + − − − +

one has Sy = −3 and My = {5, 8, 9}.

For a word x = (xj)j∈Zℓ
over Φ, we define its conjugate to be the word x∗ = (−x−j)j∈Zℓ

. Clearly,

(x∗)∗ = x, and it is also easy to see that Sx∗ = −Sx and that Mx∗ = −Px = {−t : t ∈ Px}. We

can state a counterpart of Proposition 4.3 that characterizes the sets My for words y ∈ Φℓ simply by

replacing each word with its conjugate. When we do so, we get the following corollary.

Corollary 4.6: Let y ∈ Φℓ be such that Sy < 0. Then |My| = −Sy .

Let s be a positive integer in {ℓ−2w : w = 0, 1, 2, . . .} and recall the definition of the sets C(ℓ,±s)

from (1). Let the mapping Es : C(ℓ, s) → C(ℓ,−s) be defined as follows: for every x = (xj)j∈Zℓ
in

C(ℓ, s), the entries of y = (yj)j∈Zℓ
= Es(x) are given by

yj =

 −xj = “−” if j ∈ Px
xj otherwise

.

Note that from Proposition 4.3 we have Sy = Sx − 2|Px| = −Sx = −s, so every image of Es is indeed

an element of C(ℓ,−s). In addition, it is straightforward to see that yj can be “+” only if xj is, for every

j ∈ Zℓ.

In a similar manner, we can also define the mapping Ds : C(ℓ,−s) → C(ℓ, s) that maps every word

y ∈ C(ℓ,−s) to a word x = Ds(y), where

xj =

 −yj = “+” if j ∈My

yj otherwise
.

The next proposition implies that the mapping Es is an antipodal matching.
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Proposition 4.7: For every positive s ∈ {ℓ−2w : w = 0, 1, 2, . . .} and every x ∈ C(ℓ, s),

Ds(Es(x)) = x .

Namely, the mappings Es : C(ℓ, s)→ C(ℓ,−s) and Ds : C(ℓ,−s)→ C(ℓ, s) are bijective.

Proof: Fix an s = ℓ − 2w and let x = (xj)j∈Zℓ
be in C(ℓ, s). We show that the respective image

y = (yj)j∈Zℓ
= Es(x) satisfies My = Px which, in turn, yields the desired result.

Write Px = {t0, t1, . . . , ts−1}, where the subscripts h of th are as in Proposition 4.3. Now fix some

h ∈ {0, 1, . . . , s−1}, and recall that yj = xj for every j ∈ (th, th+1) and yth+1
= −xth = “−”. By

Proposition 4.3 we have Sx[th, th+1) = 1 and, so,

Sy(th, th+1] = Sx[th, th+1)︸ ︷︷ ︸
1

− xth︸︷︷︸
1

+ yth+1︸︷︷︸
−1

= −1 .

Equivalently,

Sy∗ [−th+1,−th) = 1 . (3)

In addition, for every j ∈ (th, th+1) we have

Sy(j, th+1] = Sy(th, th+1]− Sy(th, j]

= −1− Sy(th, j] = −1− Sx(th, j]

= −1− Sx[th, j+1) + xth = −Sx[th, j+1)

< 0 .

Equivalently,

Sy∗ [−th+1, i) > 0 for every i ∈ (−th+1,−th) . (4)

Hence, by applying Proposition 4.3 to y∗ we get from (3)–(4) that −t0, −t1, . . . , −ts−1 ∈ Py∗ i.e.,

Px ⊆ −Py∗ =My. Equality then follows from the fact that Px and My are both of the same size s.

We can thus set φ′ to Es for s > 0 and to Ds for s < 0 (φ′ is necessarily the identity for s = 0, ℓ

even).

Figure 6 presents a simple and efficient algorithm for computing the set Px for any given word x ∈ Φℓ

with s = Sx > 0. In the first “do–while” loop of the algorithm, an element t = t0 is found which is

the “rightmost” among the elements i that minimize Sx(−1, i) over all i ∈ Zℓ; namely, Sx(−1, t0) <

Sx(−1, j) for j ∈ (t0, 0) and Sx(−1, t0) ≤ Sx(−1, j) for j ∈ (−1, t0) (we use the notation (−1, ·)

instead of [0, ·) to cover correctly also the case where t0 = 0). Note that at the end of the first loop, the

value of the variable σ equals s (= Sx). It is easy to see that t0 is an element of Px: for j ∈ (t0, 0) we
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Input: x = (xj)j∈Zℓ
over Φ with Sx > 0.

Data structures: i, t ∈ Zℓ; σ, µ ∈ Z; P ⊆ Zℓ.

i = 0; σ = µ = 0; P = ∅;

do
{

if (σ ≤ µ)
{

µ = σ;

t = i;}
σ+=xi;

i++;}
while (i ̸= 0);

h = σ;

while (h > 0)
{

if (σ ≤ h)
{

P = P ∪ {t};

h−−;}
t−−;

σ−=xt;}
Output: Set P .

Fig. 6. Algorithm for computing Px.

have

Sx[t0, j) = Sx(−1, j)− Sx(−1, t0) > 0 ,

and for j ∈ (−1, t0),

Sx[t0, j) = Sx − Sx[j, t0) = Sx︸︷︷︸
>0

− (Sx(−1, t0)− Sx(−1, j))︸ ︷︷ ︸
≤0

> 0 .

For example, for the word x in Example 4.1, one gets the values of Sx(−1, i) as shown in Figure 7; in

this case t0 = 5.

The second “while” loop iterates over t ∈ Zℓ “backwards,” starting with t = t0, and the variable σ

at the beginning of iteration t equals σ(t) = Sx[t0, t). When the “if” condition in that loop is met, the
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-
1 2 3 4 5 6 7 8 9 10 0

i

6

−1

0

1

2

3

Sx(−1, i)

+ − − + − + + − + + +

Fig. 7. Values of Sx(−1, i) for the word in Example 4.1.

-
5 6 7 8 9 10 0 1 2 3 4 5

i

6

1

2

3

4

5

σ(i)

σ(5) = 3

σ(9) = 2

σ(8) = 1

Fig. 8. Values of σ(i) for the word in Example 4.1.

algorithm inserts the respective value, th, of t into P , for h = s, s−1, . . . , 1, where the first element to

be inserted is3 ts = t0. The stepwise continuity of i 7→ σ(i) guarantees that the loop indeed terminates,

since σ(i) takes all the integer values from σ(t0) = s down to σ(t0+1) = 1. For example, for the word

x in Example 4.1, one gets the values of σ(i) as shown in Figure 8 (the values that are inserted into P

are t3 = 5, t2 = 9, and t1 = 8).

The next two properties can be easily verified by induction on h = s−1, s−2, . . . , 1.

• σ(th) = h.

• σ(th) < σ(j) for every j ∈ (th, th+1).

3It can be verified that the second element to be inserted into P , namely ts−1, has to be in (t0, 0). This observation can be

used to accelerate the second “while” loop, yet for clarity, we have elected to present the algorithm in its current form.

HP Restricted



17

Thus, Sx[th, th+1) = σ(th+1)− σ(th) = 1 and Sx[th, j) = σ(j)− σ(th) > 0 for j ∈ (th, th+1]. We can

therefore conclude from Proposition 4.3 that P ⊆ Px; since both P and Px have the same size s = Sx,

they must be equal.

The algorithm in Figure 6 has time complexity of O(ℓ) operations over integers in the range {0, ±1,

±2, . . . , ±ℓ}, where the operations are either additions of ±1 or comparisons. The algorithm can be

seen as a simplified version of a known method [14] for computing the sequence of minima seen in

sliding windows of length ℓ of a sequence of length 2ℓ, where we take into account that the sequence is

stepwise continuous.
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